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Problem of the quantum-to-classical transition

According to inflation theory the large scale structure arises from quantum vacuum

fluctuations.

→ How do the quantum fluctuations become classical fluctuations?

→ How does the vacuum state of the perturbations, which is homogeneous and

isotropic, gives rise to perturbations which are inhomogeneous and anisotropic?
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exactly does a measurement happen?

→Measurement problem

→ Is especially severe in cosmological context! Which processes count as measure-
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Problem of the quantum-to-classical transition

According to inflation theory the large scale structure arises from quantum vacuum

fluctuations.

→ How do the quantum fluctuations become classical fluctuations?

→ How does the vacuum state of the perturbations, which is homogeneous and

isotropic, gives rise to perturbations which are inhomogeneous and anisotropic?

According to standard quantum theory this can only be achieved by collapse of the

wave function. But collapse is supposed to happen upon measurement. But when

exactly does a measurement happen?

→Measurement problem

→ Is especially severe in cosmological context! Which processes count as measure-

ment in the early universe?

Possible solutions:

collapse theories (Sudarsky!), many worlds, de Broglie-Bohm theory
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Outline

• Introduction to de Broglie-Bohm

• Illustration of problem: inverted harmonic oscillator

• Discussion of cosmological perturbations.
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Non-relativistic de Broglie-Bohm theory

(a.k.a. pilot-wave theory, Bohmian mechanics, . . . )

• De Broglie (1927), Bohm (1952)

• Point particles guided by wave function.

• Dynamics:

– Wave ψ(x1, . . . ,xn, t):

i~∂tψ =

(
−

n∑
k=1

~2

2mk
∇2
k + V

)
ψ

– Particles positions x1(t), . . . ,xn(t):

dxk
dt

= vψk (x1, . . . ,xn, t) =
1

mk
∇kS(x1, . . . ,xn, t), ψ = |ψ|eiS/~
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•Double Slit experiment:
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•Quantum equilibrium:

Consider an ensemble of systems with wave function ψ,

and particle distribution ρ(x).

Quantum equilibrium if ρ(x) = |ψ(x)|2.

→ Standard quantum theory emerges in quantum equilibrium.

→Deviations from standard quantum theory in non-equilibrium (ρ(x) 6= |ψ(x)|2).
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Relaxation, ρ(x)→ |ψ(x)|2 (Valentini & Westman, 2004):



10

• Quantum equilibrium is preserved by the particle motion because it satisfies the

continuity equation:

∂t|ψ|2 +

n∑
k=1

∇k · (vψk |ψ|
2) = 0

→ For other Schrödinger equations, the continuity equation of |ψ|2 may be used

to find a suitable guidance law.

That is

∂t|ψ|2 + divjψ = 0

suggests the guidance law

Ẋ =
jψ

|ψ|2

(treatment of arbitrary Hamiltonians: Struyve & Valentini (2009))
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•Classical limit:

ẋ =
1

m
∇S ⇒ mẍ = −∇(V + Q)

ψ = |ψ|eiS/~, Q = − ~2

2m

∇2|ψ|
|ψ|

= quantum potential

Classical trajectories when |∇Q| � |∇V |.
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• Emergence of time:

Suppose

ĤΨ(x1, x2) = 0

and de Broglie-Bohm trajectories x1(t), x2(t).

Wave function for system 1:

ψ(x1, t) = Ψ(x1, x2(t))

→ may have non-trivial time dependence

→ may satisfy time dependent Schrödinger equation.

(see e.g. work by P. Peter, N. Pinto-Neto, . . . )
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Quantum field theory

• De Broglie-Bohm theory can be extended to quantum fields

(see Struyve (2010), (2011) for reviews)

• E.g. scalar field:

Hamtonian:

Ĥ =
1

2

∫
d3x

(
π̂2 + ∇φ̂

2
+ m2φ̂2

)
Functional Schrödinger picture:

φ̂→ φ , π̂ → −i
δ

δφ
, Ψ(φ, t) = 〈φ|Ψ(t)〉

i
∂Ψ

∂t
=

1

2

∫
d3x

(
− δ2

δφ2
+ ∇φ2 + m2φ2

)
Ψ

Continuity equation:

∂|Ψ|2

∂t
+

∫
d3x

δ

δφ(x)

(
δS

δφ(x)
|Ψ|2

)
= 0 , Ψ = |Ψ|eiS .

Guidance equation:

φ̇(x) =
δS

δφ(x)
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Inverted harmonic oscillator (e.g. Albrecht et al. 1994)

H =
p2

2
− q2

2
(1)

Classical trajectories:

q = Aet + Be−t , p = Aet −Be−t

q ≈ p ≈ Aet for t� 1 ⇒ squeezing
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Quantum mechanics

Squeezed state:

ψ(q, t) = N exp

(
− (B − iC)

2
q2 − i

B

2
t

)

N =

√
B

π
, B =

1

cosh 2t
, C = tanh 2t

Note

∆q2 =
1

2B
, ∆p2 =

B

2
+
C2

2B

For t = 0 : ∆q2 =
1

2
, ∆p2 =

1

2
For t� 1 : ∆q2 � 1 , ∆p2 � 1

→ Initially minimum uncertainty in q and p. However, both spread in time!

→ The wave function is not peaked around a classical trajectory!

How can it correspond to a classical system?
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Common classicality arguments

1. Commuting observables

Heisenberg operators:

q̂(t) = q̂(0) cosh t + p̂(0) sinh t , p̂(t) = q̂(0) sinh t + p̂(0) cosh t

For t� 1:

q̂(t) ≈ p̂(t) ≈ 1

2
(q̂(0) + p̂(0))et

Hence

[q̂(t), p̂(t)] ≈ 0 ⇒ Classicality

However

[q̂(t), p̂(t)] = i /≈ 0
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Similarly: free particle

Heisenberg operators:

x̂(t) = x̂(0) +
p̂(0)

m
t , p̂(t) = p̂(0)

For t� 1:

x̂(t) ≈ p̂(0)

m
t

Hence

[x̂(t), p̂(t)] ≈ 0 ⇒ Classicality

However

[x̂(t), p̂(t)] = i /≈ 0

Better:

∆x(t)2 = ∆x(0)2 +
t

m

(
〈{x̂(0), p̂(0)}〉 − 〈x̂(0)〉〈p̂(0)〉

)
+
t2

m2
∆p(0)2

≈ ∆x(0)2 for
t

m
� 1

⇒ No spreading for a very massive particle for short enough times.
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2. Wigner distribution:

ρ(q, p, t) =
1√
πB
|ψ(q, t)|2 exp

(
− (p− Cq)2

B

)
→ |ψ(q, t)|2δ(p− q) for t� 1 (2)

→ Is not peaked around a classical trajectory

→ But:

- satisfies Liouville equation dρ/dt = 0

- and quantum mechanical expectation values equal classical averages over ρ

However, this does not mean classical limit is achieved!
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3. WKB limit

With ψ = |ψ|eiS:
∂S

∂t
+

(∇S)2

2
+ V + Q = 0 ,

V = −q
2

2
, Q =

B

2
(1−Bq2)

For t� 1:
∂S

∂t
+

(∇S)2

2
+ V ≈ 0 ,

→ Formally same as classical Hamilton-Jacobi equation

But:

Does not imply we can assume a classical trajectory
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4. Decoherence

Decoherence due to coupling with other degrees of freedom may yield decompo-

sition of ψ into “classical wave packets”. Collapse may select one of these.
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De Broglie-Bohm description description of the inverted oscillator

q̇ = ∇S ⇒ q̈ = FC + FQ

Classical force: FC = q

Quantum force: FQ = qB2

Ratio:

FQ
FC

= B2 → 0 for t� 1 → classical behaviour

More precisely:

q(t) ∼
√

cosh 2t

∼ et for t� 1
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Cosmological perturbations

Inflaton field: ϕ(x, η) = ϕ0(η) + δϕ(x, η)

Metric with scalar perturbations, in the longitudinal gauge:

ds2 = a2(η)
{

[1 + 2φ(η,x)] dη2 − [1− 2φ(η,x)] δijdx
idxj

}
,

Gauge invariant Mukhanov-Sasaki variable:

y ≡ a

[
δϕ +

ϕ′

H
φ

]
,

where H = a′

a is comoving Hubble parameter.

Fourier modes:

y(η,x) =

∫
d3k

(2π)3/2
yk(η)eik·x,

H =

∫
R3+

d3k

[
pkp

∗
k + k2yky

∗
k +

z′

z
(pky

∗
k + ykp

∗
k)

]
, z = aϕ′/H
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Classical mode equation:

y′′k +

(
k2 − z′′

z

)
yk = 0.

Physical modes, initially well inside the Hubble radius, i.e. k|η| � 1 or k2 � z′′/z

or :

yk(η) ∼ e−ikη
(

1 +
Ak

η
+ . . .

)
.

At late times, modes outside the Hubble radius, i.e. k|η| � 1 or k2 � z′′/z:

yk(η) ∼ Ad
kη

αd︸ ︷︷ ︸
αd > 0

decaying mode

+ Ag
kη

αg︸ ︷︷ ︸
αg < 0

growing mode

≈ Ag
kη

αg
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Quantum

For product wave functional Ψ(y, η) = Πk∈R3+Ψk(yk, y
∗
k, η):

i
∂Ψk

∂η
=

[
− ∂2

∂y∗k∂yk
+ k2y∗kyk − i

z′

z

(
∂

∂y∗k
y∗k + yk

∂

∂yk

)]
Ψk.

Ground state:

Ψk =
1√

2π|fk(η)|
exp

{
− 1

2|fk(η)|2
|yk|2 + i

[(
|fk(η)|′

|fk(η)|
− z′

z

)
|yk|2 −

∫ η dη̃

2|fk(η̃)|2

]}
,

fk a solution to the classical mode equation.

→ Is two-mode squeezed state.

→ Is translationally and rotationally invariant.
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De Broglie-Bohm

Guidance equation:

y′k =
∂Sk

∂y∗k
+
z′

z
yk , Ψk = |Ψk|eiSk

For ground state:

yk(η) ∼ |fk(η)|

→ Is in general not translationally or rotationally invariant!

For physical modes, at early times (k2 � z′′/z):

yk(η) ∼
(

1 +
ReAk

η
+ . . .

)
.

→ Nearly stationary

At late times, k2 � z′′/z:

yk(η) ∼ ηαg

→ Behaves classically at lates time k2 � z′′/z
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Can also be seen from

y′k =
∂Sk

∂y∗k
+
z′

z
yk , ⇒ y′′k +

(
k2 − z′′

z

)
yk = −∂Qk

∂y∗k
,

Qk = − 1

|Ψk|
∂2|Ψk|
∂y∗k∂yk

Ratio quantum force FQ,k and classical force FC,k:

FQ,k
FC,k

= − 1

4|fk|4
(
k2 − z′′

z

) → 0 for k2 � z′′/z → classical behaviour
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Can also be seen from

y′k =
∂Sk

∂y∗k
+
z′

z
yk , ⇒ y′′k +

(
k2 − z′′

z

)
yk = −∂Qk

∂y∗k
,

Qk = − 1

|Ψk|
∂2|Ψk|
∂y∗k∂yk

Ratio quantum force FQ,k and classical force FC,k:

FQ,k
FC,k

= − 1

4|fk|4
(
k2 − z′′

z

) → 0 for k2 � z′′/z → classical behaviour

→ No appeal to decoherence.

→ Decoherence in the field basis will not alter the classicality.
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Two-point correlation function

In quantum equilibrium (ρ(y) = |Ψ(y)|2):

〈y(η,x)y(η,x + r)〉dBB =

∫
Dy|Ψ(y, η)|2y(x)y(x+r) =

1

2π2

∫
dk

sin kr

r
k|fk(η)|2

Is usual expression. (It will correspond to a spatial average under the ergodic

assumption.)


