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• Future surveys (EUCLID, LSST, BigBoss, etc.) will be sensitive to dynamical 
properties of dark energy and modified gravity (DE), observable in the power 
spectra and higher-order correlation functions

• Many models of DE, each one with its own motivations, physical effects, 
etc...

• Democratic view: look for a unifying (many models) and effective (agnostic to 
motivations) treatment of DE to test models against the data

• Description in terms of limited number of effective operators, each one 
responsible for an observable dynamical feature (e.g. flavor-changing neutral 
currents in physics beyond Standard Model)

Motivations

Ideally... 



• Common feature of many DE models: gravity + single scalar degree of 
freedom (in some regime)

• Similar to inflation, where scalar field is needed to break de Sitter: clock

• Models of Inflation/DE share the same motivations and problems

• Two types of Effective Field Theory approaches to inflation: “covariant” (à la 
Weinberg) and “geometrical” (Creminelli et al. ’06, Cheug et al. ’07, deals 
directly with cosmological perturbations)
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EFT: the covariant approach
Many inflation/DE models reduce, in their relevant regimes, to scalar tensor-
theories

Apply covariant EFT to explore                   : field/derivative expansionF [�, gµ� ]

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
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EFT: the covariant approach

Apply covariant EFT to explore                   : field/derivative expansionF [�, gµ� ]

However:
 
1) Expansion in number of fields is not necessarily meaningful 
2) Naively “perturbations” but not always so... 
3) Only halfway through the work to be done (background first + expand..)
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Examples:  

1) QCD: quarks and gluons                nucleons and pions at low energies

2) EW theory: 4 massless vector bosons, 2 complex scalars etc. 

1 massless and 3 massive vector bosons, 1 massive ``Higgs” field etc.

UNITARY GAUGE

3) Cosmology: ...Cosmological Perturbations!



• Main idea: scalar degree of freedom is “eaten” by the metric. Ex:

• Action contains all operators invariant under spatial diffeomorphisms

• Dictionary between operators and observables, i.e. shape and amplitude of 
non-Gaussianity constrained by WMAP and Planck 

Unitary gauge action:

The Effective Field Theory of Inflation

⇥(t, ⇤x) ! ⇥0(t) (�⇥ = 0)

(Creminelli et al. `06, Cheung et al. `07)
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EFT of Inflation and non-Gaussianity
(Bennett et al, 2012 - Final WMAP paper)



• Obvious difference: energy scales and presence of different species (baryons, 
CDM, photons, neutrinos, etc) and thus different couplings, in the DE case

• ⇒ Minimally coupled DE: Effective Field Theory of Quintessence: stability and 
zero sound speed limit

... and DE?
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• Obvious difference: energy scales and presence of different species (baryons, 
CDM, photons, neutrinos, etc) and thus different couplings, in the DE case

• ⇒ Minimally coupled DE: Effective Field Theory of Quintessence: stability and 
zero sound speed limit

... and DE?

Our Recipe for Dark Energy:

1) Assume WEP (universally coupled metric                ): Jordan frame clock.

2) Write the most generic action for       compatible with the residual
   un-broken symmetries (3-diff). 

Sm[gµ� ,�i]

gµ�

(with Creminelli et al. 2008)

(with Gubitosi, Piazza, 2012)
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...as well as tensors with “0” indices 
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Essentially: contractions with
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The Action: background
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“Bare” Planck Mass

The Action: background
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The Action: perturbations

S =

Z
d

4
x

p
�g


M

2

2
f(t)R� �(t)� c(t)g00

�
+ S

(2)
DE

Explicitly quadratic in the perturbations:

S(2)
DE =

M4
2

2
(�g00)2 � m̄3

1

2
�g00�K � M̄2

2

2
�K2 � M̄2

3

2
�K �

µ �Kµ
� + . . .



The Action: perturbations

S =

Z
d

4
x

p
�g


M

2

2
f(t)R� �(t)� c(t)g00

�
+ S

(2)
DE

Explicitly quadratic in the perturbations:

nµ = � ⇥µ�p
�(⇥�2)

hµ� ⌘ gµ� + nµn�Extrinsic curvature:

Kµ� = h ⇥
µ r⇥n� �Kµ� = Kµ� �Hhµ�

S(2)
DE =

M4
2

2
(�g00)2 � m̄3

1

2
�g00�K � M̄2

2

2
�K2 � M̄2

3

2
�K �

µ �Kµ
� + . . .



The Action: perturbations

S =

Z
d

4
x

p
�g


M

2

2
f(t)R� �(t)� c(t)g00

�
+ S

(2)
DE

Explicitly quadratic in the perturbations:

3-curvature terms: +
m̃1

2
�g00 (3)R+

M̃1

2
�K �

µ
(3)R µ

� + . . .

S(2)
DE =

M4
2

2
(�g00)2 � m̄3

1

2
�g00�K � M̄2

2

2
�K2 � M̄2

3

2
�K �

µ �Kµ
� + . . .

In EFT of Inflation these terms can be eliminated by a metric redefinition



The Action: perturbations
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Non-minimally coupled scalar field

f(t) = F (�0(t)) , �(t) = V (�0(t)) , c(t) = �̇2
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“Galilean Cosmology” (Chow and Khoury,  2009)
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ds2 = �(1 + 2�)dt2 + a2(1� 2⇥)�ijdx
idxj

The scalar d.o.f. can be made explicit by forcing a time-diff on the action:

and by promoting the parameter of diffeomorphism to a field:

t ! t+ �(x)

Apply “Stueckelberg trick” 
and go to Newtonian Gauge

c(t) ! c(t+ �) = c(t) + ċ(t)� +
1

2
c̈(t)�2 + . . .

g00 ! gµ�⇤µ(t+ ⇥)⇤�(t+ ⇥) = g00 + 2g0µ⇤µ⇥ + gµ�⇤µ⇥⇤�⇥ ,

�K ! �K � 3Ḣ⇥ � a�2r2⇥
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ds2 = �(1 + 2�)dt2 + a2(1� 2⇥)�ijdx
idxjApply “Stueckelberg trick” 

and go to Newtonian Gauge

One less derivative in couplings          ≈  Jeans length (in progress)

Expand at quadratic order and retain only kinetic operators (2 derivatives):

�̇2 , (�r�)2 , etc.

Modified Gravity  ≈  Kinetic mixing �̇�̇ , ⇥r�⇥r� , etc.

�̇⇡
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(ḟ/f)�

⇥E = ⇥� 1

2
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i



Newtonian limit
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 “dressed” Newton constant
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M2ḟ2/f

2(c+M2ḟ2/f)
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2ḟ2/f

S
kinetic
=

Z
M2f

h
�3⇥̇2 � 2⇥r�⇥r⇥+ (⇥r⇥)2 + c �̇2 � c(⇥r�)2 + 3(ḟ/f)⇥̇�̇ + (ḟ/f)⇥r�(⇥r�� 2⇥r⇥)
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Apply Stueckelberg and go to 
Newtonian Gauge
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(see also Creminelli et al. 2006 & 2008)

(Cf. braiding: Deffayet et al.,  2010)G(�, X)⇤�
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Mixing with gravity 2:

S =

Z p
�g
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M4
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2
(�g00)2 � m̄3

1

2
�g00�K +

1

2
Tµ��gµ�

◆
f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

De-mixing ≠ conformal transformation 

�E = �+
m̄3

1

2M2
�

⇥E = ⇥+
m̄3

1

2M2
�

ds2 = �(1 + 2�)dt2 + a2(1� 2⇥)�ijdx
idxj

(see also Creminelli et al. 2006 & 2008)

detL = k4(�2 � c2sk
2)

(Cf. braiding: Deffayet et al.,  2010)G(�, X)⇤�

1 propagating d.o.f.

S
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h
�3⇥̇2 � 2⇥r�⇥r⇥+ (⇥r⇥)2

i
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1
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c+ 1

2 (Hm̄3
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1)� 1
4m̄

6
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Newtonian limit

S
kinetic
=

Z
M2

h
�3⇥̇2 � 2⇥r�⇥r⇥+ (⇥r⇥)2

i
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���⇢m

� = ⇥ unlike Brans-Dicke theories � = 1
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1
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r2� = 4⇥Ge��⇤m

Ge� =
1

8�M2f
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 “dressed” Newton constant
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Model building  v.s. General treatment
S =

Z p
�g
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6
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◆

Find, once and for all, the action for the scalar degree of freedom:

S⇡
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ḟ

f
+

3

4

m̄6
1

M2

�
�̇2

�

c+

3

4

ḟ2
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And address, once and for all, all questions of stability, speed of sound and 
deviations from GR:

1� � =
1

2

(M2ḟ2 + m̄3
1ḟ)/f
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2 (m̄

3
1 +Hm̄3
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6
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(with Gubitosi, Piazza, 2012)
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The zero sound speed limit of quintessence
S =

Z p
�g

✓
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
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+
H
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⌧ 1

• Consider a minimally coupled field,          , and the limit                                    
with  

• The action reads

• The speed of sound of fluctuations vanishes

ḟ = 1
M2 ' m̄1

c =
1

2
(�D + pD) ⌧ M4
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• Shift symmetry invariance: �! � + �

2c

€ 

P(X)

X

1−<w 1−>w

⇥t(a3�̇P,X) = 0EOM in expanding Universe:

and P,X ! 0

� L = P (X)

• Solution with 
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¯� = const ) ¯X = const
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X̄

w ! �1 and c2s ! 0

Motivations
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1−<w 1−>w

⇥t(a3�̇P,X) = 0EOM in expanding Universe:

and P,X ! 0

� L = P (X)

• Solution with 

)
Ghost condensate theory: [Arkani-Hamed et al., ’03, ’05]
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Motivations



• Shift symmetry invariance: �! � + �

2c

€ 

P(X)

X

1−<w 1−>w

⇥t(a3�̇P,X) = 0EOM in expanding Universe:

and P,X ! 0

[Arkani-Hamed et al., ’05; 
Creminelli et al., ’06]

� L = P (X)

• Solution with 

)

• Tiny breaking of shift symmentry:

• Stable model even for w<-1 (higher derivatives operators)

Ghost condensate theory: [Arkani-Hamed et al., ’03, ’05]

˙

¯� = const ) ¯X = const

2

X̄

P (�, X) = �V (�) + P̄,X(�, X)(X � X̄) +
1

2
P̄,XX(�, X)(X � X̄)2 + . . .

w ! �1 and c2s ! 0

Pressure gradients suppressed 
wrt density gradients:

�P |��=0 ⇠ P̄,X · �X
�⇢|��=0 ⇠ P̄,XXX̄ · �X

P (X) = P̄ +
1

2
P,XX(X � X̄)2 + higher der.

Motivations

c ⌧ M4
2 , P̄,X ⌧ P̄,XXX̄



• Euler equation: ⇤̇v + (⇤v · ⇤⇥)⇤v = � 1

�+ p


⇤⇥p+ ⇤v

⇥p

⇥t

�
� ⇤⇥� [Creminelli et al. ’10;

see also Lim et al. ’10]

Clustering quintessence



For           pressure gradients (orthogonal to the fluid 4-velocity) vanish!c2
s = 0

uµrµu
� = 0 c2

s = 0

➡ Geodesic motion:  quintessence remains comoving with dark matter 
(also nonlinearly)

• Euler equation: ⇤̇v + (⇤v · ⇤⇥)⇤v = � 1

�+ p


⇤⇥p+ ⇤v

⇥p

⇥t

�
� ⇤⇥�

DM!

cS = 0!

DM!

cS = 1!

vs

[Creminelli et al. ’10;
see also Lim et al. ’10]
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For           pressure gradients (orthogonal to the fluid 4-velocity) vanish!c2
s = 0

uµrµu
� = 0 c2

s = 0

➡ Geodesic motion:  quintessence remains comoving with dark matter 
(also nonlinearly)

• Continuity equation:

No pressure gradients but pressure is important! 
No conserved particle number or current

�̇Q + ⇥r[(�Q + pQ)⇥v] = 0

• Euler equation: ⇤̇v + (⇤v · ⇤⇥)⇤v = � 1

�+ p


⇤⇥p+ ⇤v

⇥p

⇥t

�
� ⇤⇥�

DM!

cS = 0!

DM!

cS = 1!

vs

[Creminelli et al. ’10;
see also Lim et al. ’10]

  (                     if            )

Clustering quintessence

�̄m / 1

a3
; �̄Q / 1

a3(1+w)



• Linearized continuity equations: 

)
�Q =

1 + w
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a
⇥� · ⇥v = 0 During dark matter dominance:
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• Linearized continuity equations: 
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�̇Q � 3w
ȧ
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a
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• Linearized Euler + Poisson equations: 
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• Quintessence affects the spherical collapse model:

Spherical collapse



• Both density and pressure remain 
homogeneous and follow the outside 
Hubble flow:

[Wang & Steinhardt ’98]

R̈

R
= �4�G

3
(⇥m + ⇥̄Q + 3p̄Q)

No FRW universe inside

• Quintessence affects the spherical collapse model:

�̄Q , p̄Q�̄Q , p̄Q

�̄m , p̄m = 0�m , pm = 0

c2s = 1

Spherical collapse



• Both density and pressure remain 
homogeneous and follow the outside 
Hubble flow:

[Wang & Steinhardt ’98]

• Quintessence density follows dark matter 
flow but pressure remains as outside:

R̈

R
= �4�G

3
(⇥m + ⇥̄Q + 3p̄Q)

No FRW universe inside

R̈

R
= �4�G

3
(⇥m + ⇥Q + 3p̄Q)

Exact FRW universe inside!

• Quintessence affects the spherical collapse model:

�̄Q , p̄Q �̄Q , p̄Q�Q , p̄Q�̄Q , p̄Q

�̄m , p̄m = 0 �̄m , p̄m = 0�m , pm = 0 �m , pm = 0

c2s = 1 c2s = 0

Spherical collapse



�̇Q + 3
Ṙ

R
(�Q + p̄Q) = 0

�Q ⇥ |1 + w| ⇤ ˙�⇥Q + 3
Ṙ

R
�⇥Q � 0

• Evolution equation inside the overdensity:

• Large overdensities behave as DM:

Quintessence mass



�̇Q + 3
Ṙ

R
(�Q + p̄Q) = 0

�Q ⇥ |1 + w| ⇤ ˙�⇥Q + 3
Ṙ

R
�⇥Q � 0

• Evolution equation inside the overdensity:

• Large overdensities behave as DM:

Conserved quintessence mass inside halos!

MQ =
4⇡R3

3
�⇢Q ⇡ (1 + w)

⌦Q

⌦DM

����
z
coll

·MDM

Quintessence mass



• Unifying framework for dark energy/modified gravity

• Effective language: cosmological perturbations as the relevant d.o.f.

• Extension of EFT of inflation and quintessence to non-minimal couplings

• Unambiguous way to address mixing, stability, speed of sound etc.

• See also Bloomfield et al. 1211.7054. Much work in progress to consider 
effects of coupling to matter

• Quintessence can have zero sound speed! Simplest phenomenological 
alternative to the smooth case

• New phenomenology: 1) nonlinear corrections to PS and bispectrum; 2) 
Quintessence mass in virialized objects

Conclusion


