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1. Loop Quantum Gravity

Theory of Gravity based on Ashtekar’s variables which brings GR into the
form of a gauge theory.

e Densitized triad £¢ and E2E? = ¢%q
e SU(2) connection A® =T? — vK?

['" - spin connection; K! - extrinsic curvature; ~ - Barbero-Immirzi
parameter.

Quantization proceeds by using as basic variables holonomies,
h, = eXp/TiAzéadt
(&

In edges e, and fluxes,
F:/TiEfnade
S

In spacial surfaces S.



2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom.

Evolution of the Universe can be divided into 3 distinct phases:
e Quantum phase: a < a; and a3 = y£2).

Described by a difference equation;

e Semi-classical phase: a; < a < a,.

J
y = g%?
Continuous evolution but equations modified due to non-perturbative
guantization effects;

a

e Classical phase: a > a,.

Usual continuous cosmological equations.



3. Inverse volume operator

Classically: d(a) = a™?

LQC: d; j(a) = Di(q)a™?

for a < a, ,

fora > a, ,

where
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. Modified semi-classical equations

. Modified Friedmann equation

Hamiltonian density is
He = 5di.5(a)py + a’V(9)

and from the Hamiltonian constraint H = 0,
N2, 1 S (147 S?
() +m=5(35+ V@) - &

. Modified Klein-Gordon equation

From the Hamilton’s equations

6 =1{0,Ho} = dijps, Do = {PsHe} = —ag%

to obtain

7 a 1dln DY dV __
0+35(1—350.) ¢+ Digs =0
Antifrictional term when dIn D/dlna > 3 in expanding Universe and
frictional term in a contracting Universe.



3. Variation of the Hubble rate

H = 1%

S 2 ,_ldmD 1dInS)  SdinS
2D 6dlna 6dlna 6dlna

Super-inflation for n +r =dIln D/dIna 4+ dIn S/dIna > 6.

4. Effective equation of state

22 ldlnD 1dInS\ 2 DV dInS
Weg = —1 + 1

»2+2DV ' 6dlna 6dlna) 3¢242DVdlna

Super-inflation (w < —1)whenn+r =dInD/dIlna 4+ dInS/dIna > 6.



5. Consequences for inflation (flat Universe)

V=m? <p2/2
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Inala, .

Tsujikawa and Singh (2003)

1. Super-inflation is brief;

2. ¢, Independent of j;

—6 15/4\ .,
3. Pt X i eXp(_qini{ );

4. ¢ < 2.46;11 If Hubble bound (1/H > a;) is satisfied = not enough
slow-roll inflation!



6. Bouncing Universe in k£ = +1, massless case

. aQ 1din D\ - dV
(12 Dol —
¢+3a< 3d1na)¢+ 0
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1q52< 1d1nD) 1
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2D 6dlna

- a<a. a/, ¢/, superinflation

- a>a. a/, &N\, HNUO0, bounce
II- a>a. a\, ¢/, super-deflation
IV- a<a,, a\, ¢\, H 70, bounce



7. Bouncing Universe in k£ = +1, with self interacting potential
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Field redshifts more rapidly than curvature term provided ¢2 > V (w >
—1/3).

As the field moves up the potential this condition becomes more difficult
to satisfy and is eventually broken. Slow-roll inflation follows.



7. Bouncing Universe in k£ = +1, with self interacting potential
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8. Value of the field at turn around, ¢,

1. k=0
\/ Dini 24/5 15/4
drexp |[V12mly(dr — Pinit) | = (b,,ffb‘t q\ifft ()" exp {16—5 (1 - (12/7)3qini{
2. k=0
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9. The story so far...

1. Flat geometry

e ¢ does not move high enough;
e ¢, iIndependent of quantization parameter ;.

2. Positively curved geometry

e Allows oscillatory Universe,;

e For massless scalar field cycles are symmetric and consequently
ever lasting;

e Presence of a self interaction potential breaks symmetry and
establishes initial conditions for inflation;

e Low j results into more inflation;

e For sufficiently low 5 one can enter eternal inflation;

Can super-inflation during the semi-classical phase replace
slow-roll inflation?



10. Scaling solution

Scaling solution <  ¢?/(2DV) ~ cnst.

Lidsey (2004)
V = Voo?
8 ‘
a=(—71)
7,
20 6
b= (24 7r)a o
Q9
2 a
1D (Ve g
25 \V
3,
V="V¢’ 2l
o 05 1 15
lna/aim-t

B =4€/(n—r)a >0, a=1-n/6, D x a™, S oxa’.

Scaling solution is stable attractor for € > 3o or 3 > (n — 6)/n ~ O(1).



11. Perturbation equations

Define effective action that gives background equations of motion

q — /dT dx a* ¢ — 5ij5’¢8‘¢ —V
2Da?2 a2 "

Perturb field ¢ = ¢y, + 0¢
Define u = ad¢/+/D and get

05 = /dT &’z (u'? — D&Y 0;udju — migu?)

2 (a/\/ﬁyl 2 O°V
e = v 0

Action is sz’mz‘larA to the action of a scalar field « in flat spacetime
with time dependent effective mass. Can construct quantum theory in
an analogous way to that of scalar field « propagating on Minkowski
spacetime in the presence of background field ¢ .



12. Quantization

Momentum canonically conjugate to u

oL

T™T,X) =~ =1uU
(r,x) =5~
Promote v and 7 to operators ¢ and 7 S.t.

[”&(T, X),”&(T, y)] — [7AT<7_7 X>7ﬁ-(7_7 Y)] =0, [ﬂ’(T? X>7ﬁ-<7—7 Y>] — 7:5(3>(X_y>

Expand « in terms of plane waves:

(T, x) = / (Qf)l;Q [wk(ﬂaszmai k} e~ tkx

Obtain equation of motion
wy + (Dk* + mdg) wr, =0

2 2
o+ (DeAn(ryon? )y — 0




13. General solution

2 2
Wy, + <D*A”(—T)npk2 + meng > wr =0
T
Scaling solution m2e 72 = =2+ (3 — 2n)p + (6 — 2n — n?)p?

General solution is:
wi(7) = 1V —=TJ(7) + oV =TY] ()
V' Dk /1 —4md

L(—7)(2+np)/2
r o k(—T1) S T

We are interested in the asymptotic behavior when =z > 1 and =z < 1.
Define, by analogy with standard inflation, effective horizon dg = %
black or effective wavenumber k, = v Dk .



14. Normalization and asymptotic limits

Ensure that creation and annihilation operators &f{ and a, satisfy usual

commutation relations [é, ai] = [a), 4] =0, [aw, a]] = 6@ (k —1)
Using the commutation relations for v« and = get
wiw, —wrwi =0 (Wronskian condition)

General normalized solution is

wi(T) = \/ . \/__TH\(Vl\)@?)

2|2 + np|

1. Small wavelength limit (v Dk/aH > 1)
ngl)<33> . /lei(:c—m//2—7r/4)

_A\—np/4 n VD,
wi(T) = (=7) giok(=m)HHm2 a=2
V|2 + nplak 12 + np

We do not& recover flat spacetime solution (w, = e=**7 /v/2k) unless
n = 0 (which only happens at the end of the superinflationary phase).



15. Normalization and asymptotic limits ( cont.)

2. Long wavelength limit (v Dk/aH < 1)

x\ V] v|) s\ v
gt O e T

H),) (@) = Ty (x) + Y]y (@) x o k(—r)2nn)/2,

4

For np > —2 , x decreases < modes exit the effective horizon.

wi(7) o< /—7Y), is the late time dominant solution.



16. Power spectrum of scalar field perturbations

Using  wi(7) xv/—7Y,, Py= 2k—7f2]wk|2 and P, = DP,/a*

3—2|v|
H? (VDE

E3—2v| (_\1+p(n—2)—|v|(np+2)
Py ox @( 7 ) X (—7)

Scaling solution:

\/9—12p—|—8np—12p2—4p2n+2n2p2
V = —
2+np

— 2
P= " Bn-n+2e+n

Scale invariance for large ¢ (small p ).




17. Fast-roll parameters and scale invariance

Near scale invariance = An, =3—-2|v| =0 =

_ 0} _ 2 ~
P = e—2a(2+r) _B(n—r)—l—Z(Z—I—T) ~ 0

Steep and negative potentials and fast-roll evolution
Expand An, in terms of fast-roll parameters

S /V\?
=1/2e = — | —+—
€= 1/2% [’(V¢)

VeV 1V (Dy Sy
V2 2V, \D S

n=1

and admitting that € is time dependent, the spectral index gives

n n T
Auz4{yu—0_—_->—ﬁ—4
Hhu 7= 26 o\t ") gl T

Scale invariance is obtained for e ~ 0 and n ~ 0.



18. Quadratic corrections

Using holonomies as basic variables leads to a quadratic energy density
contribution in the Friedmann equation

with p < 20. In this work we consider
$+3Hp+Vys=0
The variation of the Hubble rate is

. )2
=1

Super-inflation for o < p < 20.



19. Scaling solution (quadratic corrections)

"Scaling solution” &  ¢?/(20 — V) = cnst.

a = (—T)p 0 U = Upexp(— 0.5¢)
— 1 0.4¢
P="z1 |
2 <70.3
c— Lt (Us il
U S
~0.2
V =20 —-U(¢)
0.1
U=Uye o \
0 1 2 3

where \? = 2¢.

Scaling solution is stable attractor for all A or €



20. Power spectrum of the perturbed field

Power spectrum is given by: P, o< k3(Jwy|?) oc k372 (—7) 1721

where v = —/1 — 4m?2,72/2

For scaling solution m27° = —2+ 3p(1 + p)
Near scale invariance = p = —E}rl — —2/\22+2 ~ 0

Steep and positive potentials and fast-roll evolution

Expand An, in terms of fast-roll parameters

B 2 VgV
651/262(%) : 7751_%

and admitting that € is time dependent, the spectral index gives

An, ~ —4(e — n)

Scale invariance is obtained for e ~ 0 and n = 0.



21. Number of e-folds and the horizon problem

Requirement that the scale entering the horizon today exited N e-folds
before the end of inflation:

aendHend 1 MPI 1 Pend L4
1 — 68 — —1 — 21
() o mom () =5 ()

Preh

1. In standard inflation: In (%) ~ In (m)
aNIIN

2. In LQC with a = (—7)P and p < 1

endHen Ve
ln(a d d)zlnTN:ln(aN) = ——N
anHn Tend

Aend

N~ —60p

Number of e-folds of super-inflation required to solve the horizon problem
can be of only a few.



22. Summary and questions

1. Inverse volume corrections: Scale invariance for steep negative
potentials, V = V,¢”;

2. Quadratic corrections: Scale invariance for steep positive potentials,
V =20 — Uyexp(—Ao);

3. Scaling solution is stable in both cases;
4. Only a few e-folds necessary to solve the horizon problem

5. What is the power spectrum of the curvature perturbation? Work in
progress.



