Stochastic perturbation of integrable systems

Khanh Dang Nguyen Thu Lam and Jorge Kurchan

LPS-ENS, Paris

IAP2015

Integrable systems

N independent constants of motion

Action $(I_1,...I_N)$ and Angle $(\theta_1,...,\theta_N)$ variables

Action-angle representation

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial I}{\partial \theta}$$

$$\begin{split} \dot{I}_i &= -\frac{\partial H}{\partial \theta_i} \\ \dot{\theta}_i &= \frac{\partial H}{\partial I_i} = \omega_i(\mathbf{I}) \end{split}$$

Flow is *laminar*, restricted to tori $I_i = const$, $\theta_i = \omega_i t$

Topology: stationary points and separatrices

Integrable Kepler trajectories, perturbed by other planets

Perturbations: the KAM result

the example of a periodically kicked pendulum

Chaos. The Lyapunov instability

Lyapunov time (million Years) Moser

Mercury 1.4M Venus 7.2 M Earth 4.8M 4.5M Mars Jupiter 8.4 M Saturn 6.4M Uranus 7.5M Neptune 6.7M

with some grains of salt...

More importantly, it poses questions about stability

Our strategy:

We perturb with weak, additive noise

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i} + \varepsilon^{\frac{1}{2}} \xi_i(t)$$

mostly consider the case in which the $\xi(t)$ are white noises:

$$\langle \xi(t) \rangle = 0,$$
 and $\langle \xi(t)\xi(t') \rangle = 2\delta(t-t').$

In the action-angle variables, the noise is no longer additive, and reads:

$$\begin{split} \dot{I}_i &= \varepsilon^{\frac{1}{2}} \sum_k \{I_i, q_k\} \xi_k(t) \\ \dot{\theta}_i &= \omega_i + \varepsilon^{\frac{1}{2}} \sum_k \{\theta_i, q_k\} \xi_k(t) \end{split}$$

Surprise: a Lyapunov instability appears

two trajectories subjected to the *same* noise diverge exponentially

To leading order, everything happens

along the flow (on the tori)

Quick flash of calculation

$$\dot{u}_{\theta i} = \sum_{j} \frac{\partial^{2} H}{\partial I_{j} \partial I_{i}} u_{Ij}$$

$$\dot{u}_{Ii} = \sum_{kj} \frac{\partial^{2} q_{k}}{\partial \theta_{i} \partial \theta_{j}} (\varepsilon^{-\alpha} t) \, \xi_{k}(t) \, u_{\theta j}$$

$$\dot{u}_{\theta} = \frac{d^{2}H}{dI^{2}} u_{I}$$

$$\dot{u}_{I} = \rho(t)u_{\theta}$$

with
$$\overline{\rho(t)\rho(t')} = \delta(t-t')\Lambda_{II\theta\theta}$$
.

$$\Lambda_{II\theta\theta} = \overline{\left(\frac{\partial^2 q}{\partial \theta^2}\right)^2} = \overline{\left(\frac{\ddot{q}}{\omega(I)^2}\right)^2}$$

Quick flash of calculation

$$\dot{u}_{\theta} = \frac{d^2 H}{dI^2} u_I$$

$$\dot{u}_I = \rho(t) u_{\theta}$$

$$\ddot{u}_{ heta}=rac{d^{2}H}{dI^{2}}
ho(t)u_{ heta}$$
 put $z=rac{\dot{u}_{ heta}}{u_{ heta}}$

$$\ddot{u}_{\theta} - \frac{d^2H}{dI^2}\rho(t) u_{\theta} \qquad ; \qquad \dot{z} - z^2 = \rho(t)$$

we connect with Halperin, Gardner-Derrida, Mallick-Marcq, ...

Result:

$$\lambda = \omega'(I)\langle z \rangle = \left(\frac{3}{2}\right)^{1/3} \frac{\sqrt{\pi}}{\Gamma(\frac{1}{6})} \left(\varepsilon(\overline{q})^2 \left(\frac{1}{\omega} \frac{d\omega}{dH}\right)^2\right)^{1/3}.$$

in terms of the average of \ddot{q} over a cycle

Separatrices: the pendulum $H = \frac{1}{2} p^2 + 1 - \cos q$

$$\lambda = \omega'(I)\langle z \rangle = \left(\frac{3}{2}\right)^{1/3} \frac{\sqrt{\pi}}{\Gamma(\frac{1}{6})} \left(\varepsilon \overline{(\ddot{q})^2} \left(\frac{1}{\omega} \frac{d\omega}{dH}\right)^2\right)^{1/3}.$$

Separatrices: the pendulum

$$H = \frac{1}{2} p^2 + 1 - \cos q$$

For $\delta \equiv |H-2|$, one may compute

$$\omega(\delta \to 0) \simeq \frac{\pi}{|\log \delta|} \to 0$$

$$\frac{1}{\omega} \frac{d\omega}{dH} \sim \frac{1}{\delta |\log \delta|} \to \infty.$$

$$\varepsilon^{-\frac{1}{3}}\lambda \to \infty$$
.

The angle α of the Lyapunov vector with the torus

$$\alpha = \arctan z = \arctan \left(\frac{u_I}{u_\theta}\right)$$

The angle α follows a Langevin equation:

$$\dot{\alpha} \approx -\frac{dV}{d\alpha} + \frac{1}{\tau\omega'} \, \xi(t)$$

$$V(\alpha) = \frac{\omega'}{2} \left(\alpha - \frac{1}{2} \sin 2\alpha - small \right)$$

Evolution of the angle

is punctuated by fast phase-slips

A numerical example

Meanwhile, the modulus grows steadily between slips

One finds a universal result: $\langle t_{slip} \rangle = 1.81 \ \tau_{\lambda}$

A polymer in laminar flow

Chertkoff, Kolokov, Lebedev and Turitsyn

Polymer statistics in a random flow with mean shear

FIGURE 1. Polymer orientation geometry.

The problem is closely related to a classical problem in solid state

localization in a pseudorandom potential (band-edge)

$$\ddot{u}_{\theta i} + \sum_{j} u_{\theta j} = \ddot{u}_{\theta i} + \sum_{j} \hat{H}_{ij} u_{\theta j}$$

Shrödinger eigenvalue equation

$$u_{\theta i} \to \psi_i$$
 and $t \to x$,

$$\nabla^2 \psi + \mathbf{\hat{H}} \psi = e\psi$$

density of zeroes $e < 0 \rightarrow$ number of phase-slips per unit time

Gardner-Derrida

... many things to learn from this vast literature

Weakly perturbed integrable models: mimicking complicated perturbations with stochastic ones

1. An integrable mean-field

2. Perturbation in planetary systems

A regime beyond KAM, and beyond the Nekhoroshev, for which there is no theory (?)

A spherical mean field, time-dependent granularity is the nonintegrable perturbation

Integrable Kepler trajectories, perturbed by other planets

Lyapunov time (million Years) Moser

Mercury	1.4M		
Venus	7.2 M		
Earth	4.8M		
Mars	4.5M		
Jupiter	8.4 M		
Saturn	6.4M		
Uranus	7.5M		
Neptune	6.7M		

with some questions that I have...

A simple system perturbed by noise

$$\langle t_{slip} \rangle = 1.81 \ \tau_{\lambda}$$

Pluto and Saturn phase-slips J. Wisdom

Fermi-Pasta-Ulam chain

$$H = \sum_{i=1}^{N} \left(\frac{1}{2} p_i^2 + \frac{1}{2} (x_i - x_{i+1})^2 + V(x_i - x_{i+1})^4 \right)$$

Is way beyond the KAM regime, has a large Lyapunov exponent

and yet is famously slow in thermalizing!

Fermi-Pasta-Ulam chain (Benettin)

$$H = \sum_{i=1}^{N} \left(\frac{1}{2} p_i^2 + \frac{1}{2} (x_i - x_{i+1})^2 + V(x_i - x_{i+1})^4 \right)$$

$$V(r) = \frac{r^2}{2} + \alpha \frac{r^3}{3} + \beta \frac{r^4}{4} = \frac{1}{4\alpha^2} (e^{2\alpha r} - 1 - 2\alpha r) + small$$

Integrable + small: a case we can understand

Fermi-Pasta-Ulam chain (Benettin)

Just like the planets, most of the Lyapunov instability is 'on the torus'

Froeschlé model

$$H = \sum_{i=1}^{N} \frac{I_i^2}{2} + I_0 + \frac{\epsilon(N+2)}{1 + \frac{1}{N+2} \sum_{i=0}^{N} \cos \theta_i} + \sum_{i=1}^{N} \cos \theta_i$$

Froeschlé model

$$\begin{split} \dot{\theta}_0 &= 1, \\ \dot{\theta}_i &= I_i \\ \dot{I}_i &= -\epsilon \sin \theta_i - \epsilon \sin \theta_i \xi(t), \end{split}$$

with the 'effective noise'

$$\xi(t) = \left(1 + \frac{1}{N+2} \sum_{i} \cos \theta_i\right)^{-2} - 1.$$

each degree of freedom is a perturbed pendulum

Estimate the noise characteristics for random *I*_s with variance β

$$\xi(t) = -\frac{2}{N+2} \sum_{i=0}^{N} \cos \theta_i + \frac{3}{(N+2)^2} \left(\sum_{i=0}^{N} \cos \theta_i \right)^2 + \mathcal{O}(N^{-3}).$$

$$\langle \xi \rangle = \frac{3}{2} \frac{N+1}{(N+2)^2} \simeq \frac{3}{2N},$$
$$\langle \xi^2 \rangle = 2 \frac{N+1}{(N+2)^2} \simeq \frac{2}{N}$$

$$\sigma^2 = \langle \xi^2 \rangle - \langle \xi \rangle^2 \simeq \frac{2}{N}$$

Estimate the noise characteristics

Autocorrelation

Using the true $\xi(t)$ as a noise on a separate system

we get a rather good agreement

4 < N < 8192

Diffusion of the eccentricity of Mercury, slightly different runs

Laskar

Figure 1 \mid Mercury's eccentricity over 5 Gyr. $\,$ Evolution of the maximum

•	Suggests a statistical treatment might be illuminating also
	in this very different regime

Ordinary diffusion, Taylor diffusion and Lyapunov regimes

