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Talk Outline

e Introduction to pulsar timing arrays

e Formalism for CMB polarisation analysis
e PTA response to individual modes of the background

e Recovery of Hellings and Downs correlation curve for an
isotropic uncorrelated background

e Characterising and measuring general backgrounds

e Implications of a measurement of the coefhicients inconsistent
with expectations

e Extension to ground-based interferometers



Pulsar timing arrays

e Pulsars are very accurate clocks. N T

- GW passing between source and observer
induces periodic change in pulse time of arrival.

- Use a network (array) of pulsars to increase
signal to noise.

- Ongoing international effort using various radio

telescopes - EPTA, PPTA and NANOGrav.




Pulsar timing arrays

e No detection yet, but recent limits are starting to become

astrophysical interesting.
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L.essons from the CMB

e CMB community measure
temperature and polarisation maps
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e Polarisation is described in terms
of Stokes parameters QQ and U that
give the polarisation tensor

U
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e This is a transverse-traceless

tensor on the sky, c.f. the GW field
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Spin-weighted functions

e A spin-weighted function f (k, 1, 7) maps a point k and an
orthonormal basis(/, m)on the sphere onto C and has the property

f(lAc, cos 1l — sin P, sin Wl + cos Ym) = eiswf(/%, [, m)
e where s is the spin weight.

e Under such a rotation

hy — hy cos 2y + hy sin 29 hy = —hy sin2y + hy cos 2y

o so the quantities m%m’ ha(k), where m% = [* £ i have spin-
weight £2. A spin-weight s function can be expanded in terms of

(I —s)! .
| 9 9 4

0°n = —(sin H)® Y + 4 csc 6’6—¢ (sinf) ™ °n




(Grad and curl spherical harmonics

e Can decompose any transverse-traceless tensor field on the sky
as a superposition of gradients and curls of spherical harmonics
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e NB we have modes with [ > 2 only. Using standard polarisation
tensors on the sky

ey (k) = 040, — dadr exy (k) = 040 + dabs
e we have G A il It
(m)ab (k) = T Witm) (k)eqy (k) + X(lm)(k)eab(k)}
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(Grad and curl spherical harmonics

e The W and X functions are related to spin-2 spherical harmonics

Lo Ym) (k) = W5 [W(lm)(’%) e Z°X(zm)(i€)]

e and can be written in terms of associated Legendre polynomials

W(lm)(l%) — ¢'™? x {combinations of P/"’s}
iX(lm)(lAc) — m e"™? x {combinations of P/"’s}

e In terms of these grad and curl harmonics, a general GW
background with GR polarisation can be written

[

) = [ a7 [ @0 {Y D [a8m><f>Y<?m>ab<f%>+a8m><f>Y<?m>ab</%>}}ewwﬂtk-f/c>

I=2-m=1




PTA response

e A plane gravitational wave induces a redshift in a pulsar signal
Hal b
2(t, k) = 2tld) I i
0 214+ k-a
e The redshift induced by a GW background can be written as

Ahgp(t, k)

b

Z(t) = / df dQQk A | has(f, ];) gL 6—i27rfL(1+l%-a)/c eq;zwf(t—z%.f/c)

=il VYT,
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e where the response functions for individual modes are given by

b
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e We make the simplifying assumption that £ =~ 0. We will use the
notation y = 2x f L /c and often assumey > O.



Alternative polarisation states

e GR admits two transverse and y

O
traceless (T'T) polarisations // \
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e Can use a similar approach to map
non-GR polarisation backgrounds.




Extensions - alternative polarisations

e For the scalar modes (B, L) the quantities
St hE, (k) Sl b (k)

lAa

e where my = [® & i as before, are invariant under rotations,
i.e., they are spin-weight zero.

e Expand in terms of standard spherical harmonics, e.g.,

s (i, 5) = / df | % hp(f, k)el, (k)ei?mf(t-ki/c)
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T 00
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Extensions - alternative polarisations

e For the vector modes (X, Y) the quantities

il hoy (k) il hyy (k)

e transform like spin-weight +1 objects under rotations. Expand
in terms of spin-weight t1spherical harmonics

ot = [ af [ aag [nx(s B8 + v (7, Bk (hy] e
Lo SQ
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Im
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Extensions - alternative polarisations

e Then we define
YVG i YVG ]%b _I_ YVG ]%a 7

(Im)ab (Im)a (Im)b
Vi Vi 7 V. 7
Y(zqu)ab i }/(lofz)akb + Y(zfrcrjb)bka )

e so that
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e and work with the responses
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Pulsar response functions

e Compute response in computational frame, in which pulsar is in the z-
direction. Expansion coefhicients transform under a rotation in a
similar way to spherical harmonic coefhicients.

[

Yfm)ab(@,@: Z [Dlmm’(X17CIa )] Y'(le/)ab(é é)R(X},C],O)aaR(X[,C],O)Eb

m’'=—I

e Deduce that the response functions in the cosmic frame for a pulsar
in direction % = (sin {y cos x,sin (7 sin x 7, cos (7) take the form

Ry (f) = Yo (@) Ry (y1)

e for all polarisation states.



Response to tensor modes

e In the computational frame we have

e Recall

A N 1 X 4 A
Yv(?m)ab(k) i 7 {W(lm) (k)ejb(k) 1 X(lm) (k)esz(k)}

I Nl < i X 1
Yv(lm)ab(k) 2 {W(lm) (k)fi;b(k) I X(lm) (k)eib(k)

e~ o]

e We deduce that, in this frame

2m it
R(lm) = —/ d¢/ d cos 0 —F+ (0, ¢) X (10y(0, 9) {1 — e_zy(HCOS@)] = (

e We have zero sensitivity to curl modes in any frame.



Response to tensor modes

e For the grad modes we have

27 |
R(lm) —/ dgb/ dcosé’ — (1 — cos H)W(ZO)(é q_ﬁ) [1 1 e—z‘y(1+cose)}

B 13 . dj
LS V( 5 Nl( i) e [(2—22y+y2)jl( ) — (6 + 4iy + y )d‘;l
d?ji 5 d%7;
(611 — y?
(61y — y )dy2 iy’ 1 ]

e The y-dependent terms are the contributions from the pulsar term
and are negligible for y > 10, the regime in which PTAs operate.

e Deduce that the response functions in the cosmic frame for a pulsar
in direction % = (sin {7 cos x 1, sin {7 sin xr, cos ;) are

R?(zm) i 2”(_1)lNlY(lm) (ﬁl) R(lm) 10l
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Response to scalar modes

e For the breathing mode, we find

— 27‘(‘— / dx (1 —xz)P(x) (1 — e—i<1+$)y)
] HEINI N i
010 — —511 — (—i)'e™™ <1 o @;) J1(y) + 13141 () }

"

e and in the limit in which we can ignore the pulsar term, this
becomes
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Response to breathing modes
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Response to scalar modes

e For the scalar longitudinal modes R%(lm) (f) = Yim(an) R (yr)

1 2

1
1+ 2

RHy) = 2n |
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e in which i

Hi(y) = /_11 dx (1+2) P (z) (1 — e—iy(1+az))

e and for large y, we have

k 1 1
Rﬁlm)(f) ~ 2w Y, (Ur) [—510 o 5511 i §Hz(y1)}



Response to scalar-longitudinal modes
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Response to scalar-longitudinal modes
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Response to scalar-longitudinal modes
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Response to vector modes

e For the vector-longitudinal modes we have

R () =Yim@)RS(yr),  RiG,.,(f)=0

e Once again we find zero response of a PTA to the curl
components of the background, but for grad modes

) dP,

da {x(l _2) (1 b e—’iy“”)) E]

1
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e For large y, this can be approximated by
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Response to vector modes
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Summary of response functions

e To summarise, the full set of response functions are

RE (y) = 7 PNy (—i) e [(2 — 2iy 4+ y*)ji(y) —i(6 + diy + yz)i—jyl — (6iy — y )f—;l — iy fyjl]
Ry (y) =0

R (y) = QW% {510 Tl —5l1 — (—i)'e™ [(1 i Zé) Ji(y) + ’ijl+1(y)] }

RE() =2 { 6o + 300 + (e ™ | (100 ) o) + G )| + 3Ho) |

Aty = [t (gl (1-e70+0)
BY2(5) = N { 30 + 2-0fe ™ | (12 2) (14 i) = = 121+ )i () = iwiona(o) |}

J
R/“(y) =0
e We have zero sensitivity to tensor and vector curl modes.

e Without the pulsar term, we have no sensitivity to structure
beyond dipole in scalar-tensor (breathing mode) backgrounds.



Why zero curl response?

e PTAs have a common origin (the Solar System) for all pulsar lines of
sight. Curl mode metric perturbation vanishes at the origin.

e Analogous to separation between odd and even modes, e.g., waves
on a string

Acos(x —t)+ Bsin(x —t) + Ccos(x + t) + D sin(x + t)

e Measurement at x=0 can only determine A+C and B+D. Break

degeneracy by adding a measurement at £; # 0 or using point-able
detector that can distinguish left and right propagating modes.

e GW detectors are non-point-able and over a year
A(fk-Z/c) ~ 0.0005
o for a GW frequency f = 10™ °Hz

e No curl sensitivity because PTA moves by much less than a GW
wavelength over typical observation durations.



Scalar-tensor background recovery
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Scalar-tensor background recovery

Injected map . Recovered map
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Isotropic, uncorrelated backgrounds

e An isotropic, uncorrelated and unpolarised background is
described by the two-point functions

(e (£ RO (7R = (o (F RS K)) = S (PO K)O(F — )
(P (f, )RS (f K1) = (o (£ R)REL(F K) = 0
e or in terms of the grad and curl expansion coefhicients
(i) () (F)) = (@) (N)a@) (F)) = 0w b H(F)S(f = 1)

<a8m)(f)a8*m )(f/)> 111 <a’8m)(f)a’8*m )(f/)> )

e The expected correlation between the response of two pulsars
for such a background is

(h(t)ha(#')) = / A P H(FD ()

Tyo(f > > D Bim) () Ra(imy ()

pE=pbi =t l:2

Mg
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Isotropic, uncorrelated backgrounds
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e This agrees with the standard Hellings and Downs correlation.



Isotropic, uncorrelated backgrounds
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e Including three modes in the expansion is enough to characterise
an isotropic background.



Isotropic, uncorrelated backgrounds

Correlation
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(General backgrounds

e Can characterise any kind of background in this formalism

(@l (Famn (F)) = CEL H(F) 3(f — f)

Tio(f) = 4n2 Y > (=) NNy CEG i Yamy (@1) Yy (ti2)
(Im) (I'm’)

e For example, recover overlap reduction functions for
anisotropic, uncorrelated backgrounds (Mingarelli et al. 2013)




(General backgrounds

e and extend these results analytically to arbitrary multipole order
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(General backgrounds

e Also obtain similar results for other polarisation states.
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(General backgrounds

Scalar-longitudinal modes
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(General backgrounds

Scalar-longitudinal modes

Im ()
20
101
=2, m=0 -
----- |=2, m=1
{(rad) 0
"""" |=2, m=2 :
10}
—20L
Im ()
20 .
=3, m=0 10L ;
----- |=3, m=1 ::
f(rad) = =eeeeeas |=3, m=2 () P—
----- - 1=3, m=3 f
~10}
A
rl
-
1
—20L




(General backgrounds

Vector-longitudinal modes
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Isotropic, uncorrelated backgrounds of

arbitrary polarisation
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Background mapping

e We can use observed timing residuals, s, to infer the coefhicients,
a, of the background. The likelihood takes the form

p(s|F,@) xexp |—= (§— Ha)' F~' (5— Ha)

e At a given frequency we make only 2N, measurements - an
amplitude and phase for each of the N, pulsars. Can only hope to
recover N, combinations of the (complex) aGm)’s.

e This shows up in a singular-value decomposition of H
H=UzV"

e The rectangular matrix ¥ has at most N, non-zero elements on
the diagonal.

e We can write U = |H,ange Hnuin| where the Ny columns of H,apge
span the range of H.



Background mapping - GR modes

e In a search we can replace Ha by H rangeb in the likelihood. The
value of @ corresponding to a given value of b is given in terms of
the pseudo-inverse of ¥, X7, by d = VETh.

e A similar analysis can be performed in a real space representation
(Cornish & van Haasteren 2014).

e Which components do we expect to be able to measure? Since
1
RIG(lm) fylisren as [ — oo

e we expect to measure the low-/ modes more precisely. To reach an
angular resolution of /maxwe therefore need an array of

N R (bl HH 1)2 Ll

e Need N, =~ 21 pulsars to reach /max=4 required for an isotropic
background; N,, = 100 to reach single source resolution at /max=10.



Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.
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Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.
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Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.

real(h+)
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real(hx)

Residual Np=2




Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.

real(h+)

Residual Np=5




Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.
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Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.
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Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.

real(h+)

120?w%o pr° go goz&°

o ‘!
120°w%o°w@00°%$ 8020 B0 W

o N ‘ ’

v 20°w %o°»g°<;° go gozo"%

LY

W(o

Residual Np=50




Background mapping - GR modes

e Gradient piece of background behaves as expected. Adding more
pulsars increases resolution of map and reduces residual.
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Background mapping - GR modes

e Curl part of background can never be observed.

real(h+)

real(hx)



Background mapping - GR modes

e Total GW background map could still be missing a significant
component.

Curl real(h+) Total real(h+)

Recovered




Implications

e Individual modes of the background represent GW emission that
is correlated between different points on the sky.
(h (f, k) PE(f' K = %Z 2l447; (N2 [CFS ()Gl (cos ) + CFC ()G (cos8)] 5(f — £
[=2P
e No well-established physical mechanism to create such correlations

- discovery of a correlated background would be a profound result.

e Mild anisotropy expected in power of GW background - could be

consistent with either uncorrelated or correlated background.

Ih+1? + Ihx!?




1cations

Impl

e Polarization of background can distinguish correlated and

uncorrelated origin.

Uncorrelated

Correlated




Background mapping - all modes

e [f we allow for alternative polarisations, the number of GR modes
we can measure is reduced further.

e The total response of a pulsar in direction Uy is

Ry (f) = 3 (@i (NREr) + @iy (FIRE (1)

Im

+agfn)(f)RZVG (yr) + aﬁm)(f)RzG(yI)) Yim(tr)

e If we have pulsars all over the sky, can decompose “pulsar
response” map into spherical harmonic basis. Coefhicients are
linear combinations of different polarisations.

e No confusion between B and G modes due to range of /.
Confusion with Vg and L possible unless have pulsars at several
distances, i.e., several y’s.

e Even with multiple pulsar distances, we expect great confusion
between Vi and other modes, due to weaker y dependence.



Background mapping - all modes

e Iisher matrix analysis predicts precision with which coefticients

will be measured. E.g.

, analysis with /n.x= 2 and N, = 30.

[, m) mode
(0,0) (1,-1) (1,0) (1,1() (2,-2) (2,—1) (2,0) (2,1) (2,2)

GG: transverse-tensor (gradient) — — — — 044 038 0.32 0.38 0.44
GG: transverse-tensor (gradient) — — — — 049 039 0.37 0.39 0.49
B: scalar-transverse (breathing) |0.16 0.53 0.46 0.53  — — — — —
GG: transverse-tensor (gradient) — — — —  16.2 10.5 114 10.5 16.2
B: scalar-transverse (breathing) |4.36 16.1 14.1 16.1  — — - — —
L: scalar-longitudinal 0.71 096 0.84 096 1.21 0.78 0.86 0.78 1.21
G: transverse-tensor (gradient) — — — — 14ed 5.4e4 8.0ed 5.4e4d 1.4ed
B: scalar-transverse (breathing) | 18.4 9.4e4 6.2e4 9.4e4d  —

L: scalar-longitudinal
Va: vector-longitudinal (gradient)

3.08 11.5 &868 11.5 20.9 7.51 11.9 7.52 20.9
— 6.6e4 4.4e4 6.6e4d T.0ed 2.7e4d 4.0ed 2.7e4 7.0e4

e Extension to ground-based interferometers.




Extension to interferometers

e Can apply the same formalism to other GW detectors. Consider
ground-based interferometers and make static approximation.

e The strain response of a static interferometer in the point
detector limit may be approximated by

1
RA(f, k) = s (k) (ugul — ugud)

e Using separate integration frames for each arm, such that the
arm is in the z-direction, and using the rotation properties of the
aPum) coefhicients we find

R(lm)(f) 4;\/7& 2 (Yom (01, 91) — Yom (02, ¢2))

e for a detector with arms pointing in the directions (i, @i).



Extension to interferometers

e Including transfer function, still have zero curl mode response,
but sensitivity to grad modes with [ > 2 is recovered.

e A moving detector recovers curl mode sensitivity since
A(fk-Z/e) ~5 x 10% — 5 x 10°
e over ayear for f = 10 — 1000Hz.

e Regard moving detector as superposition of static detectors at
different locations.

e Under a translation to a frame with origin at %

hav(f, B) = Bab(f, k) = hap(f, R)e=2mIF20/c



Extension to interferometers

e Using the identity
6—i27rfk.fo/c L Z(_Z) Z YLM YLM(]AC)
Ty ez

e where a = 27 f|Z|/c, we can transform the components of the

background in the cosmic frame into the frame of the detector at
2 {42

L NS Z RS, ndm(=i)F iz (a) Y74, (o)

m'=—2 L=l-2 M=

o \/<2-2+ ><2i:1><2L+1>(_§n, Al ) RIS

2 [+2

Rffm Z Z Z R(zm)47T 7L (@)Y 0 (Zo)

21 =02 M=

(—;3 \/(2-2+ )(237—: 1)(2L + 1) ( jn/ Tln ]\I} ) ( 3 _52 g) (—1)H+E 1]




match

Extension to interferometers

e Recover more and more modes as number of effective
independent detectors increases over time.

e Farth rotation crucial to break degeneracies for a single detector

network.
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Extension to interferometers

e Recovery of point source.

real(h+) imag(h+) real(hx) imag(hx)
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Extension to interferometers

e Recovery of grad mode GR background.

real(h+) imag(h+) real(hx) imag(hx)




Extension to interferometers

e Recovery of curl mode GR background.

real(h+) imag(h+) real(hx) imag(hx)

- } 1
o o < ‘
® 0% * soa 120"5 & yz8°w
y 4
=




e The framework used to analyse CMB polarisation can be applied to
describe arbitrary gravitational wave backgrounds.

e PTA response to modes of the background takes a simple form -
spherical harmonics evaluated at pulsar locations, multiplied by
distance-dependent factors.

e PT'As have no sensitivity to the curl components of the background
or to modes higher than dipole in scalar-transverse backgrounds.

e Can describe an isotropic uncorrelated background with just three /-
modes.

e A PTA of N, pulsars can measure N, combinations of the grad
component of the background. PTAs are blind to the other grad
components and the whole curl component.

e A measurement of unexpected values for these components would
reveal correlations in the background and profound new physics.



