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Dark matter and galaxy rotation curves

d evidences for dark matter:

@ Qp ~ 0.7 (SNIa) and Qp + Q2,, = 1 (CMB) = Q,, ~ 0.3,
at least 10x greater than estimates of baryonic matter.
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e J many theoretical candidates for dark matter (e.g. from SUSY)

@ Numerical simulations of structure formation are successful
while incorporating (noninteracting, pressureless) dark matter

Conclusions
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Milgrom’s MOND proposal [1983]

MOdified Newtonian Dynamics

for small accelerations (i.e., at large distances)

GM
a = ay = — ifa>a~12x10""ms?
7
GMay .
a = .Japay = vorr if a < ap
r
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Milgrom’s MOND proposal [1983]

MOdified Newtonian Dynamics

for small accelerations (i.e., at large distances)

GM
a = ay = — ifa>a~12x10""ms?
7
GMay .
a = .Japay = vorr if a < ap
r

o Automatically recovers the Tully-Fisher law [1977]

4

Voo

x M, baryonic

@ Superbly accounts for galaxy rotation curves
(but clusters still require some dark matter)
[Sanders & McGaugh, Ann. Rev. Astron. Astrophys. 40 (2002) 263]
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Consistent field theories of MOND?

@ A priori easy to predict a force o< 1/r:
If V(p) = —2a%e "%,
then Ay = V'(¢) = ¢ = (2/b) In(abr).
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Consistent field theories of MOND?

@ A priori easy to predict a force o< 1/r:
If V() = —2a’e"#, unbounded by below
then Ay = V'(¢) = ¢ = (2/b) In(abr).
Constant coefficient 2 /b instead of VM.
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Consistent field theories of MOND?

@ A priori easy to predict a force o< 1/r:

If V(¢) = —2a’e "%, unbounded by below
then Ay = V'(¢) = ¢ = (2/b) In(abr).
Constant coefficient 2 /b instead of VM.

Some papers write actions which depend on the galaxy mass M
= They are actually using a different theory for each galaxy!

Modified gravity at large distances & solar-system tests e April 10th, 2008 Gilles Esposito-Farese, GReCO/IAP



Introduction MOND Consistency RAQUAL Conditions Difficulties 1PN constraints New route Pioneer Conclusions

Consistent field theories of MOND?

@ A priori easy to predict a force o< 1/r:
If V() = —2a’e"#, unbounded by below
then Ap = V'(¢) = ¢ = (2/b) In(abr).
Constant coefficient 2 /b instead of VM.

Some papers write actions which depend on the galaxy mass M
= They are actually using a different theory for each galaxy!

o Stability
Full Hamiltonian should be bounded by below:
no tachyon (m* > 0), no ghost (Exietic > 0)
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Consistent field theories of MOND?

@ A priori easy to predict a force o< 1/r:
If V() = —2a’e"#, unbounded by below
then Ap = V'(¢) = ¢ = (2/b) In(abr).
Constant coefficient 2 /b instead of VM.
Some papers write actions which depend on the galaxy mass M

= They are actually using a different theory for each galaxy!

o Stability
Full Hamiltonian should be bounded by below:
no tachyon (m* > 0), no ghost (Exietic > 0)

Causal cone

@ Well-posed Cauchy problem v .
Hyperbolic field equations ’ auchy surface
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Most promising framework

Relativistic AQUAdratic Lagrangians

[Bekenstein (TeVeS), Milgrom, Sanders]

= 16C;G / d4x\/—_g{R - 2f(<9uso<9“<ﬂ)}

+Smatter {matter ; guu = Az(#j)guu 2 B(P)U/: Uifi|

v GMa

@ A “k-essence” kinetic term can yield the Y70 MOND force
r

@ Matter coupled to the scalar field

e “Disformal” term (almost) necessary to predict enough lensing
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Consistency conditions on f(d,,0" )

Hyperbolicity of the field equations + Hamiltonian bounded by below

o Vx, f'(x)>0
o Vx, 2xf"(x)+f'(x)>0
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Consistency conditions on f(d,,0" )

Hyperbolicity of the field equations + Hamiltonian bounded by below

o Vx, f'(x)>0
o Vx, 2xf"(x)+f'(x)>0

scalar causal cone graviton causal cone

S

N.B.: If f”(x) > 0, the scalar field
propagates faster than gravitons, v Cauchy surface

but still causally

= no need to impose f”'(x) < 0 !!
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Consistency conditions on f(0,,00" )

Hyperbolicity of the field equations + Hamiltonian bounded by below

o Vx, f'(x)>0
o Vx, 2xf"(x)+f'(x)>0

scalar causal cone graviton causal cone

S

N.B.: If f”(x) > 0, the scalar field
propagates faster than gravitons, v Cauchy surface

but still causally

= no need to impose f”'(x) < 0 ! !

These conditions become much more complicated within matter
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Difficulties of such models

@ Complicated Lagrangians (unnatural)

@ Fine tuning (= fit rather than predictive models):
Possible to predict different lensing and rotation curves

@ Discontinuities: can be cured
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Difficulties of such models

@ Complicated Lagrangians (unnatural)

@ Fine tuning (= fit rather than predictive models):
Possible to predict different lensing and rotation curves

@ Discontinuities: can be cured

@ In TeVeS [Bekenstein], gravitons & scalar are slower than photons
= gravi-Cerenkov radiation suppresses high-energy cosmic rays
[Moore et al.]

Solution: Accept slower photons than gravitons
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Difficulties of such models

@ Complicated Lagrangians (unnatural)

@ Fine tuning (= fit rather than predictive models):
Possible to predict different lensing and rotation curves

@ Discontinuities: can be cured

@ In TeVeS [Bekenstein], gravitons & scalar are slower than photons
= gravi-Cerenkov radiation suppresses high-energy cosmic rays
[Moore et al.]

Solution: Accept slower photons than gravitons

e Jpreferred frame (ether) where vector U/, — (1,0,0,0)
Maybe not too problematic if U, is dynamical

@ Vector contribution to Hamiltonian unbounded by below
[Clayton] =- unstable model
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Difficulties of such models

@ Complicated Lagrangians (unnatural)

@ Fine tuning (= fit rather than predictive models):
Possible to predict different lensing and rotation curves

@ Discontinuities: can be cured

@ In TeVeS [Bekenstein], gravitons & scalar are slower than photons
= gravi-Cerenkov radiation suppresses high-energy cosmic rays
[Moore et al.]

Solution: Accept slower photons than gravitons

e Jpreferred frame (ether) where vector U/, — (1,0,0,0)
Maybe not too problematic if U, is dynamical

@ Vector contribution to Hamiltonian unbounded by below
[Clayton] =- unstable model

@ Post-Newtonian tests very constraining
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢

loto| ©—+
LLR
L 100
matter-scalar
coupling function | 100
In A(qp)
-
% lr)’zﬂ
Po<? Cassini
10731
By>0 ALLOWED
THEORIES
%o
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¢ -6 -4 -2 0 2 4 6 0 —o
gm/ = AZ(#,? )g Y general relativity

(a9 =By =0)
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢
o TeVeS tuned to pass them even for strong matter-scalar coupling
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢
o TeVeS tuned to pass them even for strong matter-scalar coupling
@ Binary-pulsar tests = matter must be weakly coupled to ¢
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢
o TeVeS tuned to pass them even for strong matter-scalar coupling
@ Binary-pulsar tests = matter must be weakly coupled to ¢

GM

r2

Too large!

I

a ,,,,,,,,,,,,,,,,,,,:‘::.:l' VG /I“ln

0o 1 2 3 4 0 7000AU
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢
o TeVeS tuned to pass them even for strong matter-scalar coupling
@ Binary-pulsar tests = matter must be weakly coupled to ¢

o’GM

I.Z

small enough

effects at too
small distances!

,,,,, - but MOND
a2 A VoM,
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Post-Newtonian constraints

@ Solar-system tests = matter a priori weakly coupled to ¢
o TeVeS tuned to pass them even for strong matter-scalar coupling
@ Binary-pulsar tests = matter must be weakly coupled to ¢

£2(x) a
|
aO -
10 xJ .
0 1010 * 0 30AU 000AT

Quite unnatural! (and not far from being experimentally ruled out)
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New simpler models?

Nonminimal metric coupling

3

= / d*x/—gR pure G.R. in vacuum

167G
+ Smatter [matter B = f(g#,,,R’\Wp, VGR’\WP, o )}

Can reproduce MOND
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Nonminimal metric coupling

3

= / d*x/—gR pure G.R. in vacuum

167G
+ Smatter [matter B = f(g#,,,R’\Wp, VGR’\WP, o )}

Can reproduce MOND, but Ostrogradski [1850] = unstable within matter
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New simpler models?

Nonminimal metric coupling

3

= / d*x/—gR pure G.R. in vacuum
167G

+ Smatter [matter , g/.tl/ = f(g,LWa RAMV/)? VGR/\;u/p? e )

Can reproduce MOND, but Ostrogradski [1850] = unstable within matter

Nonminimal scalar-tensor model

3
s — 16C G/d4x\/jg{R_23ug08“<p} Brans-Dicke in vacuum
us

== Stetiia [matter  8uv = Azg,w + B (’)/,;(‘),/;]

Can reproduce MOND while avoiding Ostrogradskian instability
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New simpler models?

Nonminimal metric coupling

3

= / d*x/—gR pure G.R. in vacuum
167G

+ Smatter [matter , g/.tl/ = f(g,LWa RAMV/)? VGR/\;u/p? e )

Can reproduce MOND, but Ostrogradski [1850] = unstable within matter

Nonminimal scalar-tensor model

3
s — 16C G/d4x\/jg{R_23ug08“<p} Brans-Dicke in vacuum
us

== Stetiia [matter  8uv = Azg,w + B (’)/,;(‘),/;]

Can reproduce MOND while avoiding Ostrogradskian instability,
but field equations not always hyperbolic within outer dilute gas
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Pioneer 10 & 11 anomaly

@ Extra acceleration ~ 8.5 x 10719m.s~2

towards the Sun between 30 and 70 AU
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Pioneer 10 & 11 anomaly
e Extra acceleration ~ 8.5 x 107 19m.s~2
towards the Sun between 30 and 70 AU
@ Simpler problem than galaxy rotation
curves , because
we do not know how this acceleration
is related to
@ = several stable & well-posed solutions
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Pioneer 10 & 11 anomaly
e Extra acceleration ~ 8.5 x 107 19m.s~2
towards the Sun between 30 and 70 AU
@ Simpler problem than galaxy rotation
curves , because
we do not know how this acceleration
is related to
@ = several stable & well-posed solutions

Nonminimal scalar-tensor model

3
- 16c G/d4x\/jg{R—23u§03“g0} Brans-Dicke in vacuum
m

9 o)
20up

+ Smatter {matter ) g;w =¢ "8uv — ]

@ o’ < 1077 to pass solar-system & binary-pulsar tests
°
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Conclusions

A consistent field theory should satisfy different kinds of constraints:
@ Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field
@ Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB
o Esthetical: natural model, rather than fine-tuned fir of data
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A consistent field theory should satisfy different kinds of constraints:
o Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field
e Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB
@ Esthetical: natural model, rather than fine-tuned fir of data

Best present candidate: TeVeS [Bekenstein—Sanders], but it
has still some mathematical and experimental difficulties
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A consistent field theory should satisfy different kinds of constraints:
o Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field
e Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB
@ Esthetical: natural model, rather than fine-tuned fir of data

Best present candidate: TeVeS [Bekenstein—Sanders], but it
has still some mathematical and experimental difficulties

3 simpler models, useful to exhibit the generic difficulties
of all MOND-like field theories
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Conclusions

A consistent field theory should satisfy different kinds of constraints:
@ Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field

@ Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB
@ Esthetical: natural model, rather than fine-tuned fir of data

Best present candidate: TeVeS [Bekenstein—Sanders], but it
has still some mathematical and experimental difficulties

3 simpler models, useful to exhibit the generic difficulties
of all MOND-like field theories

By-product of our study: a consistent class of models
for the Pioneer anomaly (but not natural!)
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Conclusions

A consistent field theory should satisfy different kinds of constraints:

@ Mathematical: stability, well-posedness of the Cauchy problem,
no discontinuous nor adynamical field

@ Experimental: solar-system & binary-pulsar tests, galaxy rotation
curves, gravitational lensing by “dark matter” haloes, CMB

@ Esthetical: natural model, rather than fine-tuned fir of data

Best present candidate: TeVeS [Bekenstein—Sanders], but it
has still some mathematical and experimental difficulties

3 simpler models, useful to exhibit the generic difficulties
of all MOND-like field theories

By-product of our study: a consistent class of models
for the Pioneer anomaly (but not natural!)

Nonlocal models? [Work in progress with Cédric Deffayet & Richard Woodard]
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