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Introduction and Motivation

Linear cosmological perturbation theory is well known and
understood, however, the gauge freedom makes its interpretation
complicated.

There are two main approaches to the perturbations theory,
Bardeen’s through the metric perturbation analyses and the
covariant formalism.

In both formalisms it is important to understand the conditions for
linearity.

Beyond first order the gauge problem escalates.

It is important to understand the exact relation between both
formalisms to address more complicated problems.

Here we are discussing our paper S. D. P. Vitenti, F. T. Falciano,
and N. Pinto-Neto, ArXiv e-prints (2013), arXiv: 1311.6730

[astro-ph.CO]. The references to other works can be found there.
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Objectives

Compare the two Gauge Invariant (GI) approaches, Bardeen’s and
covariant.

Describe the Bardeen’s approach covariantly introducing the concept
of mixed and pure tensors.

Show that the gauge freedom in the metric approach is close related
to the foliation freedom in the covariant approach.

Obtain tensors which reduce to Bardeen’s variables at first order.

Demonstrate that the Bardeen’s variables appear naturally in both
approaches when we impose foliation and gauge independence.
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A brief recollection of the gauge dependence

General covariance is not equivalent to the gauge dependency in
perturbation theory.

The perturbation gauge freedom is often defined heuristically as an
infinitesimal coordinate transformation keeping the functional
form of the background quantities fixed, i.e., one defines a
perturbation on a tensor Q(x) as

δQ(x) = Q(x)−Q(x);

Under a change of coordinate generated by Bµ we obtain

δQ(x)→ Q(x) + £BQ(x)−Q(x) ≈ δQ(x) + £BQ(x).

This approach fixes the background objects functional form and
mixes the coordinate freedom with the perturbations gauge freedom.
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A formal description

All background objects are defined in the background manifold Mbg.
The family λ of diffeomorphisms Υλ : I×Mbg →M , introduces a
bijective tensor map from Mbg to M as Υ∗λ.
Through this bijective map, we can define the background objects in
M as Q ≡ Υ∗0Qbg.

Perturbative Hypothesis

Given a background metric manifold Mbg, there is a diffeomorphism Υ0

such that
δgµν ≡ gµν − ḡµν ,

is small in a well defined sense.

Given Υ0, there are many families of diffeomorphisms Υλ such that
for a small λ we have:

δg(λ)
µν = gµν − (ḡµν + £Aḡµν) = δgµν − 2∇(µAν). (1)

As long as 2∇(µAν) is small in the same sense of δgµν the
perturbations remain small.
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The description above has some advantages:

Both background and perturbed tensors transform as usual under a
coordinate transformation.

Does not fix any functional form or introduce any preferred
coordinate system.

Allows the introduction of a covariant positive definite norm to
measure the size of the perturbations.

Given a background and a physical tensor respectively T and T , we have
the following transformation under the change of diffephormism:

T −→ T + £AT ,

T −→ T.

Combining with a small coordinate transformation:

T −→ T + £A+BT ,

T −→ T + £BT ≈ T + £BT .
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Gauge Invariance – Stewart and Walker Lemma

Given the rules above, the perturbation transform as:

δT ≡ T − T → δT −£AT .

Fixed background

We recuperate the heuristic description by setting Bµ = −Aµ,

T −→ T ,

T −→ T + £BT ≈ T −£AT .

Given the formulation above, it is clear that for £AT = 0 we have
GI tensors. The conditions to enable this were studied by Stewart
and Walker (SW) and are known as SW Lemma.

This prescription generates GI objects at first order.
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Stewart and Walker Lemma exceptions

Within the SW Lemma there is a hidden assumption that is sometimes
overlooked.

The perturbation δT is defined as the difference T − T .

The conditions in the SW Lemma are sufficient only if the tensor T
is defined solely in terms of quantities from the physical manifold,
i.e. defined independently of Mbg and Υ0.

If in the definition of T we also use any background tensor, then
even if the background tensor T is a simple constant its perturbation
might not be gauge invariant.

Pure and Mixed Tensors

We propose the following classification:

Any tensor that is defined strictly in terms of objects from a single
manifold we shall call a pure tensor.

A tensor that involves objects from both manifolds in its definition
we shall call a mixed tensor.
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Pure and Mixed Perturbations

We extend the classification for the perturbations:

A perturbation of a tensor shall be called a pure perturbation if it is
defined as the difference of two pure tensors.

A mix perturbation is defined as the difference of a mixed with a
pure tensor.

Now it becomes clear that the SW Lemma applies only for pure
perturbations and not for mixed ones.

Background 3+1 projections

Consider a Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
as the background metric.

Related to this metric, there is a preferred geodesic vector field v̄µ

which defines the maximally symmetric spatial hyper-surfaces.

We can decompose physical tensors in M by projecting them with
respect to this preferred vector field v̄µ.
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Metric perturbations

We can project the physical metric itself using the background foliation
v̄µ.

We define the mixed scalar P ≡ gµν v̄µv̄ν/2.

The background version of this tensor is simply
P ≡ ḡµν v̄µv̄ν/2 = −1/2.

Thus, the mixed perturbation associated with these projections reads

φ ≡ P − P.

Comparison with the coordinate dependent approach

Note that φ has been defined in a globally covariant manner. To compare
with the usual coordinate dependent approach we define a coordinate
system in which v̄µ = δµ0 and, therefore,

g00 = ḡ00 + 2φ = −1 + 2φ → φ =
1

2
δg00 =

1

2
(g00 − ḡ00) .
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Some remarks:

The commonly used metric perturbation φ is simply the mixed
perturbation associated with P.

This is an example of a perturbation that violates the SW Lemma.
The background tensor P is a simple constant, the mixed
perturbation φ is a covariant scalar but it is not GI.

Any coordinate dependent perturbation can be redefined in a
covariant manner as done for φ.
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The transformation rule for φ under a gauge transformation.

First, decompose the gauge transformation vector field as

Aµ = Av̄µ + Aµ, Aµ = γ̄ [Aµ] ,

with γ̄ [Aµ] being the projection with respect to γ̄µν = ḡµν + v̄µv̄ν .

Using that v̄µ is geodesic, i.e., āµ ≡ ∇v̄ v̄µ = 0 and defining the

notation Ṫ ≡ γ̄ [£v̄T ].

We have

P →
v̄µv̄ν

(
gµν −£Aḡµν

)
2

= P + Ȧ, ⇒ φ→ φ+ Ȧ,

as expected.

In the above expression the only hypothesis made is that the
background foliation is geodesic.
Apart from this, this rule gives the general transformation for φ in
an arbitrary background.

13 / 28



Introduction Gauge Dependence Pure and Mixed Tensors Hyper-surface choice Kinetic Variables Gauge Invariance Conclusions

FLRW Background

The other metric perturbations are much more complicated and hence
from, here on, we shall restrict ourselves to a FLRW background.
Therefore, the background is assumed to be described by:

Kµν ≡ ∇µv̄ν ,

Kµν =
Θ

3
γ̄µν , Rµν = 2Kγ̄µν ,

DµΘ = 0 = DµK,

with Kµν , Θ and Rµν being respectively the extrinsic curvature,
expansion factor and the spatial Ricci tensor, and Dµ is the spatial
covariant derivative of the background.
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Metric perturbations

Decomposing δgµν with respect to the FLRW foliation we have:

δgµν = 2φv̄µv̄ν + 2B(µv̄ν) + 2Cµν ,

where

φ ≡ 1

2
δgv̄v̄, Bµ ≡ −γ̄

[
δgv̄µ

]
, Cµν ≡

1

2
γ̄
[
δgµν

]
.

Covariant definition

The tensors Bµ and Cµν can be define in a covariant manner through the
four tensors

Pµ = γ̄ [gµv̄] , Pµ = γ̄
[
ḡµv̄
]

= 0,

Pµν =
γ̄ [gµν ]

2
, Pµν =

γ̄
[
ḡµν
]

2
=
γ̄µν
2
,

such that
Bµ = Pµ − Pµ, Cµν = Pµν − Pµν .
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The decomposition above is a general and does not involves any
perturbative hypothesis.

It is obtained without assuming anything about δgµν or ḡµν .

In principle, we can always rewrite Einstein’s equations in terms of
φ, Bµ and Cµν and obtain non-linear second order equations of
motion for these variables that encode the same information as
those written in terms of gµν .

Scalar, vector and tensor decomposition

For the following results we are considering the perturbations up to first
order. It is convenient to decompose the perturbations in terms of the
scalar, vector and tensor (SVT) decomposition, i.e.,

Bµ = DµB + Bµ,

Cµν = ψγ̄µν −DµDνE +D(νFµ) +Wµν ,

where DµB
µ = DµF

µ = DµW
µ
ν = Wµ

µ = 0.
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Hyper-surface choice

Apart from the background slicing it is useful to define a 3 + 1 splitting
also in the physical manifold. Thus, we introduce an arbitrary global
timelike vector field vµ,

Since we are interested in foliations “close” to the background
slicing, we assume that vµ is such that δvµ ≡ vµ − v̄µ is of the same
order of δgµν .

The normalization of vµ requires that δvµv̄
µ = φ.

We define the spatial projection of δvµ as vµ ≡ γ̄ [δvµ]. Then,

δvµ = −φv̄µ + vµ.

All freedom in choosing a foliation “close” to the background slicing
is contained in vµ.

We decompose vµ as vµ = DµV + Vµ, where DµVµ = 0.
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Background folitation

In principle the choice of spatial hyper-surface in M is arbitrary.
We can also use the background slicing itself to foliate M .
To use this vector field we must first normalize it with respect to the
metric gµν , which gives

v̄µ√
−v̄αv̄βgαβ

≈ (1− φ)v̄µ.

This expression is simply the general slicing described above setting
vµ = 0.
By choosing vµ = 0 we are in fact changing the nature of vµ from
pure to a mixed tensor.
Any pure tensor in M that depends on the vector field vµ
automatically becomes a mixed tensor since vµ itself becomes
dependent on background quantities.
Perturbations with vµ = 0 do not satisfy the SW Lemma.
Pure perturbations have one extra variable with respect to mixed
perturbations, which is precisely the quantity vµ.
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Acceleration of vµ

Notation

We shall introduce a small circle above each tensor if they are pure
tensors and maintain the mixed tensors without any symbol.

The pure perturbation of the acceleration is

δ̊aµ = DµV̇ + V̇µ −Dµφ.

The perturbation δ̊aµ is GI, which is expected from SW Lemma.

The mixed counterpart (vµ = 0) δaµ = −Dµφ is not GI.

The special combination of the spatial foliation V and φ is what
makes δ̊aµ GI.
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Kinematic Variables

The other kinematic variables related to vµ are given by:

Shear:

δσ̊µν = D〈µDν〉 (S + V) +D(µSν) +D(µVν) + Ẇµ
αγ̄αν ,

S ≡
(
B − Ė +

2

3
ΘE
)
, Sµ ≡ Bµ + Ḟµ.

Expansion factor:

δΘ̊ = δΘ +D2V, δΘ = D2S + Θφ+ 3ψ̇.

In this case both quantities are gauge dependent since Θ is not
constant.

Traceless spatial Ricci tensor:

rµν ≡ R〈µν〉, R(µν) = rµν +
Rγµν

3
,

δr̊µν = −D〈µDν〉

(
ψ +

Θ

3
V
)
− Θ

3
D(µVν) − (D2 − 2K)Wµν .
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GI variables from scalars

Given a scalar field ϕ, Its perturbations under a gauge
transformation change as

δϕ→ δϕ−£Aϕ̄ = δϕ−A ˙̄ϕ,

where we are assuming that the background version of ϕ is
homogeneous in the hyper-surfaces.
The gradient Dµϕ at first order is expressed as

Dµϕ ≈ vµ ˙̄ϕ+Dµδϕ = Dµ (δϕ+ V ˙̄ϕ) + ˙̄ϕVµ

The particular combination δϕ+ V ˙̄ϕ is GI.
This pure perturbation compare spatial gradients defined in different
spatial sections that causes the appearance of the foliation
dependent field vµ.
This is another almost general rule, i.e. GI tensors constructed in the
usual covariant approach will depend on the choice of spatial
foliation. There are some few exceptions to this rule, such as the
Weyl tensor or, at first order, its projections that defines its electric
and magnetic parts.
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GI and foliation independent variables from scalars

In the case of scalar fields, it is possible to build gauge and foliation
invariant tensors.

Defining the tensor

Mµν ≡ D〈µDν〉ϕ− (£vϕ)σµν .

That at first order is given by

δMµν = D〈µDν〉 (δϕ− ˙̄ϕS) .

The particular combination δϕ− ˙̄ϕS is also GI, but it is also
independent of V, thus, it is Foliation Independent FI.

In fact, since it is independent of vµ this expression is the same for
the mixed perturbations.

This is equivalent to the usual Bardeen approach, where one uses
S = a(B − E′) (in Mukhanov’s notation) to form the GI variables.
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We present a comparison table for pure and mixed tensors, where we
define the following quantities:

Tµν = ρ̊vµvν + 2v(µq̊ν) + p̊γµν + Π̊µν ,

Xµ = κDµρ̊, Yµ = κDµp̊, Zµ ≡ DµΘ̊,

Pure tensors Mixed tensors

åµ ≈ Dµ

(
V̇ − φ

)
aµ ≈ Dµ

(
−Ȧ − φ

)
σ̊µν ≈ D〈µDν〉 (S + V) σµν ≈ D〈µDν〉 (S −A)

r̊µν ≈ −D〈µDν〉

(
ψ +

Θ

3
V
)

rµν ≈ −D〈µDν〉

(
ψ − Θ

3
A
)

X̊µ = κDµ (δρ+ V ˙̄ρ) Xµ = κDµ (δρ−A ˙̄ρ)

Y̊µ = κDµ (δp+ V ˙̄p) Yµ = κDµ (δp−A ˙̄p)

Z̊µ = Dµ

(
δΘ +D2V + VΘ̇

)
Zµ = Dµ

(
δΘ−D2A−AΘ̇

)
q̊µ = (ρ̄+ p̄)Dµ (U − V) qµ = (ρ̄+ p̄)Dµ (U +A)

γ [vµ] = 0 γ̄ [vµ] = Dµ (V +A)
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Comparison of the methods

If we choose A = −V we obtain exactly the same values for the
variables.

The interpretation is that we can make a gauge transformation in a
way that the background induced hypersurface matches the physical
hyper-surface Σ = Σ.

This does not mean that the mixed perturbations become GI, a
further gauge transformation would make Σ 6= Σ again.

At least at first order this result shows that the ambiguity in
choosing a hypersurface in the usual covariant method is equivalent
to the gauge choice in the metric perturbation approach.

In this sense, to start with a hypersurface choice in the covariant
approach is equivalent to start with a gauge choice.
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Gauge and Foliation Invariant Variables

We have shown above that pure and mixed perturbations are
foliation and gauge dependent.
This arbitrariness can be avoided in both cases by looking for
invariant tensors combinations.
Since the freedom in both cases are close related, any GI
combination will be automatically be FI.

The usual Bardeen potential Ψ is given by

Ψ ≡ ψ − Θ

3
S.

Comparing it with the objects in the table above it is easy to show that
(for the scalar part)

Tµν = −rµν −
Θ

3
σµν ≈ D〈µDν〉Ψ.

The tensor Tµν can be interpreted as a GI combination of two gauge
dependent tensors (mixed) or a FI combination of two foliation
dependent tensors (pure). In this sense this tensor is both GI and FI.
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The next Bardeen potential Φ, defined by

Φ ≡ φ+ Ṡ,

can be obtained through the tensor,

αµν ≡ D〈µaν〉 + a〈µaν〉,

and finally
Jµν ≡ (£vσ)〈µν〉 − αµν ≈ D〈µDν〉Φ.

These two tensors are close related to the electric projection of the
Weyl tensor, i.e.,

Eµν =
1

2

(
Θ

3
σµν − (£vσ)〈µν〉 + rµν + αµν

)
,

= −1

2
(Tµν + Jµν) ≈ −D〈µDν〉

1

2
(Φ + Ψ) .

This should be expected, the Weyl tensor is null in a FLRW
background, this makes his projections automatically GI and FI at
first order.
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Conclusions

We have shown that the foliation and gauge freedom are close
related.

In this sense, to work in the covariant formalism with a given
hypersurface choice is equivalent to the metric perturbation
formalism with a given gauge choice.

We can use the gauge freedom to adjust the background foliation to
a physically defined hypersurface. In this case, the kinetic variables
defined for v̄µ become the physical observables.

The usual Bardeen’s variables appear naturally in both formalisms,
thus, for the gravitational sector they are the natural GI and FI
variables.
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Perspectives

We are working in finding a consistent way to define GI/FI necessary
conditions for the validity of the perturbative analyses.

This is crucial in two cases:

the evaluation of the linear approximation in bouncing models,
the study of the perturbations during the structure formation and the
possible backreaction.

A number of works which extend the GI analyses to higher order are
based on the transformation rules of pure tensors, extending the
covariant analyses to higher orders. Since mixed tensors can have a
much more involved transformation rule, this opens a new way to
find GI/FI variables in higher orders.

We are working in writing the complete non-linear equations for the
metric projections φ, Bµ and Cµν . This will allow us to find higher
order equations of motion in a systematic way and to find necessary
and sufficient condition for the validity of the perturbative series.
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