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Astrophysical Motivation

Supernova 1987A was a core-collapse supernova, which ...

... is the explosion of a star undergoing a
    gravitational collapse

... involves time varying multi-poles of the stellar 
    mass-energy distributions 

... generate gravitational waves ....



Gravitational Waves 
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PROBLEM of THIS DESCRIPTION
linearised metric theory is not gauge invariant

other coordinates also yield : metric = Minkowski + perturbation  

Eddington (1922): Gravitational waves travel at the 
                                    speed of thought



Gravitational Waves 
-Motivation of Bondi’s Idea-

gravitational radiation is characterised by  
the Riemann tensor

fundamental speed is the speed of light

Pirani showed in 1957...
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Light-cone approach of GR
                       The Bondi-Sachs Formulation

What are the properties of the Bondi-Sachs 
Formulation of GR and which role plays the vertex?
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Simplifying Assumptions

Axial Symmetry

+

Vacuum Space-Times



The Origin of the Coordinate 
System  in Axial Symmetry

Axis of symmetry        in a four-dimensional space-time 
is a totally-geodesic, time-like 2-surface

     contains time-like geodesic curves given by the 
symmetry

choose in       a time-like geodesic (world-line of an 
observer) which  traces the vertices of null cones 

A

A
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VERTEX = ORIGIN



Coordinates @ a Light-Cone
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The Bondi-Sachs Metric
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The Bondi-Sachs Metric

Bondi [1960], Sachs [1962], van der Burg [1966]
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Einstein Equations 

6 main 
equations 

3 conservation
equations

 1 trivial 
equation

2 evolution 
equations

4 hyper-
surface 

 equations

Rur = 0

Rrr = 0

RrA = 0

gABRAB = 0

RAB �
1
2
gAB

�
gCDRCD

�
= 0

RuA = 0

Ruu = 0

Tamburino et al. [1966]



Structure of the Field Equations

Bondi-Sachs Lemma: If the main equations hold 
on one null cone and the optical expansion rate of 
the null rays does not vanish, i.e.             , on this 
cone, then the trivial equation is fulfilled 
algebraically and the supplementary equations 
hold everywhere on this null cone provided they 
are fulfilled at one radius r=R>0.
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imply....



Hierarchy of Main Equations
Hyper-surface equations

evolution equations
�,ur = J(�)(�, �, UA, �, �)

�,ur = J(�)(�, �, UA, �, �)

Rrr = 0 : �,r = J(0)(�, �)

RrA = 0 : UA
,rr = JA(�, �, �)

gABRAB = 0 : �,r = J(1)(UA, �, �, �)
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Condition for Out-Going 
Gravitational Waves

... is the Sommerfeld radiation condition:

... ansatz for the asymptotic solution

Bondi et. al.[1962],van der Burg [1966]

x

A = const

u = const

�(u, r, x

D) =
c(u, x

D)
r

+O(r�3) , �(u, r, x

D) =
d(u, x

D)
r

+O(r�3)

lim
r!1

r�

���� = const , lim
r!1

r�

���� = const

x

A = const

u = const



Asymptotic Solution of the 
Main equations

... consequence of the integration of 
     the main equations

Bondi’s  choise of the 
functions of integration
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Asymptotic Solution of the 
Main equations

... consequence of the integration of 
     the main equations

Bondi’s  choise of the 
functions of integration

Bondi chooses an asymptotic Minkowskian  
observer
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The Bondi-Mass & Mass-Loss
the function of integration                 is the Mass 
aspect of the isolated system 

the Bondi Mass           of an isolated system is

the time variation of the Bondi mass as 
measured by the asymptotic observer is 
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The Bondi-Mass & Mass-Loss
the function of integration                 is the Mass 
aspect of the isolated system 

the Bondi Mass           of an isolated system is

the time variation of the Bondi mass as 
measured by the asymptotic observer is 
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-an isolated system can only lose mass - 
-via gravitational radiation-
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Infinity vs. Origin
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Bondi’s Observer

at infinity
passive

active

to study a gravitational active source
need inertial observer at the origin 



The Vertex -  Problems

(1) a null cone is not differentiable at its vertex

(2) Bondi-Sachs metric is not defined at r=0

(3) require additional regular structure at the vertex with 
    a Taylor expansion in regular coordinates 

(4) order of approximation of the metric near the vertex  
   determines how the light rays leave the axial observer



axial observer
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non-spherical emission
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 (4) order of approximation of the metric near the vertex  
   determines how the light rays leave the axial observer
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Solving the Vertex - Problem

... define a regular coordinate system along the 
              axial geodesic

... define a null cone in the regular coordinate system

... transform the regular metric to a Bondi-Sachs   
    metric 



The Metric @ the Vertex
The radial expansion of the Bondi-Sachs metric functions...

...shows a strict angular behaviour in terms of associated 
   Legendre polynomials in the coefficients 

...starts at different positive powers

...contains at higher order coefficients time derivatives of
    the lower order ones

...contains strict numerical factors in the expansion  
   coefficients
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...shows a strict angular behaviour in terms of associated 
   Legendre polynomials in the coefficients 

...starts at different positive powers

...contains at higher order coefficients time derivatives of
    the lower order ones

...contains strict numerical factors in the expansion  
   coefficients

The metric near the vertex is very rigidly fixed
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Implications from the Regularity Conditions 
at the Vertex

for Initial Data on a Light Cone

TM, E. Müller, gr-qc/1211.4980
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Implications from the Regularity Conditions 
at the Vertex

for Initial Data on a Light Cone
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Regularity at the Vertex and asymptotical 
flatness

Regularity conditions allow time-
dependent initial data that are

asymptotically flat not-asymptotically flat 

TM, gr-qc/1212.3316

This can be demonstrated by solutions derived from a  
quasi-spherical approximation 

of the Bondi-Sachs metric



Example: the Scalar Wave Equation in Flat-
Space Null Coordinates
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... a solution that is asymptotical flat 

... a solution that is not asymptotical flat 

... the wave equation



Summary
In the Bondi-Sachs formulation it  can be shown that  an isolated 
system can only loose mass  via gravitational radiation

vacuum initial data on a light cone are fixed by the regularity 
conditions at the vertex 
- data are given by free functions along the curve tracing 
   the vertex

regularity conditions do not restrict whether  the initial data are 
asymptotically flat or not


