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Astrophgsical Motivation




Astrophgsical Motivation

Supernova 1987A was a core-collapse supernova, which ...

.. 1s the explosion of a star undergoing a
gravitational collapse

.. iInvolves time varying multi-poles of the stellar
mass-energy distributions

... generate gravitational waves ....




Gravitational Waves

~Motivation of Bondi’s Idea-

metric = Minkowski + Perturbation Q=T+ o
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Gravitational Waves

~Motivation of Bondi’s Idea-

metric = Minkowski + Perturbation Q=T+ o
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PROBLEM of THIS DESCRIPTION

linearised metric theory Is not gauge invariant

other coordinates also gielcl . metric = Minkowski + Perturbation

Eclclington (1922) : Gravitational waves travel at the
speecl of tlﬁought
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Gravitational Waves

~Motivation of Bondi’s Idea-
Pirani showed in1957...

e gravitational radiation is characterised bg

the Riemann tensor

¢ fundamental speed is the speecl of Iiglﬁt




Light-cone aPProach of GR

The Bondi-Sachs Formulation
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Light~conc apl:)roach of GR

The Bondi-Sachs Formulation

‘g ? stargazer
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What are the properties of the Bondi-Sachs
Formulation of GR and which role plays the vertex?
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he Field equatioms

Mass-loss and Gravitational Waves

Regularity Conditions @ the Vertex

@ Summa ry
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Simpligging Assumptions

Axial ngmetrg




Simpligying Assumptions

Axial 53mm<—:tr9

+

Vacuum Space-Times




The Origjn of the Coordinate
Sgstem in Axial ngmetrg

o Axis of symmetry .A in a four-dimensional sPace~time

Is a tota”9~geoclesic) time-like 2-surface

o Acontains time-like geoclesic curves gjven !:)3 the

sgmmetrg

Q choose in A a time-like geocﬂesic (worchine of an

observer) which traces the vertices of null cones

VERTEX = ORIGIN
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The Bondi-Sachs Metric

is null coordinate ¢V uVsu = 0
k% = g*°V gu null vector of the
out-going null rays

d:° = («*,2%) are constant along

null rays KOV 22 =0

ey IS a |uminosit3 distance

det(gan)
"
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The Bondi-Sachs Metric
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The Bondi-Sachs Metric

is null coordinate ¢**V, uvau=0 g® =g11 =0

k% = g*°V gu null vector of the

out~going null rays

(2> 7% are constant along gOA =—tga—

A

X

null rays kVyz” =0

G e |uminosit3 distance

det(gan)
A

gt # -1

9
gap =7°hap

)

dstm 220 20 20 iy dir 4 2 i (drt — U du e = U du)

hapdz?dz? = €%7 cosh(26)d#? + 2sin @ sinh(20)d0d¢ + e 27 sin® 0 cosh(26)d¢>
Bondi [1960], Sachs [1962], van der Burg [19_66] .
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Einstein Equa‘cions

6 main 3 conservation 1 trivial

equations equations equation

Ruu:O Rur:O
Rua=0

4 hyper-

2 evolution
surface

equations

equations

Rrr =1 CDRC’D) 50

Tamburino et al. [1966]




Structure of the Field ‘iquations

87 1 87
Va(R 5—55 ﬁR'u,u>:O

implg....

Bondi-Sachs Lemma: If the main equations hold
on one null cone and the optical expansion rate of
the null rays does not vanish, i.e. 3 # oo, on this
cone, then the trivial equation is fulfilled
algebraically and the supplementary equations
hold everywhere on this null cone provided they
are fulfilled at one radius r=R>0.




Hic—:rarchg of Main Equations

g HgPer—-surmCace cquations

R, =0: 6,7“ oo J(O) (77 5)
T sl TREE )
gABRAB =L (I),r = J(l)(UAaﬂa e 5)

¢ evolution equations

S J(q/) (’77 57 UA7 67 (I))
5,u'r e J(5) (77 57 UA) 57 (I))




Initial values to | ntegrate the

Einstein Ecﬁuations (1)

ekt ()

: SPGCi% g, UA7 $ and U,f} for all values of z4
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Initial values to | ntegrate the

Einstein Equations (2)

ekt ()

SPCC'FH 5 U4, o ancl UA Fora”va ues of i
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Condition for Out-Going
Gravitational Waves

.. is the Sommerteld radiation condition:

lifns e = camsti -, lim rd| = const
r—=c9 =09

xA = const :I:A = const

u = const u = const

.. ansatz 1Cor t]’)é asgmptotic solution

T — C = : Sty o — Al

/5 r

+0(r™)

Bondi et. al.[1962] ,van der Burg [1966]




Asgmptotic Solution of the

Main equations

... consequence of the intcgration of Bondi’s choise of the

the main equations functions of integration
a2t S ) xA) el
U lyd e Sk )t O (e
2M (u, )
i

edeanee g + O(r~ %)




Asgmptotic Solution of the

Main equations

... consequence of the intcgration of Bondi’s choise of the

the main equations functions of integration
eSS =gt xA) el
U lyd e Sk )t O (e
2M (u, )
i

6261)(330‘_) e 0 O(T_Q)

Bondi chooses an asymptotic Minkowskian

OIDSCFVCF




The Bondi-Mass & Mass-1_oss

o the function of integration M(u,z?) is the Mass

aspec‘c of the isolated sgstem

* the Bondi Mass m(u) of an isolated system IS

= ﬁ %M(u, 0) sin® 0dOd¢

o the time variation of the Bondi mass as

measured ]:)9 the asgmptotic observeris

im(u) . [c?u (u, ) + d?u (u, 6’)} sin? 8dfdd

4x




The Bondi-Mass & Mass-1_oss

o the function of integration M(u,z?) is the Mass

asPect of the isolated sgstem

the Bondi Mass m(u) of an isolated system IS

= ﬁ %M(u, 0) sin® 0dOd¢

the time variation of the Bondi mass as

measured bﬂ the asymptotic observeris

im(u) s, [c?u (u,0) + d2, (u, 9)} sin” 0dfd¢

4r
-an isolatecl system can onlg lose mass -

S gravitational radiation-




lnﬁnitg VS. Origin
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lnﬁnitg VS. Origin

stargazer

Bondi’s Observer

gravitational at infinity

waves
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lnﬁnitg VS. Origin

stargazer
Bondi’s Observer

gravitationa X / at infinity
2K, /

waves @
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lnﬁnitg VS. Origin

stargazer '
Bondi’s Observer

gravitationa X % at infinity

waves @

star

to stuc19 a gravitational active source

need inertial observer at the origin

i e g —— e e T T, R e




The Vertex - Problems

(1) a null cone is not differentiable at its vertex
(2) Bondi-Sachs metric is not defined at r=0

(3) require additional regular structure at the vertex with
a Taglor expansion in regular coordinates

(4 ) order of aPProximation of the metric near the vertex
determines how the light rays leave the axial observer




The Vertex - Problems

(4) order of aPProximation of the metric near the vertex

determines how the light rays leave the axial observer
axial observer

spherical emission
non~spherica| emission

of the light rays
&

linear

of the |ight rays
&

e quadratic
approximation

aPPrOXImatxon




The Vertex - Problems

(5) How does one move the origin of the coordinate

system along the time-like curve deﬁning e

|




The Vertex - Problems

(5) How does one move the origin of the coordinate

system along the time-like curve deﬁning e

|
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Solving the Vertex - Problem

cleﬁne a regular coorclinate sgstem along the

axial geoclesic

deﬁne a nu” cone in the regu]ar coorclinate sgstem

... transform the regular metric to a Bondi-Sachs

metric




The Metric @ the Vertex

The radial expansion of the Bondi-Sachs metric functions. ..
_..starts at different Positive powers

...shows a strict angular behaviour in terms of associated

Legenclre Polgnomials in the coefficients

...contains at higher order coefficients time derivatives of

the lower order ones

...contains strict numerical factors in the exPansion
coefficients

5 dya

Example:  7(wn6)= (WPFO)| + PO + 32 @PE6)|r° + O




The Metric @ the Vertex

The radial expansion of the Bondi-Sachs metric functions. ..
_..starts at different Positive powers

...shows a strict angular behaviour in terms of associated

Legenclre Polgnomials in the coefficients

...contains at higher order coefficients time derivatives of

the lower order ones

...contains strict numerical factors in the expansion
coefficients

5 dya

Example:  10170) = [R@PEO)|r* + |10)PHO) + £ TEWRL®)|r* + O

' The metric near the vertex is very rigic“9 fixed




Initial values to | ntegrate the

Einstein Ecﬁuations (1)

ekt ()

: SPGCi% g, UA7 $ and U,f} for all values of z4
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lmPlications from the Regularitg Conditions

at the Vertex
for Initial Data on a Light Cone

geoclcsic

™, E. Miiller, gr-qc/1211.4980
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lmPlications from the Regularitg Conditions

at the Vertex
for Initial Data on a Light Cone

geodcsic

E—4

set 8= U4 = o =0 and determine U4 (e TME Miiller, gr-qc/1211.4-980

S— - R e
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lmPlications from the Regularitg Conditions

at the Vertex
for Initial Data on a Lig{ht Cone

geodesic

(u)P?(cos )
0

7/' Ariva O n= 2l 2
ZZrnél (u)P?(cos )
=0

=2 (l=2

setﬁ UA O =0 ancl cletermme U o)t s Ml MU”@” gr'~qc/’2” ‘*930

r=

=

— e — — S _ . e -



Regularitg at the Vertex and asgmptotical

ﬂa’mess

Regularitg conditions allow time-

clel:)endent initial data that are

™, gr~c]c/ 12123316




Regularitg at the Vertex and asgmptotical

ﬂa’mess

Regularitg conditions allow time-

clel:)endent initial data that are

asgmptotica”g flat

™, gr~c]c/ 12123316




Regularitg at the Vertex and asgmptotical

ﬂa’mess

Regularitg conditions allow time-

c:lel:)encﬂent initial data that are

not—-asgmptotica”g flat

asgmptotica”g flat

™, gr~c]c/ 12123316




Regularitg at the Vertex and asgmptotical

ﬂa’mess

Regularitg conditions allow time-

c:lel:)encﬂent initial data that are

not—-asgmptotica”g flat

asgmptotica”g flat

This can be demonstrated bg solutions derived from a
quasi~spherica| aPProximation
of the Bondi-Sachs metric

™, gr~c]c/ 12123316




Examl:)le: the Scalar Wave Equation in Flat-

Space Null Coordinates

.. the wave equation

1 1
=B = [ — G s e T—ﬂ“‘%(mﬂ)}
...asolution that is asgmp‘cotical flat

0= 3 Al ty| Yinteh

=0 m=-—1

... a solution that is not asgmptotical flat

00 l eu—i—rIH_% (7“)

Y = Z Z B \/77 Ylm(xA)




Summarg

In the Bondi-Sachs formulation it can be shown that an isolated

sgstem can onlg loose mass via gravitational radiation

vacuum initial data on a light cone are fixed !33 the regularitg
conditions at the vertex
- data are given bg free functions along the curve tracing

the Verte e

regularitg conditions do not restrict whether the initial data are

asgmptotica”g ﬂat or not




