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Flat rotation curves of galaxies
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» Instead we find v(r) constant = Dark Matter (DM) halo :
1
Phalo ™~ 7z
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The cosmological concordance model ACDM
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From Planck collaboration

» Discrepancy between dynamical and visible masses in clusters of
galaxies,

» Formation and growth of large scale structures,
» Temperature fluctuations in the cosmic microwave background,

> Content of our universe: dark energy (~ 68%, unknown), dark matter
(~ 27%, unknown) and baryons (~ 5%).
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The cosmological concordance model ACDM

Dark Matter

Dark Energy

v

Discrepancy between dynamical and visible masses in clusters of
galaxies,
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Formation and growth of large scale structures,
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Temperature fluctuations in the cosmic microwave background,
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Content of our universe: dark energy (~ 68%, unknown), dark matter
(~ 27%, unknown) and baryons (~ 5%).
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The mass discrepancy - acceleration relation [Famaey &

McGaugh, 2012]
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Milgrom’s law (1983)
Modification of the Newtonian gravitational acceleration

p(lgl/ao) g =gn

> ap ~ 1.2 x 1071% ms~2 is the MOND acceleration constant,

» u is the MOND interpolating function :

(@) ;711 in the newtonian regime g > ao,
wz) ;= *  in the MOND regime g < ao .

Newtonian regime g>> a

MOND regime g<< a |

oo
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Milgrom’s law (1983)

Modification of the Newtonian gravitational acceleration

1 (lgl/a0)g = gn,

> ap~ 1.2 x 1071% ms~2 is the MOND acceleration constant,

» 1 is the MOND interpolating function :

wu(x) s>t 1 in the newtonian regime g > ao,
w(z) ;= *  in the MOND regime g < ao .

» We recover the flat rotation curves of galaxies,

‘C? (;ZL[(LO
—_— :g: 3
T T
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The Baryonic Tully-Fisher Relation piccaugh, 2011]

Vi ~ (a0GM,)'*

ag ~ 1.2 x 107 mg™2

Laura BERNARD 16/02/2015



The Baryonic Tully-Fisher Relation [sik & Mamon, 2012]

mass in baryons (M)
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Baryonic mass vs rotation velocity cGaugh, 2014)
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Some Relativistic MOND theories

Modified gravity theories
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Some Relativistic MOND theories

Modified gravity theories

» Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]
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Some Relativistic MOND theories

Modified gravity theories

» Tensor-Vector-Scalar theory (TeVeS) [Bekenstein 2004, Sanders 2005]

» Non canonical Einstein-aether theories [Zlosnik et al. 2007, Halle et
al. 2008]

» BIMOND, a bimetric theory of gravity [Milgrom 2009]

» Non local theories [Deffayet et al. 2011]

Modified dark matter theories

» Dipolar Dark Matter [Blanchet & Le Tiec 2008;2009]
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The MOND equation and its dielectric analogy

Modified Poisson equation for the gravitational field
[Bekenstein & Milgrom, 1984]

v. (u (a%) g) — —4nGpy, withg=VU.
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The MOND equation and its dielectric analogy

Modified Poisson equation for the gravitational field
[Bekenstein & Milgrom, 1984]

v. (u (ago) g) — —4nGpy, withg=VU.

Analogy with a dielectric medium

Writing ¢ = 1 4+ x where x is the gravitational susceptibility, the
analogy with a dielectric medium is apparent,

AU = —4nG (py + ppol)

where ppo1 = =V - P and P = — 25 g is the polarization of some DM
medium and x < 0 (because p < 1).

Laura BERNARD 16/02/2015



Dipolar Dark Matter [Bianchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field £,
SppMm = /d4wv -9 [—P + JME — V(PL)} ;
with P, = p&, the polarization field and

A 167>
V(PL) = +2n P+ ﬁPf +oP).
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Dipolar Dark Matter [Bianchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field £,
SppMm = /d4wv -9 [—P + JME — V(PL)} ;
with P, = p&, the polarization field and

A 167>
V(PL) = +2n P+ ﬁPf +oP).

Success

» Indistinguishable from A-CDM at first order in cosmological
perturbations.
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Dipolar Dark Matter [Bianchet & Le Tiec 2008;2009]

Dark matter fluid endowed with a dipole moment vector field £,
SppMm = /d4wv -9 [—P + JME — V(PL)} ;

with P, = p&, the polarization field and

A 2 1671'2 3 4
V(PL)=—+2nP —P Py).
(L) 871’+7r l+3a0 L-‘r‘O( L)
Success
» Indistinguishable from A-CDM at first order in cosmological
perturbations.
Drawbacks

» Requires a weak clustering hypothesis to recover the MOND
equation : the dipolar DM medium should not cluster much in galaxies
compared to baryonic matter and stays at rest, p &~ po < pp.

> Instability of the evolution of the dipole moment vector & (with a
very long time scale).

» No microscopic description for the dipole moment.

Laura BERNARD 16/02/2015



Plan

Modified Dark Matter and bimetric gravity

Laura BERNARD 16/02/2015



Microscopic description of a dipolar DM medium

» We describe the dipolar DM medium as made of individual dipole
moments p = m&, with a polarization field P = np.

» The polarization field P should be aligned with the gravitational field,

P=- 4Gg and ppo1 =—-V P,

with x < 0, such that the constituant have an ”anti-screening”
behaviour, in agreement with MOND.
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Microscopic description of a dipolar DM medium

» We describe the dipolar DM medium as made of individual dipole
moments p = m&, with a polarization field P = np.

» The polarization field P should be aligned with the gravitational field,

P=- 4Gg and ppo1 =—-V P,

with x < 0, such that the constituant have an ”anti-screening”
behaviour, in agreement with MOND.

» The dipole moment can be seen as pairs of particles with positive and
negative gravitational masses (m;, mgy) = (m,+m) — cannot be coupled to

GR.
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Non-relativistic description of a dipolar DM medium

» To describe the individual dipole moments correctly, the two species of
DM particles couple to two different gravitational potential U and U,

dv dv _ ﬁ_
E—V(U'Hﬁ)» E—V(Q ?), q =VU.

» A non-gravitational internal force ¢ is necessary to stabilize the

dipolar medium
—4rG
Ap=——(p—p)
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Non-relativistic description of a dipolar DM medium

» To describe the individual dipole moments correctly, the two species of
DM particles couple to two different gravitational potential U and U,

dv dv _ ﬁ_

» A non-gravitational internal force ¢ is necessary to stabilize the

dipolar medium
—4rG
Ap=——(p—p)

» When the mechanism of gravitational polarization will take place,
U = —U such that we recover the MOND formula,

V - [VU — 47P] = — 4Gy, .
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Non-relativistic description of a dipolar DM medium

» To describe the individual dipole moments correctly, the two species of
DM particles couple to two different gravitational potential U and U,

dv dv _ %_

» A non-gravitational internal force ¢ is necessary to stabilize the

dipolar medium
—4rG
Ap=——(p—p)

» When the mechanism of gravitational polarization will take place,
U = —U such that we recover the MOND formula,

V - [VU — 47P] = —47Gpy .
» When weakly excited, the dipolar dark matter medium behaves as a
polarizable and stable plasma of particles,
¢
ap TUE=
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Modified Dark Matter and bimetric gravity

Going to a relativistic model

> One needs two metrics g, and g . interacting with each other
through f.. algebraically defined by the implicit relation

S = f"° 9on g, = i v 9,5

Laura BERNARD 16/02/2015



Modified Dark Matter and bimetric gravity

Going to a relativistic model

> One needs two metrics g, and g . interacting with each other
through f.. algebraically defined by the implicit relation

S = f"° 9on g, = i v 9,5

» Two kinds of dark matter p and p, with mass currents J* = pu*
and J" = pu", and respectively coupled to g,. and 9

Laura BERNARD 16/02/2015



Modified Dark Matter and bimetric gravity

Going to a relativistic model

> One needs two metrics g, and g . interacting with each other
through f.. algebraically defined by the implicit relation

S = f"° 9on g, = i v 9,5

» Two kinds of dark matter p and p, with mass currents J* = pu*
and J" = pu", and respectively coupled to g,. and 9

» Ordinary baryonic matter p, living in the sector g..,

Laura BERNARD 16/02/2015



Modified Dark Matter and bimetric gravity

Going to a relativistic model

> One needs two metrics g, and g . interacting with each other
through f.. algebraically defined by the implicit relation

S = f"° 9on g, = i v 9,5

» Two kinds of dark matter p and p, with mass currents J* = pu*
and J" = pu", and respectively coupled to g,. and 9

» Ordinary baryonic matter p, living in the sector g,.,

> A vector field K, living in the interacting sector f,, and with a
non-canonical kinetic term.

Laura BERNARD 16/02/2015



The action

The action

S:/d%{*/jg(R;z:A_pb_ >+\/7( 3o >

+V=F {Rm e Y W(—HWH“”} }

16me 8m 2a3
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The action

The action

5= foee <32”-ﬂb->+f(3 =)

» the ordinary sector : g,., A, pp and p,
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The action

The action

S

+¢—7[W+u 9+ SR

It is divided in three sectors

» the ordinary sector : g,., A, pp and p,

» the hidden sector : 9 A, and p,
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The action

The action

S/d4x{ﬁ<R3_2:Apb >+\ﬁ< 3271' >

It is divided in three sectors :

» the ordinary sector : g,,, A, py and p,

» the hidden sector : 9y A, and p,

» the interacting sector : fu,[g,g], Ay and K.
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The action

o ()

2/\f ao or VH;UJ
\/ - K, —_—— .
* [ = LRl e roa)

» Three different cosmological constants in the three sectors, will be
related to the observed cosmological constant Aops.
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The action

o ()

2)\f ” a(Q) HHVHMV
\ — K — - .
* [ 167e + 0" A VK + 8w Wi 2a(2) )

» Three different cosmological constants in the three sectors, will be
related to the observed cosmological constant Aops.

> ¢ measures the strength of the interaction between the two sectors.
In the (post-)Newtonian limit we will assume ¢ < 1.

Laura BERNARD 16/02/2015



The action

ol ) ()

— 2\ H"™ H,,
+f[ Ty ‘ )H

167e = 87 2a3

» Three different cosmological constants in the three sectors, will be
related to the observed cosmological constant Aops.

> ¢ measures the strength of the interaction between the two sectors.
In the (post-)Newtonian limit we will assume ¢ < 1.

» The function W is determined phenomenologically to recover
» MOND in the weak field limit X — 0,

W(X) = X — §X3/2 +O(X?),
» 1PN limit of GR in the strong field limit X > 1,
W(X) :A+%+O(X‘“‘l), a>0.
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Equation of motion

Einstein field equations

V=g (G" + Xg"") + ~— ;f ALy (g"" + /\ff"") = 167 {\/Tg(Tg”’ +TH)
+ /= fAR 7|
VEE(@ 4 2g) + YL (0 o) = 16m [ g+ VT AL

Equations of motion

ay = 0,
a* = u Hp, D, (W' H*) = 4x (j* — j*) .
Q# = _QU Huu-
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Perturbative solution to the implicit relation for f,,

> Matrix formulation : we define G}, = f*?g,, and G}, = f"”g“p7 the

implicit relation becomes
GG=GG=1
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Perturbative solution to the implicit relation for f,,

> Matrix formulation : we define G}, = f**g,, and G}, = f”"gw, the

GG=GG=1

» Defining H = %(G — Q), we get the perturbative solution

G=H++/1+H?
G=—-H+ 1+ H?
p+l(op—3)I

with /1 + H2 =Y 1% 5, H?  with ~, = & 1

implicit relation becomes

16/02/2015
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Perturbative solution to the implicit relation for f,,

> Matrix formulation : we define G}, = f**g,, and G}, = f”"gw, the

GG=GG=1

» Defining H = %(G — Q), we get the perturbative solution

G=H+ 1+ H?
G=—-H+ 1+ H?
p+l(op—3)I

with v/1 + H2 = Z;’B vp H?®  with =, = HT

» Returning to a metric formulation,

Guv = (fw + huw + xw) , and QW = (fw — huw + mw)

implicit relation becomes

: _ +oo P1 IgP2 ... IyP2r—1
with z,, = szl vp HiP HJ? Hoyl o hups, -
16/02/2015
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Linearizing matter and gravitational fields

» Pertubative solution for f,. :

Guv :fuv+huv+o(h2)a QW :fuv_huv+0(h2)v
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Linearizing matter and gravitational fields

» Pertubative solution for f,. :

Guv :fuv+huv+o(h2)u QW = fuv _huv+0(h2)v

» Plasma-like hypothesis :

» The two fluid of DM particles differ from a common equilibrium
configuration by small displacement vectors y* and y*,

3= 96+ D oY -y + 0 ()

. . v v 2

lu = jb+Dy (jogi *J(‘)Lgl) +(9(y ) ,
> inserting it in the equation of motion for the vector field

D, (W' H") = 4x (j* — j*), we obtain the plasma-like solution
for the internal field, with &* = y* — y*,

W H" = a(jo€f —i5¢0) +0(2).

Laura BERNARD 16/02/2015



Linearizing matter and gravitational fields

» Pertubative solution for f,. :

Guv :fuv+huv+o(h2)u QW = fuv _huv+0(h2)v

» Plasma-like hypothesis :

» The two fluid of DM particles differ from a common equilibrium
configuration by small displacement vectors y* and y*,

3= 96+ D oY -y + 0 ()
o= i+ (G - i) + 0 )
> inserting it in the equation of motion for the vector field

D, (W' H") = 4x (j* — j*), we obtain the plasma-like solution
for the internal field, with &* = y* — y*,

W H" = o (jo€f —jhel) +0(2).
> All perturbation variables are of the same order of magnitude

Vy~Vy~h~O(1).
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Cosmological perturbations

Background solutions : FLRW metrics

G sy }

FLR
[, vij]

FLRW [\/(ﬁ ,Y”]

» We recover the standard background equations with the observed
cosmological constant being Aops = A = a Af = o )\, with

a = = = cste.

lele
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Cosmological perturbations

Background solutions : FLRW metrics

G sy }

FLR
[, vij]

FLRW [\/@ ,Y”]

» We recover the standard background equations with the observed
cosmological constant being Aops = A = a Af = o )\, with

a = = = cste.

lele

First order cosmological perturbations

e Cosmological perturbations variables
> in the g-sector : {¥, ®, &', EY} {5 V, V'} and {ps, u}'},
> in the g-sector : {¥, ®, @', EY} and {87, V, V'},
> in the f-sector : &f = (0, D'z + 2*).

e Then we compare the ordinary sector g,,, on which ordinary matter
moves with A-CDM scenario — identify the observed dark matter

variables in the sector g, .
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First order cosmological perturbations

» Introducing new effective dark matter variables in the observable

g-sector
° 2e o F F 1
_ py =0 ——(Az—(A—A
Pome=17727, M o (B2 — (A= 4)),
VDM:V+i(z'+l(B—B)) ng:vi+i z”'+1(B"—Bi)
2¢ 2 = 2¢ 2 = ’
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First order cosmological perturbations

» Introducing new effective dark matter variables in the observable

g-sector
° 2e o F F 1
_ py =0 ——(Az—(A—A
Pome=17727, M o (B2 — (A= 4)),
Vom =V + L (2 +2(B-B Viw=Vite L (2 + L mop
DM = +25(z +§( —7)), DM = +2€ z +§( -BY ),

1. we recover the standard continuity and Euler equations for
the effective dark matter,

5/EM + AVbuMm =0,
Vim +HVom +¥ =0,  Vpy+HVEy =0.
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First order cosmological perturbations

» Introducing new effective dark matter variables in the observable

g-sector
° 2e o F F 1
_ py =0 ——(Az—(A—A
Pome=17727, M o (B2 — (A= 4)),
Vom =V 4+~ (' + L(B—B Viw=Vite L (2 + L mop
DM = +25(z+§( - B)), DM = +25 z +§( -BY),

1. we recover the standard continuity and Euler equations for
the effective dark matter,

6/EM + AVpm =0,
Vom +HVom + ¥ =0,  V'py+HViu =0.

2. we get for these new effective variables the same gravitational
perturbation equations as in A-CDM, e.g. ¥ — & = 0.
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First order cosmological perturbations

» Introducing new effective dark matter variables in the observable

g-sector
° 2e o F F 1
_ py =0 ——(Az—(A—A
Pome=17727, M o (B2 — (A= 4)),
Vom =V 4+~ (' + L(B—B Viw=Vite L (2 + L mop
DM = +25(z+§( - B)), DM = +25 z +§( -BY),

1. we recover the standard continuity and Euler equations for
the effective dark matter,

6/EM + AVpm =0,
Vom +HVom + ¥ =0,  V'py+HViu =0.

2. we get for these new effective variables the same gravitational
perturbation equations as in A-CDM, e.g. ¥ — & = 0.

» There are similar equations in the unobservable dark sector ; in
particular the whole set of equations is fully consistent.
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Non-relativistic limit of the model

In the limit where € < 1,

1. U=-U,

2. At equilibrium the polarization field P is aligned with the
gravitational field, ,
P=pA=% VU,

3. We recover the MOND formula in the weak field regime with
/.L:1—W/: \VU\’

ao

V - [VU — 47P] = —47Gpy

4. The dipolar dark matter medium should undergoes stable plasma-like
oscillations ,
d=¢ 9 X | 8 po*
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Solar system tests

In the limit where e <K 1

1. To recover GR in the strong field regime (X — co), we impose

W(X):A+%+O(Xi+l), a <0,

2. And expand both metrics up to second order in h

1 1
Guv = fur + b + ihm,hpu and 9, = fur — by + ihuphpu.

3. Post-NNewtonian expansion

» We expand the metrics to get the standard PN potentials
1PN i 1PN i
G [V, V'] and 9., v, v,

» We obtain the same parametrized PN parameters as in GR

ﬁlPNzl, 1PN71’

¥ = all others being zero .

Laura BERNARD
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Investigating the gravitational sector at linear order

1

Sy = 55m {\/_R+\/_R+ \/_R}
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Investigating the gravitational sector at linear order

S, = ! {FR+fR+ \ﬁn}

327
+k and define

= 77!“’ uvd

» To linear order we write guv = Ny + kuv, 9.,
the gravitational modes
(k#” +-EHV)'

N =

Spv = (kw—l—kw) and hp, =

N =

_ 2z wivp w
Sy = 3%/ { Ouhuy O"BYP + HLH

1 te (—5 Dusvp 03 + 5,5") } + 0(3)

+

where A" = hH" — in*h and H" = d,h™.

16/02/2015
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Investigating the gravitational sector at linear order

S, = L {FR+fR+ \ﬁn}

327
+k and define

= 77!“’ uvd

» To linear order we write guv = Ny + kuv, 9.,
the gravitational modes
(k#” +'Euu)'

N =

spw = = (ko +k,,,,) and  hy, =

N | =

_ L wivp w
Sy = 3%/ { Ouhuy O"BYP + HLH

1 te (—5 Dusvp 03 + 5,5") } + 0(3)

+

where h* = hHY — %n“"h and H" = 8JL*“’.

» Sum of two massless non-interacting spin-two fields
16/02/2015
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Summary

Results

» The model is indistinguishable from the standard A-CDM paradigm at
cosmological scales,

» It correctly reproduces the phenomenology of MOND in the
non-relativistic limit without any weak clustering hypothesis, and the
dipolar DM medium is stable,

> It passes solar system tests (same ppN parameters as GR),

> At linear order the gravitational sector is safe.
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Summary

Results

» The model is indistinguishable from the standard A-CDM paradigm at
cosmological scales,

» It correctly reproduces the phenomenology of MOND in the
non-relativistic limit without any weak clustering hypothesis, and the
dipolar DM medium is stable,

> It passes solar system tests (same ppN parameters as GR),

> At linear order the gravitational sector is safe.

Remarks and perspectives

» Check the consistency of the model by counting the propagating
degrees of freedom at the non-linear level,

» The arbitrary function W should in principle be derived from a more
fundamental theory,

» Test the model by performing N-body simulations, in particular to
look at the scale of galaxy clusters.
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