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Introduction

Standard Cosmological Model

Comparison of Planck-only and WMAP-only Six-Parameter ACDM Fits?*

Parameter Planck WMAP Difference
(“CMB+Lens”) (9-year) value WMAP o

Qh? 0.02217 £ 0.00033  0.02264 £ 0.00050  —0.00047 0.9
Q.h? 0.1186 £ 0.0031 0.1138 =+ 0.0045 0.0048 1.1
Qa 0.693 £+ 0.019 0.721 £ 0.025 —0.028 1.1
T 0.089 £ 0.032 0.089 £ 0.014 0 0

to (Gyr) 13.796 £ 0.058 13.74+0.11 56 Myr 0.5
Ho (km s~'Mpc™") 67.9+1.5 70.0 2.2 —21 1.0
o8 0.823 £+ 0.018 0.821 £ 0.023 0.002 0.1
Qp 0.0481° 0.0463 + 0.0024 0.0018 0.7
Qe 0.257° 0.233 £ 0.023 0.024 1.0

*The new Planck results strongly favor the standard six-parameter ACDM model with
parameter values that are consistent with WMAP parameters, as shown in this table which
compares results derived entirely from Planck data with those derived entirely from WMAP
data.

PParameters derived from quoted values. No error estimate is given for this data/model
combination.

http://lambda.gsfc.nasa.gov/
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Introduction

[ssues of ACDM

Fundamental:
@ The nature of Dark Matter;
e The Cosmological Constant problem (Weinberg, 1989);
@ The Cosmic Coincidence Conundrum;
@ The nature of Dark Energy;

From Cosmological Simulations:
e Core/Cusp problem (de Blok, 2009);
e Missing Satellites problem (Bullock, 2010);



Dark Matter

Necessity of Dark Matter

o Primordial Nucleosynthesis;
e DM drives baryons in forming galaxies;
°

Velocity curves of galaxies;

Gravitational lensing;
CMB peak structure;



Dark Matter

Modelling Dark Matter

Phenomenologically:

o Perfect fluid T = putu”, vanishing pressure;

o Fluctuations: dp = 0;

o If p = wp, observation requires |w| < 1073 (Miiller, 2005).
Or:

e Particles;

e Modification of the gravitational theory;



Dark Matter

Dark Matter Particles Candidates

Bertone, Hooper and Silk, 2005

e Sterile Neutrino (m 2 10 keV);
e Axion (m S 0.01 eV, s =0);
e Neutralino (MSSM) (m 2 100 GeV);

Operating Experiments:
e LHC;
o DAMA/LIBRA;
o CoGent;
o CRESS-II;
o XENON100;



Dark Matter

Our Purpose

Assess how velocity dispersion affects DM particles evolution.
References:

("]

Hofmann, Schwarz, Stocker, 2001

Green, Hofmann, Schwarz, 2005

Peirani, Durier, De Freitas Pacheco, 2006
Boyanovsky, Vega, Sanchez, 2008,

Vass, Valluri, Kravtsov, Kazantzidis, 2009
Vega, Sanchez, 2009,

Vega, Sanchez, 2010,

Vega, Salucci, Sanchez, 2010,

Vega, Sanchez, 20183,



Dark Matter

DM Particles Primordial Evolution

Bringmann and Hofmann, 2007

Important energy scales and events:
o T, =~ m: DM particles become non-relativistic;
o I'y, xef ~ I'n: chemical decoupling (T = Teq);
o I'xi x4~ I'm: kinetic decoupling (7" = Tiq).

For WIMPS Tiq < Teq < Tyr- In general, the precise hierarchy
depends on the DM particles model under investigation.

For the neutralino, Toq ~ 4 GeV (z ~ 10'3) and Tiq ~ 25 MeV
(z ~ 101).
We consider the evolution after kinetic decoupling.



Vlasov-Einstein Equation

Vlasov-Einstein Equation

Collisionless Boltzmann equation coupled to GR. Given

f(ta: P"—md7>

df af
o 7=

ie. , )

g_i_d:c’(?f +dPl of

ot dt 9r'  dt OP"
Since g,, PPV = —m?, PY is not an independent variable.
Metric enters via geodesic equation

dP

—— + T, PP =0,



Vlasov-Einstein Equation

Vlasov-Einstein System in Cosmology

Bernstein, 1988
Flat FLRW metric:

ds* = g datde’ = —dt* + a(t)?6;;da’ da?
Proper momentum:
p2 = a(t)25ijpipj 5

SO

where 5ijﬁiﬁj = 1. VE becomes

of dpof
ot Hdt Op =0

Because of isotropy, no dependence on x* and 7",



Vlasov-Einstein Equation

Solution and Important Quantities

Solution:
f=f(ap) .

Particles number density:
4 [ 47
_ 3 _ 2 _
n—/d pf(ap)—a3/0 dr x f(ac):—a3I2,

always scales as a 3. Introducing the proper velocity

Velocity dispersion:



Vlasov-Einstein Equation

Velocity Dispersion and Constancy of ()

Since E? = p? +m?,
2

1
2 3
o —?m/d pf(ap)p72+m2-

Neglecting O <%> terms (non-relativistic particles):

47 & 4
2 4 _
N ——— d =———1
77 3nm2a /0 (@) 3nm2a®
Phase-space density Q:

nm

o

Q=—7 ~4nV 271714[25/2I4_3/2 .

It is constant for non-relativistic particles.



Vlasov-Einstein Equation

Momenta of Vlasov Equation

Neglecting again O ( ) terms (p*/m* ~ 1076 for the

neutralino).
Zero momentum:

3 — 7—|_ =

Second momentum:
a 3 3 f p AZAJ _
6t/dpf it [ & P Fiial =0,

Do?
ot

which gives the known result o o< a~

l.e.
+2Ho? =0,

2



Vlasov-Einstein Equation

Modification of the Energy Density Evolution

Defining the energy density as:
€= / EpEf |

multiplying Vlasov equation by d3pE and integrating over the
momenta gives

0 1
£+3H<5+3mn02> =0,

which has solution

2
axa\3 = MNkdOiq (0kd\°
e=mngq|— ) +——(— ) .
a 2 a

For the neutralino aﬁd ~ 1073.



Perturbations

Perturbations

In the metric:
ds? = —(1 4 20)dt* + a(t)?6;;(1 + 2®)dz"dx’ .
In the distribution function:
f(t,at, Py = fOt.p) + FO (1,2, PY) .

Perturbed Vlasov-Einstein equation:

of p of0 afw 0%  Eni 0w\ of©
+ =il — Hp—5— — (p— . =0
ot ol Oz op ot a Or dp



Perturbations

Perturbed Quantities

Particle number density:

/d3pf:/d3pf(0)+/d3pf(1) —>n:n(0)—f-n(1) ‘

Velocity now gains a correction:

) d.’L‘i Pz
'=a—=a—=(1—-9+ V¥
v =a—- =agg ( + )

3 oy
@ / p

It is a pure first-order quantity.

tij\%

Bulk velocity:



Perturbations

Momenta of the Perturbed VE Equation

Zero momentum:

onM  19(nOv)
- A HnW
En + 0 Or +3Hn'" +3n

09 _

With 6 = n() /n© (= 1) /£0)).
.1 . .
5"-581“/1-1-3(1):0.

First momentum:

.. ) . .. 1 1 y
0+2HS+6H® + 30 — — VU + —9;,0;w” =0,
a a
where

. 1 p
ij — 3 Jr(1)
w4 = ()/d P il f



Perturbations

Coupling to Einstein Equations

Assuming:
@ DM domination;

@ negligible DM anisotropic stresses, i.e. ® = —U;
. k2

3H*W 4+ 3HV + —5 U = —47Gpam

a

U+ 4HW + (317{2 n 2H) U = —47Gopam, -

Assuming again
@ Negligible effective pressure;
@ Negligible effective dpqm;
U+ 4HV ~0.



Perturbations

Jeans Length and Jeans Mass

More assumptions:
© Shear-free velocity field, w” = v?6% and v} = 0(20)
@ (@ constant = U(l) = (2/3) )0 = v? = (5/3)0(20
For k >> Ha,

5+0(21);
d.
.. . 5 k2 5

Critical Jeans length (physical)

O _1/3 ~_
apdm/ Q 2/3 )

For m = 100 GeV, Ay =~ 1 pc at matter-radiation equality.

Jeans mass: 5 )
2 \ kG )

For m = 100 GeV, Mj ~ 1075 M, at matter-radiation equality.

A=




Perturbations

Physical Interpretation of the Jeans Length

Suppose a spherical homogeneous perturbation of radius R and
density p:
3GM?

W =
SR

Upon a contraction:
AW x —GMR?*Ap = —GMR? .

Variation of the potential energy goes into bulk and internal
motions:

Ac? < GpR?S .

If @ remains constant (isentropic process) then
Ac? x p?/3Q2/35, i.e.

R2 2 p—l/SQ—2/3/G )



Perturbations

Comparison with Free-Streaming Length

Green, Hofmann and Schwarz, 2005

Comoving wavenumbers:

1 _ T dn! _
ke oc — lgs & VrdOxd / S Ukd = V/39Txa/m .
Mkd

It a(n’) ’

127G 12’7TG
k§ — 1/3 2Q2/3 (11{307”1/3(1@2/3 .

k,, k, (pc”)

o 20 400 60 a0 1000
m (GeV)

Values at matter-radiation equality.



Perturbations

Including Radiation and Baryons

Assumptions:
@ We neglect all multipoles [ > 2 (this also allows us to set
Lk
@ We assume baryons tight coupled to radiation;
For radiation: .
67“,0 + *61',1 = _(i) 5
a
k k
Or1 7@ =——
1+R 3a(1+R) 3a
where © = 6T/T (6, = 40), and O, ¢ and ©,; monopole and
dipole respectively and

®r1+H (I)’

is the baryon-to-photon ratio.



Perturbations

System to solve up to Recombination

ik
6/ ? — _ @/
+ a2 39",
. 02 o
1 ik 5 ik o, a
V/ VYV = P — “kd kd
+ a Ha? 3Ha? a2 9
3k
5b + Ha 2@ 1= —3(1), 5
O, + L 0,1 =@
7,0 Ha? rl — — )
R k k
K —_ 00, - ———0,0=———=®
T AR O T 3HEA+R) O T 3HZ

k2 , 1 3H0 Qo - o Q0
W®+3a (q) + aq)> 2H2 (5 6b +4 @7170) .



Perturbations

Initial Scale Factor and Mass Dependence

We use the following formula for the kinetic decoupling
temperature (Green, Hofmann and Schwarz, 2005):

m

Ty ~ 25. (7
kd ~ 255 (1007 Gey

0.23
) MeV ,

therefore

T,
g = =L =2.64 x 1071 (

GeV) "%
Txa > '

m

For the initial velocity dispersion, since the particles decouple
non relativistically:

~22x%x10°} <G6V>1'23

m



Perturbations

Transfer Function

From bottom to top, m = 0.1,1 keV and the zero velocity
dispersion case.

Lo

.50

.

i (L1

Tik}

[

(]

L

i
a1 iz a5 .10 0. 0.5
&[h/Mpc)

Qualitative constraint: m > 1 keV,
in agreement with de Vega and Sanchez, 20183.



Conclusions

Summary and Conclusions

©@ DM as a system of collisionless particles;

© Q = nm/o® remains constant during the expansion of the
universe for non-relativistic particles prior to structure
formation;

@ Corrections to the energy density of DM particles coming
from their velocity dispersions: kinetic term scaling as a~
which acts as an effective pressure;

@ Physical Jeans length Ay = (57T/G)1/2Q_1/3P£1/6 ;

5

3 (H2Qdm
@ Jeans mass scale My = - ( ]‘%G ) .
@ Including radiation and baryons, m = 1 keV.



Conclusions

Problems, Perspectives and Improvements

@ For m =1 keV, DM particles decouple while relativistic;
@ If the particles are relativistic, Q does not conserve;

@ We should accordingly correct the equations;

@ Including spatial curvature;

@ Differences between baryons and DM transfer functions;

O Application to the non-linear regime of evolution;



Conclusions

Obrigado!
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