Stochastic perturbation of integrable systems

Khanh Dang Nguyen Thu Lam and Jorge Kurchan
LPS-ENS, Paris

IAP2015



Integrable systems

N independent constants of motion

Action (I1,...Iy) and Angle (61, ..., 0y ) variables



Action-angle representation
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Flow is laminar, restricted to tori

Topology: stationary points and separatrices






Perturbations: the KAM result

the example of a periodically kicked pendulum




Chaos. The Lyapunov instability
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Lyapunov time (million Years) moser

Mercury 1.4M
Venus 7.2M
Earth 4.8M
Mars 4.5M
Jupiter 8.4 M
Saturn 6.4M
Uranus 7.5M
Neptune 6.7M

with some grains of salt...



The loss of integrability means that not much may be done
analytically, and there is also trouble numerically

More importantly, it poses questions about stability



Our strategy:

We perturb with weak, additive noise
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mostly consider the case in which the £(¢) are white noises:



In the action-angle variables, the noise is no longer additive, and
reads:
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Surprise: a Lyapunov instability appears
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two trajectories subjected to the same noise diverge
exponentially



To leading order, everything happens
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along the flow (on the tori)




Quick flash of calculation
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Quick flash of calculation
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we connect with Halperin, Gardner-Derrida, Mallick-Marcq, ...



Result:
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in terms of the average of j over a cycle



Separatrices: the pendulum H = 1 p? + 1 — cosg
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Separatrices: the pendulum
H=%p2+1—cosq

For 0 = |H — 2|, one may compute

law 1
wdH  d|logd| o

1
ET3N — 00.



The angle « of the Lyapunov vector with the torus
uy
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The angle « follows a Langevin equation:
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Evolution of the angle

is punctuated by fast phase-slips
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A numerical example




Meanwhile, the modulus grows steadily between slips

norme,
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One finds a universal result: (ty;,) = 1.81 7,



A polymer in laminar flow

Chertkoff, Kolokov, Lebedev and Turitsyn

Polymer statistics in a random flow with mean shear
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FIGURE 1. Polymer orientation geometry.



The problem is closely related to a classical
problem in solid state

localization in a pseudorandom potential -
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Shrodinger eigenvalue equation
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density of zeroes ¢ < 0 — number of phase-slips per unit time

Gardner-Derrida

power law (band edge)

exponentially rare very frequent

density of levels

... many things to learn from this vast literature



Weakly perturbed integrable models: mimicking
complicated perturbations with stochastic ones

1. An integrable mean-field

2. Perturbation in planetary systems

A regime beyond KAM, and beyond the Nekhoroshev, for which
there is no theory (?)









Lyapunov time (million Years) moser

Mercury 1.4M
Venus 7.2M
Earth 4.8M
Mars 4.5M
Jupiter 8.4 M
Saturn 6.4M
Uranus 7.5M
Neptune 6.7M

with some questions that | have...



A simple system perturbed by noise
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Pluto and Saturn phase-slips 4. wisdom
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Fermi-Pasta-Ulam chain
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Is way beyond the KAM regime, has a large Lyapunov exponent

and yet is famously slow in thermalizing!



Fermi-Pasta-Ulam chain (Benettin)
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Integrable + small: a case we can understand



Fermi-Pasta-Ulam chain (Benettin)

Just like the planets, most of the Lyapunov instability is ‘on the
torus’



Froeschlé model

N
I? e(N +2
HZZ?l-i-Io-i- ( ) +Zcos€,¢

N

i— 1
i=1 1—{—N—+2;COS¢9¢



Froeschlé model
0y =1,
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with the ‘effective noise’
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each degree of freedom is a perturbed pendulum



EStimate the nOise Chal‘acteristics for random I; with variance 3
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Estimate the noise characteristics

Autocorrelation
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Using the true £(¢) as a noise on a separate system
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we get a rather good agreement
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Diffusion of the eccentricity of Mercury, slightly different runs

Laskar

-
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Figure 1| Mercury’s eccentricity over 5Gyr. Evolution of the maximum



@ Suggests a statistical treatment might be illuminating also
in this very different regime






Ordinary diffusion, Taylor diffusion and Lyapunov regimes
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