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Motivation : quantum reflection in GBAR

The GBAR experiment

Gravitational Behavior of Antihydrogen at Rest
http://gbar.web.cern.ch

Test the equivalence principle for antimatter by
timing the free fall of antihydrogen (H)
dropped from ~ 10 cm

\ \Lahnralmre Kastler Brossel
ysinoe quantiou et applications

Swansea University
School of Physical Sciences

— Experiment under construction at CERN
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Current experimental bound on gravitational
acceleration of H from ALPHA experiment:
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GBAR: overall scheme
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[ P. Perez & Y. Sacquin, Class. Quantum Grav. 29 (2012) 184008 ]
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GBAR: free fall and detection

. — . =+
o initial state: " in the ground H, ge—aser()
state of a harmonic Paul trap l
. = o t.)2
e start: the extra e’ is h=12g (t-t)
it
photodetached gaviy ¥
_ detector (t,)
o freefall of H
e stop: H annihilates on the b Peres & Y. Sacaun
detector Class. Quantum Grav. 29 (2012) 184008

The free fall acceleration g of H is deduced from the free fall time

Question: are there other forces than gravity acting on H?
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Effect of the atom-detector interaction

Attractive Casimir-Polder interaction between atom and detector :
e no noticeable change in time of fall

e BUT part of the atomic wavepacket is reflected

Quantum reflection : classically forbidden reflection of a matter
wave from an attractive potential

Need to estimate and master this bias in GBAR:
e How much quantum reflection can we expect?

e How does it depend on the atom'’s velocity?

How is this affected by the materials used?

Can it be used to improve the accuracy of the experiment?
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The Casimir-Polder force

Electromagnetic (EM) modes are modified when the atom comes
close to the detector:

= the EM ground state (vacuum) energy changes

= attractive Casimir-Polder force between atom and detector

Casimir & Polder 1948 : long-range
.‘ p) interaction energy between an atom and a
5@:’ perfectly conducting mirror:
_3hc a0) G

z V*(z) = —_ 4
§ > (2) 8mz* 4meg z4

| For H and H, (0) = g 3
L dreg 2

Cf~736 Ehag ~ 15.7 meV.nm*
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Scattering on the Casimir-Polder potential

What happens when the atom scatters on this potential ?

-— Length scales :

e o free fall height : h~ 10 cm

N

e quantum gravitational scale :
1/3
Loray = (h2/2m2g) B~ m
e Casimir-Polder scale :

lep =+2mGCy/h =~ 30 nm

We can decouple the free fall and the scattering on the potential:
the incoming wavefunction is a plane wave with energy E = mgh
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Examples of observation of quantum reflection

Shimizu 2001: Ne* on Silicon and BK7 glass, grazing incidence

VOLUME 86, NUMBER 6 PHYSICAL REVIEW LETTERS 5 FERRUARY 2001
Specular Reflection of Very Slow Metastable Neon Atoms from a S Surface
Fujio Shimizu
Institase for Laser 5 Universiry of Electro-Communications, Chofi Tokya 182-8585, Japan
(Received T July 2000)
An ultracold narrow atomic beam of metastable neon in the 15[(26F3 ] state is used to study
specular reflection of atoms from 3 solid surface at extremely slow incident velocity. The reflectivity on
a silicon (1.0:0) surface and a BKT glass surface is measured at the sormal incident velocity between
/s fizctivity above 30¢% is ohserved at ahout | mmys. The observed velocity
is explained semiquantitatively by the quantum reflection that is caused by the atiractive
Casimir-van der Waals potential of the atom-surface interaction.
DOl 1001103 /PhysHevet.
. The reflectivity vs the normal incident velocity on the
He on sikicon (1,00) s 1 0.0) surface. The solid curve is the reflectivity calculated by
using the potential Eq. (1) with A — 0.4 gem and C, — 6.8 =
105 1 which comesponds to a =2.0x W ®F
of Casimir’s theary.
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Examples of observation of quantum reflection

Pasquini et al. 2004: dilute BEC of Na on silicon, normal incidence

) viEw LE J——
PRL. 93, 223201 (2004) FPHYSICAL REVIEW LETTERS % \'(‘NIW:I![‘I:‘EJD!

Quantum Reflection from a Solid Surface at Normal Incidence

T. A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. E. Pritchard, and W, Ketterle™

epariment af Physi

and Research Laboratory of Electronics, Massachusetts Institule of Tstluh ogy. Cambridg
(Received 15 June 2004: published 24 Nover

W abserved quantum reflection of ultracold atoms from the attractive poteatial of a solid surface
Extremely dilute Bose-Einstein condensates of *Na, with peak density 10/ 102 atoms fens?, confined
in a weak gravitomagnetic trap were normally incident oa a silicon surface. Reflection probabilities of
up to 20% were ohserved for incidenl velocilies of 1-8 mmn/s. The velocity dependence agmes
qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential.
Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime duz to
quantum reflection from the surface. implying a eflection profability above S0%.

Massachusetts, 02139, USA

DO 11103 PhysRev] it 5322320 PACS umbers: 34 50Dy, 0175 Be

FIG 3 Reflection prohability vs incident velocity. Data were
callected in @ magnetic tmp with tmp frequencies 2w
(3.3,2.5,6.5) Hz. lncident and reflected atom numbers were
averaged over severa] shots. Vertical error bars show the Stan-
dard deviation of the mean of six measurements. Horizoatal
error bars reflect the wncertainty in deducing v, from the
applied magnetic field #, . The solid curve is a numerical
calculation for individual stoms incident on a conducting
surface as described in the text

Refection Probabilly

4 H
Velocty [mmis)
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Scattering approach to Casimir forces

Scattering formula for Casimir energy (here at T = 0):

V(Z) = h/ gTrlog (1 — Rle KZRQG KZ)
0

Objects described by EM reflection matrices R, R»

— B
/// ) ’\/\/v\ ) o Tr: Trace on transverse wave
‘/\/\/V\ \\ vector k| and polarisation
_ e w = i{ : imaginary frequency
) ( RQ\

( ,,,,// z o k= 4/k? +&2/c?: longitudinal
) - wave vector

[ A. Lambrecht, P.A. Maia Neto, S. Reynaud, New J. Phys. 8 (2006) 243 ]
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Casimir-Polder potential

e Atom treated in dipolar approximation, described by its
dynamic polarizability «(i€)
e Plane surface described by reflection coefficients p’&, p™™

which depend on the mirror’s permittivity (i)

e Weak reflection on atom: the log() can be expanded to 1st
order (multiple reflections ignored)

B oo dgl‘(’ —2Kz 2c2k?
vyt /OdE a(ie) /(ZW; eT |:pTE _ (1 + C§2 L> me]
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Calculation of the Casimir-Polder potential

Casimir-Polder potential above various semi-infinite media,
numerical results (inset : normalized potential V /V*):

0 .
e long distance (retarded
regime): V(z) ~ —Cy/z*
-5
_ e short distance (van der
E o Waals regime):
N ‘ N V(z) ~ —-G/23
0'10° 10" 10% 10° 10* i
s > (nm) | e weaker potential for
~ perfect EM mirror materials weakly coupled
— silica to the EM f|e|d
~205 20 20 60 80 100

z (nm)
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Reflection equations and boundary conditions

We want to solve the Schrodinger equation with the CP potential:
V"'(2) + k(2)*9(2) =0, hk(z) = \/2m(E — V(2))

Exact wavefunction written as a combination of semiclassical
(WKB) waves which have a well defined direction of propagation:

Y(z) = b+(Z)WVKB(Z) + b—(Z)%_VKB(Z)

exp(j:/qﬁ( )) . “ V2!
wWKB(Z) Ta ¢(Z)—/ k(z')d

The coefficients obey coupled equations:

bi(2) = £Q(2) ) (b1 (2) + be(2) op(3200(2)

" / 2
Badlands function: Q(z) = 2kk((zz))3 B ?;/;((ZZ))4
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Reflection and transmission probabilities

by (z) become constant
e as z — oo, where the potential goes to 0
e as z — 0, where the classical momentum is large
= reflection only occurs in an intermediate region, the “badlands”

Annihilation of H on the surface: 4
no reflected wave by(z=0)=0 ll T '
= different from matter atoms

& less sensitive to surface physics

adlal
reflection probability:
R = |r[> = |by(00)/b-(c0)[? tl *
transmission and annihilation probability:
T=1-R=|t = |b_(0)/b_(c0)P L
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Reflection probability versus energy

1.0

o8 e significant probability of

reflection in GBAR
e bias : high energy atoms
more likely to be detected
e weaker reflectors of EM
field are better reflectors
of atoms |

0.2/ — perfect EM mirror

— silicon
— silica

0.0

10

10°

G.Dufour, A.Gérardin, R.Guérout, A.Lambrecht, V.V.Nesvizhevsky, S.Reynaud,
A.Yu.Voronin, Phys. Rev. A 87 (2013) 012901
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Liouville transformation

Schrédinger equations are invariant under the group of Liouville
transformations:

z—z=22),  U(2) > P(E) = VE(2)v(2) .

Schwarzian derivative: {Z,z} =

#(z)  27(z)?
The transformation preserves Wronskians:
D1(2)15(2) — Y1(2)0a(2) = $1(2)15(2) — D1 (2)P2(2)

= it preserves scattering amplitudes:

~2

r=r, t=

[ G.Dufour, R.Guérout, A.Lambrecht, S.Reynaud, EPL 110 (2015) 30007 ]
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A special choice of coordinate

We use the WKB phase as the coordinate: Z(z) = ¢(z)
The domain z > 0 is mapped onto the whole real axis
The transformed equation is

7(2)+ (1- Q) d(z) = 0

" ()2
QR(2)=Q(z) = 2kk((zz))3 — ?;/;(((ZZ))4 plays the role of a potential

In regions where Q(z) = Q(2) ~ 0:

P(2) ~ eTi2 so Y(z) ~ kl(z

et0) = ik 5 (2)

3

Conversely when Q(z) # 0 the WKB approximation breaks down
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Transformation from well to wall

Q(z) is a peaked function which vanishes both near the surface and
far from it : quantum reflection on an attractive well is mapped
onto reflection on a repulsive wall

/
. t .
- — -
' = Q 1
_ - —me
7 E T=r
/ [
7 z
7 v
7,
—
7 1
/,
7
g /
Y,
7
7 — z

The two problems correspond to very different semiclassical
pictures but are equivalent from the point of view of scattering
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Varying the energy

H on silica:
15 20
0 — h=10cm
h=1 cm
5 L] g p— h=0.1 cm
s
g ., 10
>~
~15 h=10 cm 5
h=1cm
—20 -~ h=0lem||] | R
—25 20 40 60 80 100 0 -2 -1 0 \1 2
z (nm) z
h=10 cm h=1cm h=0.1cm

R =33% R =167% R = 88%
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Varying the potential

H from h =10 cm:

15 2.0
—— perfect EM mirror N
10 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — sllf(:un /\
— silica
5 1.5 / \
0
% 1.0
£ -5 ; &L
=10
—15 0.5
—20
—25 0.0
z
silica silicon perfect mirror

R =33% R =19% R =14%
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Threshold behavior

At low energies, interaction with the surface is described by a single
complex parameter, the scattering length a:

when k=V2mE/h— 0,

r~ —exp(—2ika) , R~exp(—4xb) , b= —Im(a)>0
For the pure retarded potential V(z) = —Cy/z* a= —iv2mGy/h

For the real CP potential, Re(a) # 0 and b # v/2mCy /R

— the scattering length depends on the full CP potential and not
only on its long-distance limit
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Scaling laws

June 15, 2015

Rescale the coordinate: % = ¢(z)/Vkb

D(2) + (kb= v(2))P(2) =0, v(2) = kbQ(2)

For the pure retarded potential, v(Z) is a universal function
independent of the parameters of the problem.

0.7H — perfect mirror 10 —  perfect mirror
— silicon ) — silicon
0.6 — silica A\ — silica
- O AN 0.8 G
0.5 -
04 A 0.6
>0 A -
0.3 " 0.4
02 0.2
0.1
0.0
0.0 -
—4 1073 1072 107! 10° 10!

z Kb
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Interest and general idea

We can use our understanding of quantum reflection to enhance it:
e reduce the energy

e weaken the Casimir-Polder interaction

Increasing quantum reflection opens many possibilities:

= store and guide antimatter with material surfaces

= study gravitationally bound states above the surface

[ A.Yu. Voronin, P. Froelich, V.V. Nesvizhevsky, Phys. Rev. A 83 (2011) 032903 ]
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Velocity selector for GBAR

GBAR resolution is limited by Av ~1 m/s uncertainty on initial
vertical velocity: filtering device to reduce the velocity spread

Output : Az~ h

and Av ~ \/2gh

Precision of GBAR
experiment taken from
1% to 1%

G.Dufour, P.Debu, A.Lambrecht, V.V.Nesvizhevsky, S.Reynaud, A.Yu.Voronin,
Eur. Phys. J. C 74 (2014) 2731
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Gravitationally bound states above the surface

Eigenstates in a linear potential: ¥ (z) o< Ai ( 2 L)

fgrav mgegrav
Dirichlet boundary condition: 1,(0) =0
= —E,/mglgra, is a zero of Ai(x)
Matching with the solution in the CP

10 : potential (within scattering length
. \ \ approximation):
s H \ o £, — E,+ mga
X . N ‘ e energy shift: mgRe(a)
, e decay rate: 2mg|Ilm(a)| = 2mgb
0 Transition frequencies are independent
o 2 10

of the details of the interaction
— spectroscopic tests of WEP
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Thin slabs and graphene

Thin slabs invisible to large wavelengths — reduction of potential

Graphene, using reflection coefficients from:

M. Bordag, |. V. Fialkovsky, D. M. Gitman, D. V. Vassilevich,
Phys. Rev. B 80 (2009) 245406
1.0
10l — 1w
0.8
1nm
0.6 2 nm
o — 5nm
=
- o4 10 nm
"Il — 20nm
— 50 nm
o2l
- graphene
10" 10° 10' 10° 10° 10* O‘fo'“ 10° 10* 10° 10% 10" 10° 10" 10%

z (nm)

h (m)

Notice V ~ z~5 behavior as z — oo for slabs
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Enhancing and using quantum reflection

Nanoporous materials

Materials that incorporate a large
fraction of gas or vacuum

Eg: silica aerogels, powders of
nanodiamonds and porous silicon

NASA

Pore size in the 10-100 nm range: if the atom is reflected far
enough, we can use an effective medium approximation
(Bruggeman model)

G.Dufour, R.Guérout, A.Lambrecht, V.V.Nesvizhevsky, S.Reynaud, A.Yu.Voronin,
Phys. Rev. A 87 (2013) 022506
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Enhancing and using quantum reflection

Lifetimes above surfaces

Lifetime of first gravitationally bound states: 7 =

7(s)

10

- - silica

---- silicon

~ — diamond

N — perfect EM mirror
o - - graphene

10°f

Quantum reflection from the Casimir-Polder potential

June 15, 2015

h
2mgb
surface Lifetime
(porosity) (s)
perfect mirror 0.11
bulk silicon 0.14
bulk silica 0.22
5 nm silica slab 0.33
diamond powder
(95%) 0.89
porous silicon
(95%) 0.94
silica aerogel 46

(98%)
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Conclusions

e The Casimir-Polder interaction between H and the detector
can cause a significant amount of reflection

— lower statistics
— bias towards high energy atoms

e We can transform the quantum reflection problem into an
equivalent problem of scattering on a barrier

e Counterintuitive dependence of the reflection probability on
the energy and potential strength is well understood

e Quantum reflection can be increased by reducing the Casimir
interaction : a new way to trap and study antimatter
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The end

Thank you for your attention

Any questions?
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