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How can gravity be 4D?7
ST: KK way, compact small ED
RS: non-compact, finite volume ED

DGP: non-compact, infinite volume
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Basis of success and problems [pui cabadadze, Porrati PLE (2000)][Gregor,

Kaloper, Myers, Padilla JHEP (2007)]

ChOsen pI’OfI|e fOF M*(X) [Kolanovic, Porrati, Rombouts PRD (2003)][Shaposnikov,

Tinyakov, Zuleta PRD (2004)]
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Varying mass — ScT-like theory
Cascading DGP: ghost appears but cured via CC

Is there a classical FT which has DGP mechanism?
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Brane at the core of a string IN 6D [Ringeval, Rombouts PRD (2005)]
4D gravity trapping not achieved
Unless violate energy conditions

theorem: Gravity was 6D
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More dimensions

Introducing more dimensions

Potential gets a term, n angular ED

n(n — 1)k

r2

V

Needed n > 1 and £ > 0

Positively curved, n = 2
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Hints

Choose 3 ED
Topology R x S?, asympt. R’
Topological defect in the origin

't Hooft-Polyakov Monopole
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Our model

Topological defects: Classical Field Theory
DGP can be realized in 7D "tP-monopole

3 ED, associated SO(3) 'tP field configuration

3 ED asympt flat: min.dim. positely curved
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Background geometry

Static ansatz

ds? = "y, datdz” + dr® + w(r)?dQ?

r, 0, @ spherical coordinates

—

Mapping from SO(3) to 3 ED’s: & = v f(r)u,

Gauge fields
69 — L= Q(r)l_% 6¢ — L= Q(T) Sin 91_[9

q q
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Boundary conditions

Time independent energy distribution
Building the monopole

f—1,Q —0asr — oc

f(0) =0,Q(0) =1
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Remaining fields

c=0w—r,Y—0asr — o

d'(0) =v¢'(0) =0, w~rasr—20

Define ) o ,
929 _qv _ My

O — K U [ S— 5 — 5

AU AU

3 param. family
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Behaviour at infinity

The metric is Minkowski
Solutions outside a black-hole

Regular everywhere: TopDef

No HOR, no SING
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10 1st-order non-linear ODE’s
Relaxation methods:
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| inearization?
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Shooting method

It works, but slow
Need to shoot from 0 and infinity

Compactify infinity into a segment, 0 < p < 1,
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Shoot from 0 to middle point, p = 1/2
Shoot from 1 to middle point
10 conditions to impose at p = 1/2

Continuity of fields and deriv
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Need 10 shooting parameters
Invert 10x10 matrix
Need to Taylor exp. at 0 and 1

Find indep. shooting parameters
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Recent method in 2 points BVP
Cash and Mazzia, algorithm realized in Fortran
Translated into C++
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Pro and Cons

Pro: Much Faster,

Stable,

Same solutions of shooting,

Explore param. space.

=1
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Example a = 2, e = 0.5,

B = 1. Typical topological
configuration for the fields.
Minkowski at boundary.
TWPBVP: Cash and
Mazzia algorithm, JCAM
(2005).
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Region where w no longer
grows, cylindrically shaped
ED, resonant gravitons at
this scale
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Lowering €, spread out
« very high: problems, BH?
Change 3, diff. shape

Dilaton, no strong influence
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Higgs, gauge fields: typical
Exponential decay at infinity
Other fields, inverse pow at infty values

No numerical instability found, except too high «
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Background solution
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Directions

Background solution
Study perturbations

Look for (meta-)stable modes
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Introduce 4D TT pert: 1, — 1 + huw

New radial variable, and A = exp(o),

7 = mh/e_U/Qdfr

Linearize Einstein equations
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Decoupled linear PDE's

A
hy, + F'R,, +my “Ohy, — ELQhW =0

F'=3A"JA+ 20 Jw+ 9

4D Fourier + Spherical Harmonics

h = ZYzmM /thlm( 2)A

A eigenfun of m; °0 with M? eigenval

M

()
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W' 4+ F'h — éza +1)h+ M*h =0

2
New perturbation field, £(0) = 0, £ = e¥/239/4uh

No term in ¢

€ (W W S )| € = 1%

W =20+ /w+ 3/
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QM
1D Schroedinger eq., for z > 0

Rewritten as

TT" + (1 4+ 1)Aw ™ 2]¢ = M?¢

M >0, and operator T' = d/dz + W

Zero mode, M =1=0, & = W¢

Not normalizable

30
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SUSY-QM

QM with central potential Vo, = W?* + W’

Depends on a, 3,¢. For
Vo: ground state &y not
normalizable. For V7, 1/&,
not regular in 0. SUSY is
broken and spectrum

M= > 0.
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upri(z) solution of Schr.Eq.

Orthonormal basis
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Solution of radial SE

upri(z) solution of Schr.Eq.
Orthonormal basis

Completeness relation

/ uyy(21)unri(22)dM = 6(21 — 22)
0
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Retarded Green function for TT source S, (cries, Tanaka P

(2000)]
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Retarded Green function for TT source S, (cries, Tanaka P

(2000)]

Find
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GF expression
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GF expression

G+ (Vo +0O+ e’w ?L)Ge = 6*(z* — z)
X 0(cosl — cos0)o(p — ¢ )o(z — 2)

d4p ip,, (et —xb m M*
Gg:_/(zw)élep”( ! 2)%;5/1 (01, 91)Y,™ (62, p2)

ungi(21)uppy(22)dM

M2+ p* — (p° + 7€)’
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Flat case
Setting ¢ =0 =0,w =17
Source S, = 2725(2)(cos 6) () s,

Radial solution: uMl VMzJiy9(Mz)
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Contribution in the origin
Only [ = 0 mode gives contribution

Solution

2 W (2)|2 o~ MAZ
R, = lim — /dgxgsw,/dM| uol)Ve

20 872m? 2 AL




Bessel expansion ug\m ~ \/2/mTMz
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Bessel expansion ug\m ~ \/2/mTMz

Solution simplifies to

uw(Z2)

22 .S
I 4>z,
ad 47‘(’3771%

Az]*
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Bessel expansion ug\m ~ \/2/mTMz

Solution simplifies to

22 e
hb _ R /dngS'u (332)

1 A2 Az

Power law dependence 1/|AZ|*? in d = 6 spatial

dimensions
In d = 3, 1/r dependence: 4D gravity

A3 d — 2 times the surface of d — 1 unit sphere.
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Monopole case

At infinity to Bessel functions
Need spectral density p(M) = |uar,0(0)[?/ |1} (0)]?

Therefore one finds

267 [ . L{p(M)M?)
hluy — /d L9 ‘Af’

Suv(T2)
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There are at least two
trapped metastable
gravitons. Mass

mg, ~ 0.103 Breit-Wigner
with T' & 3.5 x 10~ (my,
units)

Constant p: 7D gravity
p strongly peaked: resonant metastable modes
At infinity, A/A) < 1

No M? < 0 bound state
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DGP mechanism

Trapping a graviton, p ~ 1+ Co(M — m,)
L{pM?} = 2/|AZ|® + C’mge_mgmf‘
4D gravity: (m,/C)'/3 < |AZ|m, < 1, and m, < C

7D at small/large distance

40
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