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A typical experiment
and what is measured



Most precise Casimir experiments:
dynamic measurements of the resonance frequency of a 
microelectromechanical torsional oscillator (MTO)

Courtesy R.S. Decca
(Indiana U – Purdue U Indianapolis)

Casimir experiments

Silicon MTO : 3.5 µm thick, 500 x 500 µm2

Gold coated sphere : 300 µm radius



• MTO excited to its resonance frequency

Casimir experiments

• Measure of the change of this frequency as the 
gold sphere approach the MTO

where !r is the resonant angular frequency of the MTO,
and A was adjusted between 3 and 35 nm for zmetal equal
to 0.2 and 1:2 !m, respectively. The solution for the
oscillatory motion yields [4]
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is the moment of inertia. Since A % zmetal, terms of
higher order in # introduce a &0:1% error. As before,
Eq. (1) was used to calibrate all constants.We found !o !
2$'687:23 Hz(, and b2=2I ! 6:489$ 108 kg"1. With an
integration time of 10 s using a phase lock loop circuit
[17], changes in the resonant frequency of 10 mHz were

detectable. This allows the force to be calculated with a
sensitivity of the order of %Fc ! 6 fN=
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, a factor &3
larger than the thermodynamic noise. The results for
these measurements are plotted in Fig. 4.

In this configuration @Fc=@z is being measured. Using
the proximity force theorem [18], the Casimir force Fc
between a spherical surface of radius R and an infinite
plane is given by Fc ! "$3 !hcR=360z3 [19], where c is
the speed of light in vacuum and !h is Planck’s constant. Its
derivative @Fc=@z ! 2$RPc, where Pc is the force per
unit area between two infinite planes.

When finite conductivity effects are taken into ac-
count, the Casimir force per unit area between two planes
PCP, and the force between a sphere and a plane FCS, are
given by [5,13]
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where 'j'i&( is the dielectric function of metal j, ! ! i&

is the complex frequency, and sj !
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. Since
the metals are not smooth, the expressions in Eq. (3)
should be averaged over different possible separation
distances determined by the surface roughness [20],
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to model the data shown in Figs. 3 and 4. The probabilities
wi were found using the AFM profiles of the interacting
surfaces. The values of the dielectric constant for Au and
Cu were obtained from [21], extended to low energies

using a Drude model [9]. The agreement between model
and data is better than 1% for all cases where %F'z( *
0:01F'z(, i.e., z < 0:5 !m.

There are, however, measurable differences between
the experimental and theoretical values of the Casimir
energy. Although the differences are larger than the ex-
perimental error, they likely arise from the ''!( used, not
necessarily reflecting shortcomings of Eq. (3): Using
different optical constants for Au and Cu [22], or different
models of roughness, results obtained from Eq. (4) vary
by more than 1%.

Other possible sources of discrepancy are (i) finite
thickness of the metallic layers, and (ii) effects of tem-
perature. Since the layers are much thicker than the

FIG. 4. (a) Derivative of the Casimir force (see text) as a
function of separation. The solid line is a fit using Eq. (4a).
(b) Experimental data subtracted from the theoretical model.
The deviation with respect to the model at small sepa-
rations is partially associated with nonlinear terms of Eq. (2).

FIG. 3. Casimir force as a function of separation. The
separation between the metallic layers has been adjusted to
account for the roughness: z ! zmetal ) 2%o. (a) Direct mea-
surement of the force. The solid line is a fit using Eq. (4b).
(b) Experimental data subtracted from the theoretical model.
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• Ambient 
temperature

• 10-4 Torr

See: R. S. Decca et al, 
PRL 91, 050402 (2003)



Casimir experiments

where !r is the resonant angular frequency of the MTO,
and A was adjusted between 3 and 35 nm for zmetal equal
to 0.2 and 1:2 !m, respectively. The solution for the
oscillatory motion yields [4]
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larger than the thermodynamic noise. The results for
these measurements are plotted in Fig. 4.

In this configuration @Fc=@z is being measured. Using
the proximity force theorem [18], the Casimir force Fc
between a spherical surface of radius R and an infinite
plane is given by Fc ! "$3 !hcR=360z3 [19], where c is
the speed of light in vacuum and !h is Planck’s constant. Its
derivative @Fc=@z ! 2$RPc, where Pc is the force per
unit area between two infinite planes.

When finite conductivity effects are taken into ac-
count, the Casimir force per unit area between two planes
PCP, and the force between a sphere and a plane FCS, are
given by [5,13]
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to model the data shown in Figs. 3 and 4. The probabilities
wi were found using the AFM profiles of the interacting
surfaces. The values of the dielectric constant for Au and
Cu were obtained from [21], extended to low energies

using a Drude model [9]. The agreement between model
and data is better than 1% for all cases where %F'z( *
0:01F'z(, i.e., z < 0:5 !m.

There are, however, measurable differences between
the experimental and theoretical values of the Casimir
energy. Although the differences are larger than the ex-
perimental error, they likely arise from the ''!( used, not
necessarily reflecting shortcomings of Eq. (3): Using
different optical constants for Au and Cu [22], or different
models of roughness, results obtained from Eq. (4) vary
by more than 1%.

Other possible sources of discrepancy are (i) finite
thickness of the metallic layers, and (ii) effects of tem-
perature. Since the layers are much thicker than the

FIG. 4. (a) Derivative of the Casimir force (see text) as a
function of separation. The solid line is a fit using Eq. (4a).
(b) Experimental data subtracted from the theoretical model.
The deviation with respect to the model at small sepa-
rations is partially associated with nonlinear terms of Eq. (2).

FIG. 3. Casimir force as a function of separation. The
separation between the metallic layers has been adjusted to
account for the roughness: z ! zmetal ) 2%o. (a) Direct mea-
surement of the force. The solid line is a fit using Eq. (4b).
(b) Experimental data subtracted from the theoretical model.
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Undoubtedly, there IS a force 
between the silicon MTO 
and the gold sphere…

… even though, those two 
objects are separated by, 
well, nothing.



Physical origin of 
the Casimir force



Physical origin of the Casimir force

R

Long–range interactions between two neutral atoms

One of the interpretation : van der Waals interactions



van der Waals interactions

R

Distance between the atoms: well beyond the “chemical” range (≈ 1nm)

Each atom has a fluctuating dipole moment

Results in an attractive force in –1/R7



Retarded van der Waals interactions

Distance between the atoms: well beyond a “typical” wavelength for 
each atom (≈ 200 nm)

Retardation effects result in an attractive force in –1/R8

R



van der Waals interactions

Two neutral atoms attract each other in vacuum!

What about two molecules?

Force in –1/R⁸



van der Waals interactions

Two neutral molecules attract each other in vacuum!

Leap of faith : What about two macroscopic objects?

Force in –1/R⁸



From microscopic to macroscopic…



…from vdW to Casimir

Force in –1/R⁴

The Casimir force depends in the optical properties
of the materials:

Microscopic
Dynamic

polarizability

Macroscopic
Dielectric
function



Casimir force: plate–plate geometry
In general, no analytical closed form (depends on ε(ω))

Historically, Casimir focused on two infinite, perfectly 
reflecting plates

L



Casimir force: plate–plate geometry
In general, no analytical closed form (depends on ε(ω))

Historically, Casimir focused on two infinite, perfectly 
reflecting plates

L

Quantum effect
Retardation effect



The many faces of the Casimir effect
Casimir’s formulation

Modification of the zero point energy of the vacuum by
the mere presence of the perfectly plates

L

The two mirrors form a 
cavity

Outside: all EM modes 
are allowed

Inside: only certain EM 
modes are allowed



The many faces of the Casimir effect

Our formulation: scattering approach (S. Reynaud, A. 
Lambrecht,…)

The Casimir force caused by the radiation pressure of 
the virtual photons from the vacuum fluctuations

L

Matrix M contains the reflexion operators 
of the two plates



What the theory can calculate

Temperature: ambient temperature in general enhance 
the Casimir force. Real thermal photons in addition of 
virtual ones.

Surface roughness: surfaces can have roughness with 
a rms of several nanometers. Can be taken into 
account for precise theory/exp. comparisons.

“real” materials: optical properties of the materials 
included in the dielectric function ε(ω) (from exp. data 
or modeled).



Nanostructured surfaces (gratings)

Effect of the diffraction on the Casimir 
effect.

Can be calculated exactly.
See: A. Lambrecht et al, PRL 101, 160403 (2008)

Plane–sphere
The geometry mostly used in experiments 

(no parallelism to control).

Can be calculated exactly.
See: A. Canaguier–Durand et al, PRL 104, 040403 (2010)

What the theory can calculate
Other geometries than plate–plate



Casimir theory: overview
• “macroscopic” vdW interactions

Casimir effect is{ • change in ZPE of EM vacuum

• radiation pressure from vacuum’s 
virtual photons

The Casimir force can be calculated taking into account 
realistic conditions:

• Optical properties of the materials
• Temperature
• Surface roughness
• …

So, does it works ?!



Comparisons theory/experiments

where !r is the resonant angular frequency of the MTO,
and A was adjusted between 3 and 35 nm for zmetal equal
to 0.2 and 1:2 !m, respectively. The solution for the
oscillatory motion yields [4]
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integration time of 10 s using a phase lock loop circuit
[17], changes in the resonant frequency of 10 mHz were
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, a factor &3
larger than the thermodynamic noise. The results for
these measurements are plotted in Fig. 4.

In this configuration @Fc=@z is being measured. Using
the proximity force theorem [18], the Casimir force Fc
between a spherical surface of radius R and an infinite
plane is given by Fc ! "$3 !hcR=360z3 [19], where c is
the speed of light in vacuum and !h is Planck’s constant. Its
derivative @Fc=@z ! 2$RPc, where Pc is the force per
unit area between two infinite planes.

When finite conductivity effects are taken into ac-
count, the Casimir force per unit area between two planes
PCP, and the force between a sphere and a plane FCS, are
given by [5,13]
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is the complex frequency, and sj !
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distances determined by the surface roughness [20],
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to model the data shown in Figs. 3 and 4. The probabilities
wi were found using the AFM profiles of the interacting
surfaces. The values of the dielectric constant for Au and
Cu were obtained from [21], extended to low energies

using a Drude model [9]. The agreement between model
and data is better than 1% for all cases where %F'z( *
0:01F'z(, i.e., z < 0:5 !m.

There are, however, measurable differences between
the experimental and theoretical values of the Casimir
energy. Although the differences are larger than the ex-
perimental error, they likely arise from the ''!( used, not
necessarily reflecting shortcomings of Eq. (3): Using
different optical constants for Au and Cu [22], or different
models of roughness, results obtained from Eq. (4) vary
by more than 1%.

Other possible sources of discrepancy are (i) finite
thickness of the metallic layers, and (ii) effects of tem-
perature. Since the layers are much thicker than the

FIG. 4. (a) Derivative of the Casimir force (see text) as a
function of separation. The solid line is a fit using Eq. (4a).
(b) Experimental data subtracted from the theoretical model.
The deviation with respect to the model at small sepa-
rations is partially associated with nonlinear terms of Eq. (2).

FIG. 3. Casimir force as a function of separation. The
separation between the metallic layers has been adjusted to
account for the roughness: z ! zmetal ) 2%o. (a) Direct mea-
surement of the force. The solid line is a fit using Eq. (4b).
(b) Experimental data subtracted from the theoretical model.
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Comparisons theory/experiments

where !r is the resonant angular frequency of the MTO,
and A was adjusted between 3 and 35 nm for zmetal equal
to 0.2 and 1:2 !m, respectively. The solution for the
oscillatory motion yields [4]
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to model the data shown in Figs. 3 and 4. The probabilities
wi were found using the AFM profiles of the interacting
surfaces. The values of the dielectric constant for Au and
Cu were obtained from [21], extended to low energies

using a Drude model [9]. The agreement between model
and data is better than 1% for all cases where %F'z( *
0:01F'z(, i.e., z < 0:5 !m.

There are, however, measurable differences between
the experimental and theoretical values of the Casimir
energy. Although the differences are larger than the ex-
perimental error, they likely arise from the ''!( used, not
necessarily reflecting shortcomings of Eq. (3): Using
different optical constants for Au and Cu [22], or different
models of roughness, results obtained from Eq. (4) vary
by more than 1%.

Other possible sources of discrepancy are (i) finite
thickness of the metallic layers, and (ii) effects of tem-
perature. Since the layers are much thicker than the

FIG. 4. (a) Derivative of the Casimir force (see text) as a
function of separation. The solid line is a fit using Eq. (4a).
(b) Experimental data subtracted from the theoretical model.
The deviation with respect to the model at small sepa-
rations is partially associated with nonlinear terms of Eq. (2).

FIG. 3. Casimir force as a function of separation. The
separation between the metallic layers has been adjusted to
account for the roughness: z ! zmetal ) 2%o. (a) Direct mea-
surement of the force. The solid line is a fit using Eq. (4b).
(b) Experimental data subtracted from the theoretical model.
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Probable cause for 
the 
discrepancies :

• ε(ω)
• Temperature
• model of surface 

roughness



Comparisons theory/experiments
Difficulties in the experiments:
• small force to measure
• distance between the two objects must be measured 

very accurately as well

the pattern from the photoresist to the silicon oxide.
Trenches with depths t ! 2a ("1 !m) were then created
using deep reactive ion etching using the oxide as etch
mask. A continuous etch and deposit recipe was used to
yield smooth side walls at 90.3# and 91.0# to the top
surface, respectively, for samples A and B. Residual hydro-
carbons were removed using an oxygen plasma etch.
Finally, the oxide etch mask is removed using hydrofluoric
acid. In order to ensure that the optical properties of the
silicon are identical, all samples were fabricated on the
same wafer and later diced into 0.7 by 0.7 mm pieces for
the force measurement.

The geometry of nanoscale, rectangular trenches was
chosen because the Casimir force on such structures is
expected to exhibit large deviations from PAA. We con-
sider the interaction between the trench array and a parallel
flat surface at distance z from the top surface of the
trenches. In the pairwise additive picture, this interaction
is a sum of two contributions: the volume from the top
surface to the bottom of the trench and the volume below
the bottom of the trench. The latter component is negligible
because the distance to the other surface is more than
1 !m, larger than the distance range at which Casimir
forces can be detected in our experiment. For a trench
array of 50% duty cycle, the former component yields
exactly half of the interaction between two flat surfaces
Fflat regardless of the periodicity because half of the ma-
terial is removed [22]. In practice, the trench arrays are
created with duty cycle close to but not exactly at 50%.
Under PAA, the total force is equal to pFflat, where p is the
fraction of solid volume. The calculation of the Casimir
force in such corrugated surfaces, in contrast, is highly
nontrivial. While perturbative treatments [20] are valid for
smooth profiles with small local curvature, they are im-

practical for the deep, rectangular corrugations. Using a
different approach based on path integrals, Büscher and
Emig [22] calculated the Casimir force for the corrugated
geometry made of perfect conductors. Strong deviations
from PAA were obtained when the ratio z=" is large. In the
limit when " goes to zero, the force on a trench array
approaches the value between flat surfaces, leading to
deviations from PAA by a factor of 2. Such large deviations
occur because the Casimir force is associated with con-
fined electromagnetic modes with wavelength comparable
to the separation between the interacting objects. When
" $ z, these modes fail to penetrate into the trenches,
rendering the Casimir force on the corrugated surface
equal to a flat one.

We measure the gradient of the Casimir force on the
silicon trench arrays using a gold-coated sphere attached to
a micromechanical torsional oscillator [10]. The oscillator
consists of a 3:5 !m thick, 500 !m square silicon plate
suspended by two torsional rods. As shown in Fig. 1(c),
two glass spheres, each with radius R of 50 !m, are
stacked and attached by conductive epoxy onto the oscil-
lator [13] at a distance of b ! 210 !m from the rotation
axis. The large distance ("200 !m) between the oscillator
plate and the corrugated surface ensures that the attraction
between them is negligible and only the interaction be-
tween the top sphere and the corrugated surface is mea-
sured. Before attachment, a layer of gold with thickness
4000 A is sputtered onto the spheres. Two electrodes are
located between the plate and the substrate. Torsional
oscillations in the plate are excited when the voltage on
one of the electrodes is modulated at the resonant fre-
quency of the oscillator (f0 ! 1783 Hz, quality factor
Q ! 32 000). For detecting the oscillations, additional ac
voltages at amplitude of 100 mVand frequency of 102 kHz
is applied to measure the capacitance change between the
top plate and the electrodes. A phase-locked loop is used to
track the shifts in the resonance frequency [10] as the
sphere approaches the other silicon plate through extension
of a closed-loop piezoelectric actuator. As shown in
Fig. 1(c), the movable plate is positioned so that its tor-
sional axis is perpendicular to the trench arrays in the other
silicon surface. Such an arrangement eliminates motion of
the movable plate in response to lateral Casimir forces
[21,23] because the spring constant for translation along
the torsional axis is orders of magnitude larger than the
orthogonal direction in the plane of the substrate.

To prepare the silicon surface [14] for force measure-
ment, hydrofluoric acid is used to remove the native oxide
on the surface of the silicon chip. The hydrofluoric acid
also passivates the silicon surface to temporarily prevent
oxide formation at ambient pressure. In the next step, the
silicon chip is baked at 120 #C for 15 minutes to eliminate
residual water that might have accumulated in the trenches.
The silicon chip is then positioned to within a few micro-
meters from the gold sphere, and the chamber is immedi-
ately evacuated to a pressure of 10%6 torr by a dry roughing
pump and a turbo pump.

FIG. 1. (a) Cross section of rectangular trenches in silicon,
with periodicity of 400 nm and depth of 0:98 !m (sample B).
(b) Top view of the structure. (c) Schematic of the experimental
setup (not to scale) including the micromechanical torsional os-
cillator, gold spheres, and silicon trench array. (d) Measurement
scheme with electrical connections. Excitation voltages Vac1 and
Vac2 are applied to the bottom electrodes.

PRL 101, 030401 (2008) P H Y S I C A L R E V I E W L E T T E R S
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Casimir force between gold 
sphere and silicon grating
See: H. B. Chan et al, PRL 101, 030401 (2008)
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Thank you for your attention

Afterthoughts…
• Casimir force predicted theoretically more than 50 years 

ago.

• “Recent” experimental technics have renewed the 
interest in this effect thank to accurate theory/exp. 
comparisons.

• Promising applications in the field of nanotechnologies 
and photonics : towards ways to “control” the Casimir 
effect.








