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Introduction

Hawking Radiation context

Bardeen, Carter, Hawking (C.M.P. 73)
“Black holes mechanics analogous to the laws of thermodynamics”

Bekenstein (P.R.D. 73)
“Black hole entropy is thermodynamical and ∝ A”

Hawking, (Nature 74, C.M.P. 75)
“Black holes radiate a black body spectrum”

Asymptotic observers measure a steady flux
Spectrum is thermal

n̄out
ω = |βω|2 =

1

e
2πω
κ − 1

Temperature TH = κ/2π, κ the surface gravity

Unruh, Wald (P.R.D. 82)
Necessary for consistency of generalized second law
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Transplanckian question

Free Fall frequency Ω = Ω0e
−κt

1985 ’t Hooft large contributions from UV interactions

but UV structure of gravity unknown

Acoustic black holes

1981, Unruh (PRL)
Analogy discovered

1991, Jacobson (PRD)
Short wavelength physics always induces dispersion

1995, Unruh (PRD)
Dispersive wave equation and robustness of Hawking effect

Since 1995
Analytical and numerical confirmations of robustness

Since ∼ 2010, first experiments (Water, BEC, optical fibers)

Water (Weinfurtner, Tedford, Penrice, Unruh, Lawrence, PRL 2010)
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Plan of the talk

1 Analog gravity

2 Robustness of Black Hole radiation
Characteritics
Mode mixing

3 Undulations in White Holes
Zero-mode
Classical scattering
Quantum and thermal noise

4 Conclusion
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Hydrodynamical regime

Sound waves of celerity cS on moving fluid

Current velocity v(x)

Propagation [
(∂t + ∂xv)(∂t + v∂x)− c2

S∂
2
x

]
φ(x , t) = 0

Geometry ds2 = c2
Sdt2 − (dx − v(x)dt)2

(Convention: cS = 1)
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Near horizon physics

Horizon where v(x)2 = 1 (Convention: at x = 0)

v(x) ∼ −1 + κx with κ the surface gravity

Redshift
Ω ∼ ω

κx
Killing ω (conserved)
Co-moving Ω = ω − v(x)k

Short distance physics → dispersion (Jacobson, PRD 1991)

Ω2 = k2 ± k4/Λ2 + O(k6)

group velocity increase (+) or decrease (-) with k

Antonin Coutant Hawking radiation in acoustic B & W holes
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Several motivations to consider dispersion:

1 Gravitational physics, sign of transplanckian physics ?

Einstein-Aether theory
Horava-Lifshitz gravity
Dynamical symmetry breaking ? (Parentani IJThP 07 )

2 Analog gravity, dispersion always present

BEC
Water surface waves
Optical fibers
...

3 Understand Lorentz invariance better !

Antonin Coutant Hawking radiation in acoustic B & W holes
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Characteritics
Mode mixing

Ω < 0 Ω > 0

Infinite focusing on the horizon

x = x0e
κt

p = p0e
−κt

v -modes fall in and are regular (Hence ignored)
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Characteritics
Mode mixing

xtp

Ω < 0 Ω > 0

Finite time redshift ∆t = ln(pin/pout)

x = x0e
κt+

p3
0

2Λ2κ
e−3κt

p = p0e
−κt
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Characteritics
Mode mixing

Homogeneous flow → plane wave solutions: e−i(ωt−kωx)

k

ω

kout
ω kin

ω kv
ω

−kout
−ω

k

ω

kv
ω −kin

−ω

ω = vkω ±
√

kΛ tanh(k/Λ)

2 branches → 2 signs of norm

kv follow the current → plays no role

k in
+ , k in

− and kout
+ propagate against the flow

kout
− is dragged by the flow

Antonin Coutant Hawking radiation in acoustic B & W holes
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Characteritics
Mode mixing

Inhomogeneous flow: mode mixing

αω βω

1

2 in modes converted into 2 out modes

Modes of opposite sign of norm (and energy)

|αω|2 − |βω|2 = 1

|αω| > 1 amplification process
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Characteritics
Mode mixing

Everything here is classical

Mixing of positive and negative energy modes

This is Hawking radiation

|βω|2 = (e
2πω
κ − 1)−1

Experimentally observed in water tank (Weinfurtner, Tedford, Penrice,

Unruh, Lawrence, PRL 2010)

2nd quantization:

Mixing of âω and â†ω

〈0in|â†ω âω|0in〉 = |βω|2 6= 0

Spontaneous emission

Direct and necessary consequence of the classical field equation

Antonin Coutant Hawking radiation in acoustic B & W holes
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Condition to recover HR

dbr � Llin (3)

xtp(ω)� Llin (4)

(AC, R.Parentani, S.Finazzi PRD 2012)

Total S-matrix

Outside NHR, UV-modes decouple

S = Sint · Sext · SNHR

SNHR: HR, involve UV modes

Sint and Sext: relativistic scattering with kv
ω (greybody factors)
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Is the turning point location relevant ? (dispersive horizon ?)

xtp(ω)/dbr ∼ (ω/κ)1/3

ω � κ: HR regime, xtp and xhor are undistinguishable

ω � κ: HR is turned off → total reflection governed by Airy
function

Is there an improved value of κ ?

Modes have finite resolution dbr → smaller details are washed out

κtp = (∂xv)tp irrelevant

κ ∼ 〈∂xv〉dbr averaged

Correct interpretation: Broadened horizon
(AC, R.Parentani, preprint arXiv:1402.2514)
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Homogeneous flow → momentum conservation

Horizon → low frequencies (ω → 0) are highly amplified, i.e.,

nω ∼ TH

ω
� 1 (Planck law)

Black hole → redshift → no problem

White holes → low momenta amplified and converted into high
momenta

Aparte

White holes very relevant for analog experiment

White holes (acoustic) stability has been debated
(Leonhardt, Ohberg, 02 - Macher, Parentani, 09)
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Gaussian wave packets, of mean frequency ω → 0

Incoming wave

φin(t, x) = ωA0e
i(ωt−kin

ω x+δ)e−
σ2

0ω
2

2 (t−x/v in
g )2

Incoming amplitude ∝ ω
Very low frequency and wave number

Scattering → converted into 2 out-going waves

Limit ω → 0

kout
ω → ±kZ

|αω|2 ∼ |βω|2 ∼ TH

ω

⇒Merging

Merging of 2 out-going waves

αωe−i(ωt−kout
ω x)+βωe−i(ωt+kout

−ω x) ∼
ω→0

2|αω|Re
{

e i(kZ x+θ)
}

︸ ︷︷ ︸
Undulation

e−iω(t−x/vZ
g )︸ ︷︷ ︸

modulation
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Outgoing wave packets (modulation neglected)

φout(x) ∼ A0ΦU(x)× cos(δ)e−
σ2

0ω
2

2 (t−x/vZ
g )2

.

Definite and real profile

ΦU(x) = Re
{
e iθφin

0 (x)
}

Extreme sensitivity to initial conditions

Amplitude ω-independent (while incoming ∝ ω)
Amplitude governed by cos(δ) → randomness ?

Incoming noise, easily excite ω → 0 waves
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Main properties:

Known and real profile ΦU(x)

Phase, i.e. position is fixed (nodes are fixed)

Amplitude not fixed

Coherent state

If one takes into account non linear effects (or dissipation) it should
saturate

A→ −A symmetry breaking ?

This undulation has been Observed

Experimentally in water (Weinfurtner et al. PRL 2011)
Numerically in BEC (Mayoral et al. NJP 2011)
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Horizon

Growing

0

Decaying
�!

�U(x)

x

4

Near horizon region → analytical control of the profile (Airy-like)

Nodes at definite locations

Wavelength ∼ d−1
br

Could be confirm/infirm experimentally
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Modification by transverse momentum k⊥

Ω2 = k2
⊥ + k2 ± k4/Λ2

Bogoliubov coefficients regulated

Small k⊥, βω still large but finite

|βω|2 ∼ TH√
ω2 + ω2

⊥
Change of behavior at ω = ω⊥ ∝ k⊥
Time dependent picture

t . ω−1
⊥ growing

t & ω−1
⊥ saturates

Saturation at the linear level
(A.C., A.Fabbri, R.Parentani, R.Balbinot, P.R.Anderson PRD 2012)
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