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 Ashort introduction to non-Gaussianity:

— Concept, characterization, physical origin, theoretical
results and observational constraints;

 Higher-order temperature anisotropy from
gravitational perturbations;

 Nonlinear CMB anisotropy in f(R) gravity:

— Nonlinear mapping from primordial perturbation { to
today’s observable AT/T.



Inflation and cosmic perturbations

Cosmology: a Golden Era

A “6-parameter model” can now explain (almost) all observations,
ranging from the intergalactic neutral hydrogen to the Cosmic
Microwave Background (CMB);

Cosmological parameters are now measured with exquisite precision.

Inflation:

solve the problem of Big-Bang, provides the primordial seeds for
CMB and LSS;

Cosmic theory based on inflation predicts a nearly scale-invariant,
adiabatic, nearly Gaussian primordial density perturbation.
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Gaussian v.s. non-Gaussian
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Power spectrum (2 point function): < 7 ()= (ﬂ--z.]>
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Why non-Gaussianity?

Distinguishing various (non)inflation models/mechanism (multifield,
noncanonical kinetic term, fast-roll, initial vacuum, curvaton, end-of-
inflation, ...);

More information concerning the evolution of the universe;
Interactions in the early universe (inflaton, gravitation, ...); ...



Gaussian v.s. non-Gaussian
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Why non-Gaussianity?

Most important:
There are observations.



Characterizing the non-Gaussianity

Bispectrum (3 point function):
(Gt CtCr) = (2m)°Belka, ko, ks)d (k1 + ks + ks)
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Momentum shapes: (1)

ePower spectrum has simple k-dependence --- the shape.
*Most of the information is encoded in the shape of the spectrum.
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Momentum shapes: (2)

However, B(ky, k,, k3) and T(k,, k,, k3, k,) have
complicated momentum-dependence. 0

[Komatsu (2010)]
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Current observational limit

No definitive proof of the existence of NG.
Slow-roll single-field inflation is consistent with observation.

-equilateral -orthogonal -
~r~1-—ng, NL ~ o ~ (.

]( local

Current limits:

—9 < fregel < 4111 (95% C.L.) WMAP5
—10 < figf*t < +74 (95% C.L.) WMAP7
fnL = —12 4+ 62 (68% C.L.) Calabrese et al. (2009), WMAP5
L = +84 4+ 40 (68% C.L.) Rudjord et al. (2009), WMAP5H
—29 < fnL < +70 (95% C.L.) Slosar et al. (2008), SDSS
+25 < fnp < +117 (95% C.L.) |Xia et al. (2010), WMAP7+2dFGRS+SN+VLA

—214 < peanlateral 1966 (95% C.L.) [WMAP7
—410 < frthosonal - 16 (95% C.L.) |WMAP7

—3.2 % 10° < myp < 3.3 x 10° (95% C.L.)|Smidt et al. (2010), WMAP5
—3.8 x 10° < gnr, < 3.9 x 10° (95% C.L.) |Smidt et al. (2010), WMAP5

Planck will reduce the error bar of f, with a factor 4~5;
Planck: ATNL = 560 (95%CL). AQNL ~ 10*



We have known...

e “Local-type” non-Gaussianity:
o|f f 1°@)>>1, all single field inflation models will be rull out,
[Creminelli & Zaldarriaga (2004)];
* Ty, 2 (6/5 fy,)?* for single-field local-type non-Gaussianity [Komatsu

(DN010N)\1
\LU4iv)),

e Relation between momentum shapes and fundamental physics
[Creminelli (2003); Babich, Creminelli & Zaldarriaga (2004); Chen et al. (2007)];

 Are higher-order effects (transfer) important? % — _%@ — _%g
o) 1]

e Secondary effects: The most important one is “ISW + WL” [Serra &
Cooray (2008)], especially for the local-type non-Gaussianity.



Bispectrum v.s. Trispectrum

* Observational side: upcoming observations will give possibly
positive and even precise evidence of f,; while for t, & gy, there are
only very weak limits, even with Planck.

e Theoretical side:

e NNz ic larcer an NG, in a tvpical model icreminelli et al (2010)1:
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» Models with large trispectrum but negligible bispectrum?
[Senatore (2010)]

e Higher-order correlation functions (5, 6 points functions) are almost
impossible to be detected.



Evolution of Cosmic Perturbations

Comoving scale

N

[min

t, t, t, t teq e o time
Observed NG:
Initial NG: Primordial NG: nonlinearies in
interaction of inflaton(s) nonlinearity of gravitation gravitational & acoustic &

plasma physics



Non-Gaussianity of initial quantum

fluctuations: (1

--- higher-order correlators due to interactions of scalar field quantum

fluctuations during inflation.
Cosmological Perturbation Theory + Quantum Field Theory [Maldacena (2002)]

perturbative expansion

S [.‘51 s f.-"')]

g;:u:f_!_:w‘f’(sg;u/- on :",-""14‘6(.";’1

Distributional functional: p[dg,.,,d6] ~x elSat5atSat)

Typical interaction terms:

“Non-local”: “Local”:
(non-canonical kinetic terms, DBI, k-inflation) suppressed by slow-roll!
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Non-local NG (equilateral/orthogonal-type...) Local-type NG
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Non-Gaussianity of initial guantum

fluctuations: (2

Currently, concerning the initial non-Gaussianity around the time
of Hubble-exiting, we have known:

* All single-field inflation models give negligible local non-
Gaussianity (local interactions are suppressed by slow-rolling):

r

J
B (ki ki, k3 — 0) = 3 (1 —ng) P (ki) P (ks)

Due to the conservation on super-Hubble scales, single-field
models give negligible local-type primordial non-Gaussianity.

* Non-local type non-Gaussianities can be generated from: non-
canonical kinetic terms, non-Bunch-Davis initial vacuum, etc;
 Slow-roll multi-field models typically generate non-local non-
Gaussianity;

* Local-type non-Gaussianity arises mainly from the super-Hubble
evolution in mult-filed/curvaton/end-of-inflation models.



Super-Hubble primordial curvature

verturbation

Comoving scale




Conserved (

Due to the energy-momentum conservation, there must exist a
non-perturbative and gauge-invariant conserved variable C:

e /P dp
= — —— -

The conservation of { makes it possible to relate the perturbations
around Hubble-exiting and re-entering, no matter what happens
during the intermediate period.

( is the perturbation of e-folding numbers in uniform density
slices: 8N-formula [Sasaki et al (1994)]

i . N . :
(=0N = O/dz‘gvﬂn“ = o/df (H — L) = —)



Primordial non-Gaussianity of C

* Two equivalent approaches:
1) comoving/uniform density gauge: S,[T], S5[T], S,[T], ---
2) (most popular) calculating NG of inflaton in uniform curvature
gauge around horizon-crossing, then using 8N-formula on super-
Hubble scales: | . . B
¢ = —|uniform density = 0V (rj’). o, (‘)?;m) ~ 0N (00)

1
TS N 542
= N406 + 5N 5500% + -

e Essentially, ON-formula is just the nonlinear gauge transformation
from 8¢ to { on large-scales,
Nonlinear mapping
o > C
which provide a nonlinear mapping between 6¢ and C.
e ON-formula can gives large local-type non-Gaussianity of C on large-
scales.




Observed non-Gaussianity

Comoving scale

Dynamics of Secondary
recombination effects
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Nonlinear mapping/evolution and

Secondary Effects

* Nonlinear (higher-order) mapping and evolution:
*Nonlinear generalization of linear relation AT/T=1/3 ® =-1/5¢;
*Higher-order Einstein-Boltzmann equation;

» Secondary effects (after decoupling):

*Scattering secondary effects (small-scale)
*Thermal/kinetic SZ effect; Ostriker-Vishinac effect;
Reionization;

*Graviational secondary effects:

*|SW effect (Rees-Sciama effect); Gravitational lensing.



Non-Gaussianity: a brief summary

Initial vacuum fluctuation Excited state
Sub-Hubble evolution Potential/derivative Equilateral + orthogonal

- interactions
r3o Hubble-exiting Potential Local
Super-Hubble evolution Self-interactions + gravity Local
End-of-inflation Conditions of end-of- Local

inflation

(p)Reheating Modulated reheating Local
Post-inflation Curvaton Local

Primordial non-Gaussianity

Radiation + matter + last- Primordial anisotropy Local + equilateral

scattering (nonlinear
mapping/evolution)

ISW + lensing Secondary anisotropies Local + equilateral

Observed non-Gaussianity




Using non-Gaussianity to test gravity?

We will use the large-scale nonlinear “mapping” from T to AT/T
to constraint modifield gravity.

Why we focus on these non-primordial effects?

1\ NMnAact Anf nroaviintic ctiidine Aan nAan_(~aticcianitv fAriic A
J-’ IVIUOUL Ul I\JlCV'UUD SDULUUIITO VIl 11IVIIT \Jau.).)lallll.y 1UCUOD Ull

“primordial” non-Gaussianity of ¢ during inflation;
2) We will explore the ability this post-inflationary contribution
to the observed non-Gaussainity in probing new physics.
3) To determine their contributions (contaminations) to the final
observed non-Gaussianity and to construct appropriate
“template” in order to abstract the real primordial NG.

(Investigations regarding the primordial NG in modified gravity
are in progress...)



Large-scale anisotropy

Comoving scale
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Nonlinear SW in GR: an example

On large-scales: ds®> = —e?Pdt? + a’e ?Vdx® = —dt* + a® (t. x) dz”
W _ . wWo
Blackbody radiation: - = const.- >To="1c—
T We
1) Graviational redshift from surface of last-scattering (SLS) to
observer: Wo  Wo ¢,—q,
— = —€ °
We We
2) Intrinsic temperature fluctuation on SLS:
;ln P = _11111 p~ o< InT’ T g
5 > T — e 3
1 ~ . dina\~ o
g,’lm — H? = ( v ) ~ e 2P [?
Fully nonlinear (non-perturbative) Sachs-Wolfe effect
[Bartolo et al. (2005)]: R

.TO X € - § (I)e e o e — o % (I)E




Initial conditions on SLS

According to the conserved {, to determine the metric perturbations
on SLS:

P dp 1 P 2
= - —— = -+ “In==-V - =&
‘ +/p 3(5+ D) 3(1+w)  p 3
Constraint from Einstein equation: & — & = K [®, V]

Initial conditions for metric perturbations on the SLS:
=0 [C], ¥=V.[(]

T ,— % C+higher-order nonlocal terms| [Bartoloetal
o X € (2005)]:

The final temperature fluctuation is always non-Gaussian, even the
primordial curvature perturbation is exact Gaussian!




Summary of the results in GR

* The nonlinear SW effect contributes to the final non-Gaussianity
<0(1);

e Cross-correlation between ISW and Lensing would contribute to
~O(5). [Pitrou, Uzan, Bernadeau (2010)];

1 - . ) _
. —=(C+higher-order nonlocal terms
1, xe 5

The factor “-1/5” is too small!
Can we enhance it, in order to enhance the nonlinear
mapping from { to AT/T?



Where does gravity enter

Initial conditions on the Gravitational redshift
emission surface (SLS): Pure kinetic, irrelevant to the
Depend on the theory of theory of gravitation.
gravitation! 7
I /

Primordial NG . /' Observed NG

Intrinsic temperature 4l

anisotropy on the SLS:

model dependent, also (AT/T),,

gravitational theory-

dependent.

Gravity is highly nonlinear!



Sachs-Wolfe in f(R) gravity

“f(R) + minimally-coupled matter” system (Jordan frame):
S = /d4;tf\/—9 (%ﬂﬁ’) + *Cm)

Large-scale metric perturbation: ds* = o (—*%dn? + e 2V da' da?)
. . . 1 2
1) Gravitational redshift: aw =—-® + 5‘1)

2) Intrinsic anisotropy: 7./7. = (p,},/,a,\,)% = (pm/,am)?l?

Being modified due to Pm 5 _ l 2\ §2

the deviation from GR! In P (2—01)P + 5 (O’Q crl) D=,
Nonlinear generalization of (large-scale) SW effect in f(R) gravity :

AT 1

T ~ 3

1
(14 01) &+ — (1 + 201 — 202 + 303)

18 [Gao [1008.2123]]

GR: (0,=0,=0) == o\, /pp, = e 22 ) % — 2/3



0, and o, are complicated combinations of parameters that
depend on the structure of f(R):

¢ 1+ B(e—1)4+ (26 +7)er

o1 = 2 — . :
! e — €2, — Bep (e — 2)

B—1+~v(€—=1)+By+9d)er

gy = 4+12
’ 2¢ — ve4, — Per (epr — 2)

Expansion history parameters:

dlnH dln R dIn R’

c=1- R= Ilha’ R ima

dlna’

Parameters which charactrize the structure of f(R):

_Rfrr R’ f RRR

5 _ _ R’f RRRR

fr = fr 0= R

“Compton parameter” [Hu et al (2006)]: B = —0¢er/e




Initial conditions in f(R) in matter era

Traceless part of the generalized Einstein equation gives the
“constraints”:

Uy = (1-28)d

Uy = Ky [0 = 97Y(3\ — 26 + 852 + 49) (9°®)°
+ (A +68—43% +87) (9;0;0)°
+4 (N + 28 + 47) 0;90; 0%
+4 (B — 8% + ) 0% ).

Conserved primordial curvature perturbation: ¢ = —0 + = In 22

3¢

5—6:3—(711

9[(02 —0F) (2 = 6K [(]]
2(5—68—0p)°

Initial conditions: | &, =

by =




Second-order anisotropy in f(R)

~

The final temperature fluctuation: &+ = (%F—T)m + (&T)(z) + ...

(AT) . 1+0o ¢

AT 1 Bpd3p
(55) 0 =5 [ L puk = 1) G
(2)

T 2 (QW)3

b(Pl-.Pz) = bp — b1g (Plfpz)
n2 + p2 | p2 —p2 2
9(?1?2):1‘|‘2 l 122_3( L 2)4-
(p1 + p2) (p1 + p2)

g(p1.p2) — 0 inthe limit when p, or p, vanishes,
which corresponds to the “squeezed”

b(pi1,.k — b
/(P1 p1) = bo configuration and thus the local-type NG.

A large b, implies a large contribution to the local NG!

1 3
GR: b(p1.p2) = 55 Eg(pl-;og) cannot contribute large local NG.



Nonlinear parameter

O = Py + fNL * fI)f [Komatsu et al (2001)]

Ansatz for the primordial NG:  ( = (L ++—5— G

S =-Ll+0)Pand o = =—3—q
y 2
NL = fNL 6(1+ o) (1, K = )

/ T~

i ) Contribution from nonlinear
e L mapping from { to AT/T, which in
principle can be enhanced when
gravity is modified.



Parameters

by = w_ﬁ;_aJJS—&ﬂ?+2u—agngwﬁ
+36 (8% — ) (1 4 o1)
-+951—-af(154—01)4—1802]

p = 3(L+0) (BA+6525 1))

2(5—68—0y)°

Sadly, there seems no simple dependences of b, and b, on
the functional structure of f(R), which makes the constraint
cumbersome and thus weak.



Numerical results

v=-0.2
. =.0.05
v = -O 02 | ] ] | ]
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FIG. 1: (color online). bg and by as functions of 3 with diverse values
of + and vanishing ¢ for the ACDM expansion history with 2, =
0.74. In the matter-dominated era, the parameters introduced in (6)-
(7) are e = 1.5, er = —3 and egr = —3.5 respectively. We assume
the range of values of 3, v and & ensures such an expansion history.



Conclusion

*Non-Gaussianity will open a new window and bring us more
information to the early Universe, which cannot be got from the
study of power spectrum.

*Planck will improve WMAP f,, local error bars by a factor 4.
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observations, even if the primordial perturbations are Gaussian.
*The post-inflationary non-Gaussianity can also be used to probe
fundamental physics;

* We have shown that non-Gaussianity due to the nonlinear
mappring from { to AT/T can be enhanced in principle in f(R) gravity;
* This result provides a new observational window to test modified
gravity, which is independent from previous tests;

*More detailed studies are needed and are in progress...



Thanks a lot for your attention!




General form for large-scale anisotropy

Why can we use the late-time evolution to test gravitation?

AT AT AT ) AT
T — 7 [(I)f,_.'l'e.---]: T [(I)E, [q,\]}e K]] — T[(‘]
| N
Gravitational redshift Initial conditions on the emission
Pure kinetic, irrelevant to the surface (SLS)
theory of gravitation. Depends on the theory of

gravitation!

Intrinsic temperature anisotropy on the emission surface (model
dependent, also gravitational theory-dependent!):

T (vt int) = T (e, 72 mt) 7 (emt)
Observed anisotropy:

. g ol O o g |
ar / § (tz n') =T (JO._ n ) Qo Wo (r;»f_-,. 1 O,pfj) 7(neziimd)
: — (J [ = e

I oY o0
7§ (x5, n') = g = ‘ —
L 71 ) Qe We I( Yo, EL5 Pe )

— 1




A closer look at the anisotropy

x0=const.
Space-like
hypersurface
i i\ _ T (1 , , RN o
AT ) I (IU & ) I (‘[0‘- 1" ) _ %o %o (”‘5" . O’po) T '.P}C..Tz,;ﬂ:!) 1




A closer looking at the anisotropy (1)

g (r?- ”;'_) _ T (t,[‘ilj. -]?_i) — T (ll‘f)-_ ?I.E') _ g Wy (”f_‘)- J_’i)})‘g) (JT(?}'C..Ti:??i) B 1
T ~ B T (l, nt) e wgrng. at:pe)
: : 2 24 4,2 2 —2W 4 2
Large-scale metric perturbation: ds” = —e” " dt” +a"e “ dx

Redshift: w = —g,u' P’

Intrinsic anisotropy (adiabatic): 7. = T.e—3%



A closer looking at the anisotropy (2)

Nonlinear anisotropy in terms of metric perturbations up to the 3
order:

[Bartolo (????); Pitrou (????); Gao (2010)]
AT O
(F),75 "

AT P2 1 . .- O
(T),, =T+ 300 (it o) = T~ b afy
(2) X

Al 3 b= 1 1 ; o ‘
(T) " = 162 13 - ;{"(}2_}}1" + ﬁf_l’ (J"L]“A” — Iz) — I3+ = 5 1{” {().,-:A’ (-n.. ‘E({}l) + 2;1.‘['1’3) — 2 A"+ ;{-'1[]”_4”}
(3) = ' )

1 A.
+ 0D !3 (el + ol I1) + 5 (Balyy + sy (@464 = 1840, = 61) ) + iy (@ = 314 )]

1 ) 2
+ c)dﬂ_[( £ +n£”)( +n3 )+2nd;4’( ) )

A.l (I) (:[)‘- (I).'i ,
(T) 3 T 18 + 162 + ISW +L8118111g ~ C% + ...

[Bartolo (??7?7?)]



A closer looking at the anisotropy (3)

* (i, j)J-component of Einstein equation gives the constraint between
W and @ (up to 3" order); 5

e Conservated { gives the initial valuesof Wand ©: ( = —W — §<I).

Initial conditions during matter era:
b = (I’(l) . (I>[2) + (I)(:j) 4 ..

3
‘I)(l) = _F)C

9 2 .\ 2 A 2 0N A B
Py = —?'_J‘ [3 (é)“g) + (0;9;() -I-—':LC){L,(){C)")C}

-

Dy = ——f0 [ (302CO™2 + 9:0;C0:0;0~4 + 20,C0,07% + 20,0*CD,0~)

2

x (:3 (97¢)” + (2:0;0)" + 40@.1.0%) ]

Non-local



Nonlinear mapping from { to AT/T on large-
scales

NAanlinaar Aardar [Cana DRDD (ON1N)\].
INUILTTHITITAdl VIucC] |[yauvu T hWw \LUJ.U’].
IXT 1 {Plul(f"jp) C o
— (k) = = sl j("!v P1—P2) (kipl-j-m)éplﬁpg-
1 . 2 (27)
(2) 4T
AT 1 [ d*prd’pad®p
(T) (k) = ;/ - =33 (k — p1 — P2 — P3) v (K; P1, P2, P3) Cpy Cpa Cps
(3) (27)

2

1 9@i-r)° _ 3(i+rd)

'j ,a'-: 1 . P = - — -
FlkipLp2) 50 50k 25k2
1 .
v (k;p1, P2, p3) = —T5= + (1 = g (p1,P23)) g (P2, p3) + 2 cyclic],
3 149 p? + ¢° _3 (1)2 — q?)z

g9(p.q) = 550

(p+q)°  (p+q)



