# Dynamics of super-inflation in Loop Quantum Cosmology

#### **Nelson Nunes**

DAMTP, University of Cambridge

- Slow-roll from LQC k=0 and k=1
- Super-inflation in LQC
- Number of e-folds

J. E. Lidsey, D. J. Mulryne, NJN, R. Tavakol (2004)

D. J. Mulryne, NJN, R. Tavakol, J. E. Lidsey (2004)

Mulryne, Nunes (2006)

Copeland, Mulryne, Nunes, Shaeri (2007)

#### 1. Loop Quantum Gravity

Theory of Gravity based on Ashtekar's variables which brings GR into the form of a gauge theory.

- ullet Densitized triad  $E^a_i$  and  $E^a_i E^b_i = q^{ab}q$
- SU(2) connection  $A_a^i = \Gamma_a^i \gamma K_a^i$

 $\Gamma_a^i$  - spin connection;  $K_a^i$  - extrinsic curvature;  $\gamma$  - Barbero-Immirzi parameter.

Quantization proceeds by using as basic variables holonomies,

$$h_e = \exp \int_e \tau_i A_a^i \dot{e}^a dt$$

in edges e, and fluxes,

$$F = \int_{S} \tau^{i} E_{i}^{a} n_{a} d^{2} y$$

in spacial surfaces S.

# 2. Loop Quantum Cosmology

Focuses on minisuperspace settings with finite degrees of freedom.

Evolution of the Universe can be divided into 3 distinct phases:

• Quantum phase:  $a < a_i$  and  $a_i^2 = \gamma \ell_{\rm pl}^2$ .

Described by a difference equation;

• Semi-classical phase:  $a_i < a < a_*$ .

$$a_*^2 = \frac{j}{3}a_i^2$$

Continuous evolution but equations modified due to non-perturbative quantization effects;

• Classical phase:  $a > a_*$ .

Usual continuous cosmological equations.

# 3. Inverse volume operator

Classically:  $d(a) = a^{-3}$ 

LQC: 
$$d_{l,j}(a) = D_l(q)a^{-3}$$
 where  $q = \left(\frac{a}{a_*}\right)^2$ 

for 
$$a\ll a_*$$
 ,  $D(q)\approx D_\star a^n$  for  $a\gg a_*$  ,  $D(q)\approx 1$ 

for 
$$a\gg a_*$$
 ,  $D(q)pprox 1$ 



## 4. Modified semi-classical equations

#### 1. Modified Friedmann equation

Hamiltonian density is

$$\mathcal{H}_{\phi} = \frac{1}{2}d_{l,j}(a)p_{\phi}^2 + a^3V(\phi)$$

and from the Hamiltonian constraint  $\mathcal{H}=0$ ,

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} = \frac{S}{3} \left(\frac{1}{2}\frac{\dot{\phi}^2}{D} + V(\phi)\right) - \frac{S^2}{a^2}$$

#### 2. Modified Klein-Gordon equation

From the Hamilton's equations

$$\dot{\phi} = \{\phi, \mathcal{H}_{\phi}\} = d_{l,j}p_{\phi}, \quad \dot{p}_{\phi} = \{p_{\phi}, \mathcal{H}_{\phi}\} = -a^3 \frac{dV}{d\phi}$$

to obtain

$$\ddot{\phi} + 3\frac{\dot{a}}{a} \left( 1 - \frac{1}{3} \frac{d \ln D}{d \ln a} \right) \dot{\phi} + D\frac{dV}{d\phi} = 0$$

Antifrictional term when  $d \ln D / d \ln a > 3$  in expanding Universe and frictional term in a contracting Universe.

#### 3. Variation of the Hubble rate

$$\dot{H} = -\frac{S\dot{\phi}^2}{2D} \left( 1 - \frac{1}{6} \frac{d \ln D}{d \ln a} - \frac{1}{6} \frac{d \ln S}{d \ln a} \right) + \frac{S}{6} \frac{d \ln S}{d \ln a} V$$
$$+ \left( 1 - \frac{d \ln S}{d \ln a} \right) S^2 \frac{1}{a^2}$$

Super-inflation for  $n+r=d\ln D/d\ln a+d\ln S/d\ln a>6$ .

## 4. Effective equation of state

$$w_{\text{eff}} = -1 + \frac{2\dot{\phi}^2}{\dot{\phi}^2 + 2DV} \left( 1 - \frac{1}{6} \frac{d \ln D}{d \ln a} - \frac{1}{6} \frac{d \ln S}{d \ln a} \right) - \frac{2}{3} \frac{DV}{\dot{\phi}^2 + 2DV} \frac{d \ln S}{d \ln a}$$

Super-inflation (w < -1) when  $n + r = d \ln D / d \ln a + d \ln S / d \ln a > 6$ .

# 5. Consequences for inflation (flat Universe)



Tsujikawa and Singh (2003)

- 1. Super-inflation is brief;
- 2.  $\phi_t$  independent of j;
- 3.  $\phi_t \propto q_{\rm init}^{-6} \exp(-q_{\rm init}^{15/4});$
- 4.  $\phi_t < 2.4 \ell_{\rm pl}^{-1}$  if Hubble bound (1/ $H > a_i$ ) is satisfied  $\Rightarrow$  not enough slow-roll inflation!

# **6.** Bouncing Universe in k = +1, massless case

$$H^2 = \frac{1}{3} \left( \frac{\dot{\phi}^2}{2D} + V \right) - \frac{1}{a^2}$$

$$\ddot{\phi} + 3\frac{\dot{a}}{a} \left( 1 - \frac{1}{3} \frac{d \ln D}{d \ln a} \right) \dot{\phi} + D\frac{dV}{d\phi} = 0$$







$$\dot{H} = -\frac{1}{2}\frac{\dot{\phi}^2}{D}\left(1 - \frac{1}{6}\frac{d\ln D}{d\ln a}\right) + \frac{1}{a^2}$$

I - 
$$a < a_*$$
,  $a \nearrow$ ,  $\dot{\phi} \nearrow$ , superinflation

II - 
$$a > a_*$$
,  $a \nearrow$ ,  $\dot{\phi} \searrow$ ,  $H \searrow 0$ , bounce

III - 
$$a > a_*$$
,  $a \searrow$ ,  $\dot{\phi} \nearrow$ , super-deflation

IV - 
$$a < a_*$$
,  $a \searrow$ ,  $\dot{\phi} \searrow$ ,  $H \nearrow 0$ , bounce

## 7. Bouncing Universe in k = +1, with self interacting potential



Field redshifts more rapidly than curvature term provided  $\dot{\phi}^2 > V$  (w > -1/3).

As the field moves up the potential this condition becomes more difficult to satisfy and is eventually broken. Slow-roll inflation follows.

# 7. Bouncing Universe in k=+1, with self interacting potential



# 8. Value of the field at turn around, $\phi_{\rm t}$

1. 
$$k = 0$$
  
 $\phi_t \exp\left[\sqrt{12\pi}\ell_{\rm pl}(\phi_t - \phi_{\rm init})\right] = \frac{\dot{\phi}_{\rm init}}{m} \frac{\sqrt{2}}{q_{\rm init}^6} \left(\frac{7}{12}\right)^{24/5} \exp\left[\frac{6}{15}\left(1 - (12/7)^3 q_{\rm init}^{15/4}\right)\right]$ 

2. 
$$k = 0$$

$$\phi_t^2 = \frac{1}{\dot{\phi}_{\text{init}}} \frac{2}{m} \left( \frac{8\pi \ell_{\text{pl}}^2}{2} \right)^{-3/2} \frac{D_{\text{init}}}{q_{\text{init}}^{3/2} a_*^3}$$



## 9. The story so far...

## 1. Flat geometry

- φ does not move high enough;
- $\phi_t$  independent of quantization parameter j.

## 2. Positively curved geometry

- Allows oscillatory Universe;
- For massless scalar field cycles are symmetric and consequently ever lasting;
- Presence of a self interaction potential breaks symmetry and establishes initial conditions for inflation;
- Low j results into more inflation;
- For sufficiently low j one can enter eternal inflation;

Can super-inflation during the semi-classical phase replace slow-roll inflation?

# 10. Scaling solution

Scaling solution  $\Leftrightarrow \dot{\phi}^2/(2DV) \approx \text{cnst.}$ Lidsey (2004)

$$\dot{\phi}^2/(2DV) pprox {
m cnst.}$$

$$a = (-\tau)^{p}$$

$$p = \frac{2\alpha}{2\overline{\epsilon} - (2+r)\alpha}$$

$$\overline{\epsilon} = \frac{1}{2} \frac{D}{S} \left(\frac{V_{,\phi}}{V}\right)^{2}$$

$$V = V_{0} \phi^{\beta}$$



$$\beta = 4\overline{\epsilon}/(n-r)\alpha > 0$$
,  $\alpha = 1 - n/6$ ,  $D \propto a^n$ ,  $S \propto a^r$ .

Scaling solution is *stable* attractor for  $\bar{\epsilon} > 3\alpha^2$  or  $\beta > (n-6)/n \sim \mathcal{O}(1)$ .

## 11. Perturbation equations

Define effective action that gives background equations of motion

$$S = \int d\tau \, d^3x \, a^4 \left( \frac{\phi'^2}{2Da^2} - \frac{\delta^{ij}}{a^2} \partial_i \phi \partial_j \phi - V \right)$$

Perturb field  $\phi = \phi_b + \delta \phi$ 

Define  $u = a\delta\phi/\sqrt{D}$  and get

$$\delta S = \int d\tau \, d^3x \, \left( u'^2 - D\delta^{ij}\partial_i u \partial_j u - m_{\text{eff}}^2 u^2 \right)$$
$$m_{\text{eff}}^2 = -\frac{(a/\sqrt{D})''}{a/\sqrt{D}} + a^2 \, D \, \frac{\partial^2 V}{\partial \phi^2}$$

Action is similar to the action of a scalar field u in flat spacetime with time dependent effective mass. Can construct quantum theory in an analogous way to that of scalar field u propagating on Minkowski spacetime in the presence of background field  $\phi$ .

#### 12. Quantization

Momentum canonically conjugate to u

$$\pi(\tau, \mathbf{x}) = \frac{\partial \mathcal{L}}{\partial u'} = u'$$

Promote u and  $\pi$  to operators  $\hat{u}$  and  $\hat{\pi}$  s.t.

$$[\hat{u}(\tau, \mathbf{x}), \hat{u}(\tau, \mathbf{y})] = [\hat{\pi}(\tau, \mathbf{x}), \hat{\pi}(\tau, \mathbf{y})] = 0$$
,  $[\hat{u}(\tau, \mathbf{x}), \hat{\pi}(\tau, \mathbf{y})] = i\delta^{(3)}(\mathbf{x} - \mathbf{y})$ 

Expand  $\hat{u}$  in terms of plane waves:

$$\hat{u}(\tau, \mathbf{x}) = \int \frac{d^3\mathbf{k}}{(2\pi)^{3/2}} \left[ \omega_k(\tau) \hat{a}_{\mathbf{k}} + \omega_k^*(\tau) \hat{a}_{-\mathbf{k}}^{\dagger} \right] e^{-i\mathbf{k} \cdot \mathbf{x}}$$

Obtain equation of motion

$$\omega_k'' + \left(Dk^2 + m_{\text{eff}}^2\right)\omega_k = 0$$

$$\omega_k'' + \left( D_* A^n (-\tau)^{np} k^2 + \frac{m_{\text{eff}}^2 \tau^2}{\tau^2} \right) \omega_k = 0$$

#### 13. General solution

$$\omega_k'' + \left(D_* A^n (-\tau)^{np} k^2 + \frac{m_{\text{eff}}^2 \tau^2}{\tau^2}\right) \omega_k = 0$$

Scaling solution

$$m_{\text{eff}}^2 \tau^2 = -2 + (3 - 2n)p + \frac{1}{2}(6 - 2n - n^2)p^2$$

General solution is:

$$\omega_k(\tau) = c_1 \sqrt{-\tau} J_{|\nu|}(x) + c_2 \sqrt{-\tau} Y_{|nu|}(x)$$

$$x \propto k(-\tau)^{(2+np)/2} \propto \frac{\sqrt{Dk}}{aH}, \qquad \nu = -\frac{\sqrt{1-4m_{\text{eff}}^2}}{2+np}$$

We are interested in the asymptotic behavior when  $x\gg 1$  and  $x\ll 1$ . Define, by analogy with standard inflation, effective horizon  $d_H=\frac{\sqrt{D}}{aH}$  black or effective wavenumber  $k_*=\sqrt{D}k$ .

## 14. Normalization and asymptotic limits

Ensure that creation and annihilation operators  $\hat{a}_{k}^{\dagger}$  and  $\hat{a}_{k}$  satisfy usual commutation relations  $[\hat{a}_{k},\hat{a}_{l}]=[\hat{a}_{k}^{\dagger},\hat{a}_{l}^{\dagger}]=0$ ,  $[\hat{a}_{k},\hat{a}_{l}^{\dagger}]=\delta^{(3)}(k-1)$ 

Using the commutation relations for u and  $\pi$  get

$$\omega_k^* \omega_k' - \omega_k \omega_k^{*\prime} = 0$$
 (Wronskian condition)

General normalized solution is

$$\omega_k(\tau) = \sqrt{\frac{\pi}{2|2+np|}} \sqrt{-\tau} H_{|\nu|}^{(1)}(x)$$

1. Small wavelength limit  $(\sqrt{D}k/aH \gg 1)$ 

$$H_{\nu}^{(1)}(x) \to \sqrt{\frac{2}{\pi x}} e^{i(x-\pi\nu/2-\pi/4)}$$

$$\omega_k(\tau) = \frac{(-\tau)^{-np/4}}{\sqrt{|2+np|\alpha k}} e^{i\alpha k(-\tau)^{(2+np)/2}}, \qquad \alpha = 2\frac{\sqrt{D_*}}{|2+np|}$$

We  $do \ not$  recover flat spacetime solution ( $\omega_k = e^{-ik\tau}/\sqrt{2k}$ ) unless n=0 (which only happens at the end of the superinflationary phase).

# 15. Normalization and asymptotic limits (cont.)

2. Long wavelength limit ( $\sqrt{D}k/aH \ll 1$ )

$$J_{|\nu|}(x) \to \frac{1}{\Gamma(|\nu|+1)} \left(\frac{x}{2}\right)^{|\nu|}, \qquad Y_{|\nu|}(x) \to -\frac{\Gamma(|\nu|)}{\pi} \left(\frac{x}{2}\right)^{-|\nu|}$$

$$H_{|\nu|}^{(1)}(x) = J_{|\nu|}(x) + iY_{|\nu|}(x)$$
,  $x \propto k(-\tau)^{(2+np)/2}$ .

For np > -2, x decreases  $\Leftrightarrow$  modes exit the effective horizon.

 $\omega_k(\tau) \propto \sqrt{-\tau} \, Y_{|\nu|}$  is the late time dominant solution.

## 16. Power spectrum of scalar field perturbations

Using 
$$\omega_k( au) \propto \sqrt{- au}\,Y_{|
u|}$$
,  $\mathcal{P}_u = rac{k^3}{2\pi^2} |\omega_k|^2$  and  $\mathcal{P}_\phi = D\mathcal{P}_u/a^2$ 

$$\mathcal{P}_{\phi} \propto \frac{H^2}{\sqrt{D}} \left( \frac{\sqrt{D} k}{aH} \right)^{3-2|\nu|} \propto k^{3-2|\nu|} (-\tau)^{1+p(n-2)-|\nu|(np+2)}$$

#### Scaling solution:

$$\nu = -\frac{\sqrt{9-12p+8np-12p^2-4p^2n+2n^2p^2}}{2+np}$$

$$p = -\frac{2}{\beta(n-r)+2(2+r)}$$

Scale invariance for large  $\beta$  (small p).



#### 17. Fast-roll parameters and scale invariance

Near scale invariance  $\Rightarrow \Delta n_u = 3 - 2|\nu| \approx 0 \Rightarrow$ 

$$p = \frac{\alpha}{\bar{\epsilon} - 2\alpha(2+r)} = -\frac{2}{\beta(n-r) + 2(2+r)} \approx 0$$

Steep and negative potentials and fast-roll evolution

Expand  $\Delta n_u$  in terms of fast-roll parameters

$$\epsilon \equiv 1/2\overline{\epsilon} = \frac{S}{D} \left(\frac{V}{V_{,\phi}}\right)^2$$

$$\eta \equiv 1 - \frac{V_{,\phi\phi}V}{V_{,\phi}^2} - \frac{1}{2} \frac{V}{V_{,\phi}} \left(\frac{D_{,\phi}}{D} - \frac{S_{,\phi}}{S}\right)$$

and admitting that  $\bar{\epsilon}$  is time dependent, the spectral index gives

$$\Delta n_u \approx 4\epsilon \left[ 1 - \frac{n}{12} \left( 1 + \frac{n}{6} - r \right) - \frac{r}{2} \right] - 4\eta$$

Scale invariance is obtained for  $\epsilon \approx 0$  and  $\eta \approx 0$ .

#### 18. Quadratic corrections

Using holonomies as basic variables leads to a quadratic energy density contribution in the Friedmann equation

$$H^2 = \frac{1}{3}\rho \left(1 - \frac{\rho}{2\sigma}\right)$$

with  $\rho < 2\sigma$ . In this work we consider

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$$

The variation of the Hubble rate is

$$\dot{H} = -\frac{\dot{\phi}^2}{2} \left( 1 - \frac{\rho}{\sigma} \right)$$

Super-inflation for  $\sigma < \rho < 2\sigma$ .

# 19. Scaling solution (quadratic corrections)

"Scaling solution" 
$$\Leftrightarrow \dot{\phi}^2/(2\sigma - V) \approx \text{cnst.}$$

$$a = (-\tau)^p$$

$$p = -\frac{1}{\bar{\epsilon} + 1}$$

$$\bar{\epsilon} = \frac{1}{2} \left( \frac{U_{,\phi}}{U} \right)^2$$

$$V = 2\sigma - U(\phi)$$

$$U = U_0 e^{-\lambda \phi}$$



where  $\lambda^2 = 2\bar{\epsilon}$ .

Scaling solution is *stable* attractor for all  $\lambda$  or  $\bar{\epsilon}$ 

## 20. Power spectrum of the perturbed field

Power spectrum is given by:  $\mathcal{P}_u \propto k^3 \langle |\omega_k|^2 \rangle \propto k^{3-2|\nu|} (-\tau)^{1-2|\nu|}$ 

where 
$$\nu = -\sqrt{1-4m_{\mathrm{eff}}^2 au^2}/2$$

For scaling solution 
$$m_{\mathrm{eff}}^2 au^2 = -2 + 3p(1+p)$$

Near scale invariance 
$$\Rightarrow p = -\frac{1}{\bar{\epsilon}+1} = -\frac{2}{2\lambda^2+2} \approx 0$$

Steep and positive potentials and fast-roll evolution

Expand  $\Delta n_u$  in terms of fast-roll parameters

$$\epsilon \equiv 1/2\overline{\epsilon} = \left(\frac{U}{U_{,\phi}}\right)^2$$
 ,  $\eta \equiv 1 - \frac{V_{,\phi\phi}V}{V_{,\phi}^2}$ 

and admitting that  $\bar{\epsilon}$  is time dependent, the spectral index gives

$$\Delta n_u \approx -4(\epsilon - \eta)$$

Scale invariance is obtained for  $\epsilon \approx 0$  and  $\eta \approx 0$ .

## 21. Number of e-folds and the horizon problem

Requirement that the scale entering the horizon today exited N e-folds before the end of inflation:

$$\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right) = 68 - \frac{1}{2}\ln\left(\frac{M_{\rm Pl}}{H_{\rm end}}\right) - \frac{1}{3}\ln\left(\frac{\rho_{\rm end}}{\rho_{\rm reh}}\right)^{1/4}$$

- 1. In standard inflation:  $\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right)\approx \ln\left(\frac{a_{\rm end}}{a_N}\right)\equiv N\approx 60$
- 2. In LQC with  $a=(-\tau)^p$  and  $p\ll 1$

$$\ln\left(\frac{a_{\rm end}H_{\rm end}}{a_NH_N}\right) = \ln\frac{\tau_N}{\tau_{\rm end}} = \ln\left(\frac{a_N}{a_{\rm end}}\right)^{1/p} = -\frac{1}{p}N$$

$$N \approx -60 \, p$$

Number of e-folds of super-inflation required to solve the horizon problem can be of only a few.

# 22. Summary and questions

- 1. Inverse volume corrections: Scale invariance for steep negative potentials,  $V=V_0\phi^\beta$ ;
- 2. Quadratic corrections: Scale invariance for steep positive potentials,  $V = 2\sigma U_0 \exp(-\lambda \phi)$ ;
- 3. Scaling solution is stable in both cases;
- 4. Only a few e-folds necessary to solve the horizon problem
- 5. What is the power spectrum of the curvature perturbation? Work in progress.