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Motivations: lensing applications

Lensing probes any gravitating
matter (but needs modelling) :

o estimation of galaxy mass (presence
of arcs, flux ratios),

@ probing dark matter substructure
(time delays),

o galaxies distribution
(’galaxy-galaxy’ lensing).

Statistical lensing informs on
“lenses” distribution (once we know
well our source distribution) :

o estimates the number density of
compact objects in the dark halo of
the Milky Way,

@ gives the redshift evolution of galaxy
number density,

@ number density of clusters.
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Lensing probes cosmology (with good
modelling of lens/structure) :

@ gives Hy indep. from distance ladder
and on cosmic scale (time delays in

multiple images), g S. "
@ constrains matter density param.s of A G
large-scale structure,
c N
@ constrains the EoS of dark energy » .
(when combined with CMB), T
@ bounds the bias parameter. Lensing magnifies and hence shows

faint old objects (as a telescope) :

@ makes possible detection of galaxies
at z > 4 (with cluster lenses),

o allows studying the composition of
galaxy sources (in arcs),

X t gt A o

e\t L

VRN T a vy @ enables planet detection (with
; microlensed light curves),

N # ensed '
Quasar : @ recently SN II lensed into a cross.

Schneider, Kochanek, Wambsganss “Grav. Lensing: Strong, Weak and Micro.”
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There are different approaches in lensing (not always obviously related) :
o the lens equation (e.g. used in ray shooting),
o the Jacobi map approach,

o the derivation from Fermat principle.

Sometimes You Need To ...

Questions :
o Can we get easy lensing expressions in the “GLC” coordinates ?

o Then can it help to compute them in difficult cases ? (e.g. LTB model)
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Hypotheses . =

So the notions to introduce first are:

o the Jacobi map and lensing observables, ASSUMPTIONS
o “GLC” = “geodesic light-cone” coordinates. A “ E A n

We assume the following :
H1: Jacobi map formalism = free from thin lens approximation, but
depends on the Born (angles of deviation are small, typically < arcmin) and

geometrical optics approximations (wavelength irrelevant).

H2: no caustics on the sky (as GLC coordinates break down), namely that
the lenses under study are not ‘strong’ == WEAK LENSING !

H2 is stronger than H1.
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The Glenco Group

My activity in Bologna :
simulations in GLAMER

Contributors: Ben Metcalf (PI), Carlo Giocoli, Dominik Leier, Fabio Bellagamba, Alkistis
Pourtsidou, Me (postdocs), M. Petkova (former), Nicolas Tessore, Alessandro Romeo (PhDs).
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Coding on big project

Fabien Nugier

Belvin's Law 3|

© 2011 The Code Zone

(Glenco)

YESSS!

IF the code works the first
time, that just means that the
bug is more carefully hidden.

Gee, thanks for that.

IAP, Paris 04/05/15
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The GLAMER code

GLAMER = Gravitational Lensing code with Adaptive Mesh Refinement.

The code can simulate a large variety of sources:
o simple sources: point source, uniform distribution, Gaussian,

o quasars and their emission region,

galaxy models,

array of pixels (i.e. any image), shapelets, ...

and lenses:

o analytic halo models: point masses, SIS, NF'W, NSIE, Jaffe, Hernquist,...
o smoothed simulation particles,

o pixel maps (i.e. MOKA maps),

and shoot rays in an adaptive way over large angles (several deg?), refining a
grid to reach the desired precision down to microlensing scales (~ 10~ 4pc).
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Ray shooting:

Lens equation: n = %liE — Di;&(€)

Dimensionless quantities :
y:n/no ’ X:'s/fo y Mo = gjfo

Dlle ~
-0

S

@ =x—«

= Yy=x

Amplification matrix:

A= dy _ I—k=m —mtw
dx —Yo—w l—k+m

° K= % (0101 + O20i2) (convergence),
o 71 = 3 (Ohoq — Dacz) (shear),

° 72 = d1az = 0qa; (shear),

o w=3 (s — Brovy) (vorticity).

We also define the lensing potential ¢: a = V¢ such that 2k = V?¢.
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Multiplane lens equation

AR

S
x0 x! x!
Py Py e By P Py -+ Pnp

The multiplane lens equation is given by :

xitl — xt Di+17i (0 + Z o’ (Xk)) 7

j=1

with I.C.: x° = 0 and x! = @ Dy, which by recursion gives :

4 Diiq s i Diy1s i (+cd
it — (DL“ + 1) X! = X = Dy o (%)
i1

ii—1
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Deriving lensing quantities

We define an amplification matrix for each plane: A" = L%i %. We get :

Dit1i-1 D; Al D1 Di—lAi_1 _ Diy1,:D; Gi A
Dii1 Dina Dji—1 Dipa Dty ’

Ai+1 _

with 1.C.: A =0 and A" = I,.
G' is a forcing term such that :

 dad , . :
¢ = 82:@' =(k)'Ia+ () o1+ (1) 02,

. . -1 0 0 -1
when o1, 02 are symmetric matrices: o1 = , o2 =

Consequences on the code, we can:
o do ray tracing through different lens planes (with grid refinement),
o work with different types of halos (putting them on a tree).
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The Jacobi Map
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Geodesic deviation equation

We consider 2 light rays emitted at the same time from a source S and
converging to an observer O. V time, their relative separation follows:

V3 = Rh kKT Va=D/dA= kY,

where k# is the photon momentum, V = k#*V,, with A an affine parameter
along the photon path, and {# an | displacement wrt to the LoS.

S

k*,

0

o\(é
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Jacobi equation
The geodesic equation is projected thanks to the Sachs basis {sy }a—1,2:

v v
Guvshss =0ap , shu, =0, shk, =0, IILVis4 =0

® u, is the peculiar velocity of the comoving fluid (and S and O),

I " Iz .
o II¢ = §F — (ukakk:)Q —k “u”jki kv a projector on the screen,

o the screen is orthogonal to u, and n, = u, + (u”ka) ™" k.
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Jacobi equation
The geodesic equation is projected thanks to the Sachs basis {sy }a—1,2:

v v
Guvshss =0ap , shu, =0, shk, =0, IILVis4 =0

® u, is the peculiar velocity of the comoving fluid (and S and O),

I " Iz .
o II¢ = §F — (ukakka")Q —k “u“jki kv a projector on the screen,

o the screen is orthogonal to u, and n, = u, + (u”ka) ™" k.

We define the Jacobi map (2 — ¢4 = ¢#s): AN = JH(\, A0)0

o
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Jacobi equation
The geodesic equation is projected thanks to the Sachs basis {sy }a—1,2:

Guvshss =0ap , shu, =0, shk, =0, IILVis4 =0
® u, is the peculiar velocity of the comoving fluid (and S and O),

I I m .
o IIf = o — (ukakk:)g —k ”u“jki kv a projector on the screen,

o the screen is orthogonal to u, and n, = u, + (u”ka) ™" k.

We define the Jacobi map (0 — £* = ¢"s}): AN = JH(\, A0)0

= the projected quantities £ and Rj = I%a,gz,,uk:"‘k:”s%sffl (optical tidal matrix)
bring us the (linear) 2"¢ order differential Jacobi equation :

d2
D278 () = RGN JE(N )
with LC.:  JA(Ao,Ao) =0 and %Jﬁ()\o,)\o):(k“uﬂ)oéﬁ ,

Remark : See e.g. Bonvin etal '11, Fleury etal '13, Fanizza etal ’13.
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Physical quantities

dS,
Angular distance of the source: da(Xs) =

d?Q,

det JA (A, Ao)

The (unlensed) angular position of the source 64 and the observed lensed
position 62" (of the image) are:

g (& oA = (F10u”
dA ’ ° k;/‘uu o

Fabien Nugier (Glenco)
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Physical quantities

dS,
Angular distance of the source: da(\;) =

d?Q,

det JA (A, Ao)

The (unlensed) angular position of the source 64 and the observed lensed
position 62" (of the image) are:

g (& ga — (H10uE"
dA ’ ¢ k;“uu o

The amplification matrix is defined as:

ap = W TR0 (1-k=h —atd
B~ apB da(\s) =& 1—k+%

_ tr/p _ - a5 ~ _ 193 =JF
k= o, o+ M= (det A =5 7S 7 R
2 172\ 2 A
212 2, A2 -1 _ (trJp [J2 —Ji| det Jp
1 =1 —r)*+ @ —p _(2JA +\ o T
ey, 1o e IS /B



Inhomogeneous coordinates
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(In-)Homogeneous lightcone observations:




(In-)Homogeneous lightcone observations:
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Geodesic light-cone coordinates
A light-cone adapted metric (close to “observational coordinates”) :

ds3 o = T2dw? — 2Ydwdr + 7ap(d0” — Udw)(d6” — UPdw)

(6 arbitrary functions : Y, U%, v4)

Properties :
o w is a null coordinate : 9, w O*w =0

o 0,7 defines a geodesic flow : (0¥7)V, (0,7) =0 (from g7~ = —1) ,

an observer defined by constant 7 spacelike hyp. is in geodesic motion,

e photons travel at (w,0%) = cst and their path is orthogonal to X (w, 2).

Interpretation: Y is like an inhomogeneous scale factor (lapse function),
U* like a shift-vector and ~,, the metric inside the 2-sphere.

FLRW : w=mn+r, 7=t (exact if t = synchronous gauge time)
(0",0°) = (0,9) , Vapd0dd® = a’*r’*d*Q |
YT=a(t), U"=0 .
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It makes life easier !

ds ;o = T2dw? — 2Ydwdr + ’yab(da’l — U“dw)(dg” — Ulduw)
= Redshift perturbation:

(14 my — FEmds _ @ wdm)s Ty 70,67 _ Yo
° (k‘“uu)o (a“w({?‘ﬂ')o T(w‘”TS’ o ) L.

where u, = —0,,7 is the peculiar velocity of the comoving observer/source
and k, = 0,w is the photon momentum.

= (exact) Angular distance (homogeneous observer neighborhood) :

_ . 1/4 1/2 . _ _ 2
da =" (sind") " with = det(ya) = | det(garc)l /T

which, combined with the redshift, gives the distance-redshift relation.

Fabien Nugier (Glenco) GLC coord. & lensing IAP, Paris 04/05/15 19 / 27



Examples of applications

o Compute the distance-redshift relation at O(2) in perturbations (from
the Newtonian gauge, 1104.1167) :

di(25,0%) = dEERW (2) (1 460 (25,09 + 62 (2, ea))

o Simplify averages on the past lightcone (1207.1286, 1302.0740) :

fz d4a;\/—g Op(w — we)dp (T — 74) |0 TO* w| S (T, w, 5‘1)
fE d*z\/—g ép(w — w,)dp (T — 7s) |0, TO W]

- (/d“’é\/v(wa,fs,@a)S<wo,rs,5“>)/(/dze?\/v(wo,rs,’éa)) ,

(Swo,rs =

o Estimate the effect of the large scale structure on the Hubble diagram :
average and dispersion of the distance modulus (my thesis, 1309.6542).

o Evaluate the galaxy number counts at O(2) in perturbations (Di Dio,
Durrer, Marozzi, Montanari 1407.0376v3 )
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Jacobi in GLC coordinates

The zweibeins are written as s = (57,0, s%) and k* = w154

The solution to the Jacobi equation (and its I.C.s) is

Jg()\, )‘0) = 3:14()‘) [QUT@ab)_l]o 31?0‘()) = 3:14 ()‘) AP ()‘0) SbB (AO)

where (...)" = 9,(...).

The angular distance and the magnification become:

2ur,
da = =2 (77,)"
[det™ Aaplo

_2d2 J 2
e 8 ] = ()
4 VYo o dA

involving da = a*(7)r? with r = w — [a~'(7)dr measured from the observer.
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Lensing quantities in GLC coordinates

1 2
(1— H)z = W (Jll J22) = i AgbAf)d [sisi (s;s;)o + sisi (sisi)o + QSisi (sési)u]
1 2 1
.2 1 2 bacd[ 1.1 (.22 2/ 1.1 1221
= 102 (J2 — Jl) = vy QAZ Af) [sasc (sbsd)o + s s, (sbsd)o — 25,5, <sbsd)o]
1 2 1
2 1 2 abaed [ 1 1 (1.1 2 2( 22 1212
47 = o (Jl — J2) = 4dj42Ao AY [Sasc (sbsd)o + s, s. (sbsd>o — 2s, s, (sbsd)o]
1 2 1
'?g = — (le + J12> = AgbAgd [sllls(lz (sisi) + sisi (s;si) + 25,1153 (sis;) ]
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Lensing quantities in GLC coordinates

We compute the squared quantities (more convenient) and use A% = A(),):

R 1
a-w? = = (
L2 1

T 4da? (
~2 1
Y1 = 4([2 (
L2
Y2 - 4dez (

14 73) = g AT AL [shsl (shah), + w2k (shed) | +29hs? (sh53) ]
B-7) = 4; LA [shsl (s353) 48257 (shsh) —2shs? (s353) ]
A o o o

J11 - J22>2 _ } ) AZbAf;d {sis:‘: (sés}i) + sisi (sisi) - ZSisi (511753> ]
4d A o o o

le + J12>2 _ 4;142 A?’Agd [5(115(1: (sisi)o + Sisi (s;si)o + 25«153 (sisi)o]

which can be simplified thanks to sfsbA = Y and €ap SASbB = /7 €qp into:

a

{ (1—k)>+ @2

i+ 43

f=(

2 C bes
Ur, ) ¥ by Aed il 4o Ve
dA (detab ;yab>2 (detab ':Yg‘b)o

Similar expressions for the deformation matrix and the optical scalars.
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Deformation matrix and optical scalars
The Jacobi equation can be rewritten :

A A
—dd{f —sarg . BB sasg— e

dX
where the deformation matrix is:

dJ,
Sp =3k

Qi
Q§>
(9
UJD>

/—\

61 09
b0y —01

The second equation at the top becomes the Sachs equations (6 = 61 +i63):

O 11612+ 62 = LtrRE = oo, 45 4 206 = W,
The optical scalars can be obtained by solving these equations or directly :

= ivuk“ (expansion scalar)

6" =

V,.k,VFE" — 0% (shear scalar)

DN | =
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Ricci and Weyl focusing

Riemann and the Weyl tensors are related by :
_ 1
Caﬁuu = Roc,@;,w - ga[uRlI]B =+ g,B[MRV]a + gRga[ugu]B
The optical tidal matrix can be decomposed as:

RA _ ‘I)oo 6g + <Re\110 Im\IIO )

Im\IJO —RG\I/()
and we can show that the Ricci focusing and Weyl focusing are equal to:

1 1
gy = —§Ra5k°‘kﬁ , Uy = §caﬁwkak“2ﬂ2” :

where YX# = sl +ish.

Thanks to the Einstein equations, we can directly link ®¢y to the matter
content inside the beam. ¥ is related to the matter content outside the beam.
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Deformation matrix in GLC coordinates:

The deformation matrix is given in terms of the zweibeins by :

ds4 w .
d; sp = ﬁé’%slfg Yab

Sp =

Using s As 4= b we get the optical scalars:

ab.s . N 2
é =w 7 b’}/ab - » 7 |é\-|2 = w WQ det Yab
47 4T~ 7

We also get the Ricci and Weyl focusing in the GLC gauge:

2

By = & N UPTIRR U"
00*41\ '7 ’Yab T’Y 'Yab 2’7 'Yac’)/ 'de 5

2 wt T 1, ef . T 1. gh . ac_bd ad_bc ab_cd
Wol™ = T2 [Fab = F¥ab = SYae7™ " sb| |Fea = r¥ed = SYeg 7" Yha ('y +5 =y )

e 2
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Application to an inhomogeneous model :
off-center observer in a LTB model.

ol St 4 s

) g 2 /]
Mchen.com - 5]
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Off-center observer in LTB
The Lemaitre-Tolman-Bondi (LTB) coord. are defined by the line element :
dsirg = —dt® + X?(t,r)dr® + A%(t,r) [d6? + sin® 0 d¢?]

An observer at r = 0 sees an isotropic Universe around him, but any other at
r = d from the center sees an anisotropy.

The transformation of coordinates between LTB and GLC gives:

7 = t (thanks to the synchronous form of the LTB metric) ,
w = W(t’ T’ 0) )

< ( rcosf —d )
0 = arccos

Vr2 +d? — 2rdcos@

2 = ¢ (by assumption) |,

1 A2 d? sin? 0+r2 X2 (r—dcos 0)? 0

T = y U® = 6 s ,Yab = A2X2(d2+7‘2—2rdc050)2

(W ( 0 A ?sin"%0
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Mustration of LTB

T
wr oo
T
In GLC coordinates (3+1) (z,y,2) between GLC and LTB
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Expressing /7 and ( vl ) at the observer position (¢,7,6, ¢)=(t,,d,0,0),

det®® Yab
the angular distance becomes:

A%X (r2 +d? —2rdcos 9) Ap(d) sin

a5 = )
\/A2 d?sin? 0 + 12X2 (r — dcos )> d Xo(d) sin @

In the LTB metric we can always manage a residual gauge degree of freedom
in order to fix A(t,,r) = Ag(r) = r. Moreover, in the flat case, using the
off-diagonal Einstein equations, we can write X (t,r) = 0, A(t,r).

In the flat FLRW case we get A(t,r) — ra(t) and X (¢,r) — a(t) and as
expected :

a’Vr2 +d? —2rdcosf rsinf _ _,
- =7

d> _
A sin 6

a(t)? .

with 7 = V12 + d2 — 2rd cos 6.

k(r) = 0 = we have only the decaying mode.
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Here 7, is diagonal = @ = 0, i.e. no vorticity.

The other lensing quantities (using u,, =1 and d,) are:

_ r dXo(d) a’(t) A2(t, ) d?sin 0 + r2X2(t,7) (r — d cos 0)?
me= Ao(d) A2(t,r) X (t,T) d? + 12 — 2rdcosf ’
2
1-k)? = A(t,r) A+B+C|
4sin 0 d2r a?(t) X2(d)v/d?> — 2dr cos 0 + 2
2
WP = — A'(t,1) A+B-C| ,
4sin 0 d?r a2(t) X2(d)V/d? — 2dr cos 0 + 72

with :
A = d*sin®0X3(d) ,
A3(d)X2(t,7) (d® — 2dr cos 0 + 12)*
d?sin? 0A2(t,r) + r2X2(t,r)(r — dcos 0)2
2dsin 0 Ao(d) Xo(d) X (t,7) (d* — 2dr cos 0 + r?)
Vd2sin? 0A2(t,r) + r2X2(t,r)(r — dcos0)?

B

C =

. not so elegant :(.
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For a collection of non interacting perfect barotropic fluids, we have:

H*(t,r) = Hg(r) ZQno(T) {j(ot(i))r" ) ZQ"O(T) =1, X(tr) = % ’

where :
o H(t,r) = d;A(t,r)/A(t,r),
e Hy(r) = H(tp,r) is the inhomogeneous Hubble function “today”,

o k(r) is the inhomogeneous spatial curvature (for simplicity k(r) = 0 here).

CDM case: Q0(r) =1

2
ACDM case: Qpo(r) =1 —Qao(r) =1 — Qa0 (Hﬁl(or))

Qno, Hp: values of the homogeneous case taken as background quantities :
Hy = lim,_, o Ho(r) and Qpp such that HZ(r)Qao(r) = QaoHZ = A/3.

= Hy(r) completely takes into account the density profile of matter
and so, by choosing it, we can directly study the under/overdensity we want.
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Ansatz for Hy(r):

5 — H? d-ro) _ r—rq
HO(T') = HO 1— HO 2Hin tanh ( 2 T ) tanh ( SAr )
Hg  tanh (533) + tanh (3%7)

[SHINV]

where :
o 19 is the radius of the under/overdensity (d > ro),
o Ar is the transition scale from bubble to background (Ar < r, < d),
o Hy="70kms ' Mpc™ !, and H;,, = Ho(r = 0).
o Numerically: 7o = 1 Mpc, Ar = 0.1 Mpe, |Hy — Hiy| = 2 kms™! Mpe L.

The time t between today and the big bang is:

Ao(r) g4 1 ! dz
]
Ay AH(E ) Ho(r) Jawry /a0ty 23/ Qno(r)z=3 + Qao(r)

= can inverse this relation to get A(t,r) and we set Ag(r) = r.
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The inversion gives the following expansion factor :

Inhomogeneous CDM model: (Q,,0(r) =1 , t,=0)

A(tr) =1 [1 + gHo(r) t] .

Inhomogeneous ACDM model:
(QAQ(’/’) + Qmo(’/’) =1 s Hg y QAO = Hg(’l") QA(](T) s to = O)

- s 2/3
A(t,r)=r {%’E%)] (sinh [arcsinh, / % —/Qao(r) Ho(r } >

Background values: Hy = 70 kms™! Mpc ™! and Q49 = 0.68.
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[lustration

Under/overdensity at d = 10 or 100 Mpc from the observer, with a radius ro = 1
Mpc, a transition shell of Ar = 0.1 Mpc, and |Ho — Hin| = 2 kms™ Mpc™'.

1
1.00000 0.00015
099995 000010
£
= =
0.99990F 0.00005,
009085 000000
0.99980) ~0.000g5,
S%o15 00020 00025 00030 G015 00020 00025 00030

(a) Underdensity at d=10 Mpc

0.9995 0.0010

Am

0.9990 0.0005

o.9085

00230 00235 00240 00235 - 00230 00235 00240 00245

(b) Underdensity at d=100 Mpc

Left side: magnification ; right side: distance modulus Am = 5 log;(da/da).
Solid lines: CDM model ; dotted lines: ACDM model.
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Source not aligned with bubble

Plot of u, sinf(1 — «)? and sin |3|? at different values of the angle 0, namely

6 = m — arcsin({10, 2,1,0.5,0} x ro/d)

sn()(1-x)?
sin@)lyf?

N

0.99995

0.99990

Underdensity with 7, = 1Mpc, d = 10 Mpc in ACDM.

Angles of observation: § = m — arcsin(107,/d) (thin), m — arcsin(2r,/d) (thick), m — arcsin(r,/d)
(dotted) and m — arcsin(r,/2d) (dashed), = (thin).
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Remarks

To obtain r(z) we integrated numerically the geodesic equation in LTB
(Blomqvist, Mortsell 2010) :

dt . (1+42) dr _ p d0 _ _J_

dz q ' dz T g ° dz T qA2
dp _ 1 |(—Fk) J? 24’ A" K’ 2
E_E[A’ w+arp(L+2) = (G a0 ) 7|

with the constraint g = [%]ﬂ + ’i‘&f} and p =dr/d\, A’ = 9, A, A=09,A.

J = Ag(d)sinf is a constant angular momentum _
We use the I.C.: t =0, r=d, 0 =0, p=cost/Ay(r).

Important : This necessity of solving the geodesic equation in LTB is due to
the “unobservable” aspect of the LTB coordinates (¢,) compared to the GLC
ones (where e.g. T is directly related to z).

We considered an uncompensated LTB under/overdensity model with
k(r) = 0 (i.e. only the decaying mode) = possibility of generalisation.
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A(t,r)/r and X(t,r) do not diverge (see figure)
= our metric functions are free from singularities.

0.9980 -

09972E

Underdensity with r, = 1 Mpc situated at d = 10 Mpc in a ACDM background.
Angles of observation: 7 — arcsin(10r,/d) (thin gray), m — arcsin(r,/d) (dotted) and
7 — arcsin(r,/2d) (dashed), § = 7 (thin).
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Conclusions

Advantages of using the GLC coordinates :
o They are adapted to calculations involving light-propagation,
o They can also be useful for weak lensing (where 7, is like a screen),
o It may help to get new predictions (?),

o Other aspects of lensing could be studied (e.g. lensing statistics) (7).

On the other hand :
o It is probably not adapted to problems with timelike propagation,
o Writing Einstein equations is not so easy in this system of coordinates,

o Transformation of coordinates with GLC is not always that easy.
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Appendices

(details on previous slides)
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Time delays

s
Time delay between different images : . .
G

A
R 2 o 2 \
At = % { [w _¢i(gk):| _ [(%fﬁ) _ ¢,j(9k):|} i o N
a e

with Da; the time delay distance ~ 1/Hy and model of the lens gives ¢;’s.

Advantages of time delay measurements:
o direct measurement of distance (~ 5%), independent from local ladder,

@ precision on Hy is ~ 7%, comparable with BAO = complete other probes.

Example: RXJ1131-1231 of Suyu et al.2013.

Complications:

@ sources can have a structure (e.g. Barnacka et al. 2014),

lenses have structure too (e.g. Keeton, Moustakas 2009),

there are structures on line-of-sight (need simulations),

o we know only a few “good” lenses (but Euclid will change that !).
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255015 51065 768015 102614 128014 154614 179614

IT11l Cross |11 [T Cusp 11111
Image 1 : Image 1 :

NimagePoints = 3018 NimagePoints = 4718

Position = -1.65539e-23 -1.07854e-05 Position = 1.12476e-05 4.90168e-06
Time Delay = 0.189156 years. Time Delay = 0.232443 years.

Image 2 : Image 2 :

NimagePoints = 4138 NimagePoints = 4974

Position = -1.21018e-05 -1.47453e-21 Position = -1.71892e-21 1.17082e-05
Time Delay = 0.238825 years. Time Delay = 0.189726 years.

Image 3 : Image 3

NimagePoints = 3018 NimagePoints = 2058

Position = -7.21361e-22 1.07854e-05 Position = 4.60517e-22 -9.83243e-06
Time Delay = 0.189156 years. Time Delay = 0.189301 years.

Image 4 : Image 4 :

NimagePoints = 4138 NimagePoints = 4718

Position = 1.21018e-05 -2.38803e-21 Position = -1.12476e-05 4.90168e-06
Time Delay = 0.238925 years. Time Delay = 0.232443 years.

Fabien Nugier (Glenco)
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[T Fold 1111

Image 1 :

NimagePoints = 4232

Position = 2.38267e-06 -1.09387e-05
Time Delay = 0.192421 years.

Image 2 :

NimagePoints = 2536

Position = 1.45716e-06 1.01734e-05
Time Delay = 0.190221 years.

Image 3 :

NimagePoints = 3663

Position = -1.24646e-05 -2.10585e-06
Time Delay = 0.237939 years.

Image 4 :

NimagePoints = 5441

Position = 1.12099e-05 -3.062e-06

Time Delay = 0.236583 years.
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Radio-Flux Anomalies

Idea: given some images, we can fit their positions with an NSIE + 7.y, but
in general we will not obtain the observed fluxes of the different images.

Precisely : there is a violation of universal magnification relations:

@ cusp relation:

s

. _ M1t p2tops
lim |[Reysp = — 77—
AB—0 [pol + [p2| + |ps]

with A the offset between the source and the cusp of the caustic (pu; are
magnifications of cusp images).

@ fold relation:

. _ Mmin + Hsad
lim Rfold = | =
AB—0 [min| + [Hsadl

with A the offset between the source and the fold caustic (fmin, fsad T€SP-
the magnif. of minimum — > 0 — and saddle — < 0 — images).

Past studies were studying the impact of LoS structure on these
anomalies, nowadays people study more the subhalos. We want to use both !
References: Amara, Metcalf, et al. 2004 ; Xu et al. 2012 and 2014.
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Adding structure along the LoS: x vs Images

We observe a change in image positions (and corresponding critical lines).
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