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INTRODUCTION




VWhy modify gravity™?

Why modify gravity?

- cosmological constant problems,

- hon-renormalizability problem,

- benchmarks for testing General Relativity
- theoretical curiosity.

Many ways to modify gravity:

- f(R), scalar-tensor theories,

- Galileons, Horndeski (and beyond) theory, KGB, Fab-four,
- higher-dimensions,

- DGP,
- Horava, Khronometric
- massive gravity

- Naively, cancellation of the cosmological constant,
because of the Yukawa decay;
- Small cosmological constant due to small graviton mass



Old problems of massive gravilty

1.
PhyS|Ca I gh OSt [ Boulware&Deser’'72]

2.

Extra propagating degrees of freedom.

It is difficult to pass basic Solar system gravity tests.
VDVZ d|SCOnt|nU|ty [van Dam&Veltman’70, Zakharov’'70]



Fierz-Pauli massive gravity

Expand the Einstein-Hilbert action:

Juv — Nuv + h,uy

1
Sar = M3 / d*z\/—gR = / d*x (—§h“’/5ﬁ‘fha5> + O(h?)

1 1 1 1 1
gﬁé’/ﬁhaﬁ — _ia“a’/h - 5 h/“/ + §apalih5 + iapal/hﬁ — §nuv(apaahpa —

2 propagating spin: 2 massless gravitons, spin-2

% = 2%+ &% hy = —Euw — Sy




Fierz-Pauli massive gravity

Fierz-Pauli action (Fierz&Pauli’39):

1 1
Spp = M2 / I {_511#1/535%5 — L (b hz)}

Linearized Einstein- mass term
Hilbert term

rT = ) = —Suw — Sun

5 healthy degrees of freedom (because of a particular choice of the potential, h=0)
for a generic mass term 6 d.o.f., one is nhecessary Ostrogradski ghost

Non-linear completion ?



Non-linear massive gravity

Introduce an extra metric to construct a mass term
(in order to contract indices)

g, :physical metric, matter couples to it

fuv :an extra metric (may be dynamical or fixed)

Construct a potential, which is
invariant under diffeomorphism (common for two metrics)
+ some technical conditions



Non-linear massive gravity

potential for metric

building block: g~ *f

Sz(fu)f — —%m2M%>/d4aj \/ —f H,uI/HaT (f'uafyT — f’LWfUT) [Boulware & Deser’72

1
Sz(fb?f = —§m2M%/d4$ vV —(g H,uz/HaT (g“"g” — g‘“’gm) [Arkani-Hamed et al’03]

where H,, = g, — fu



\Vainshtein mechanism

screens exira degree of freedom

Non-linear effects restore General Relativity
close to the source
due to the non-linear effects

[Vainshtein’72]
[EB, Deffayet, Ziour‘’09'10]

Problem 2 is solved



Non-linear massive gravity

Boulvwware-Deser ghost

Generically there are two propagating
scalars: one Is a ghost !

[ Boulware & Deser’72]



dRGCT massive gravity

special case of non-linear massive gravity

Massive gravity without Boulware-Deser ghost
[de Rham, Gabadadze, Tolley’10’11, Hassan & Rosen’l2]
+many other works

\/_—1 g is physical metric;
f is fixed (flat) or extra dynamical metric.

-
o

co=1, e = [X], ez =5 (X~ [X?)) , 5 = o (IX]° = 3X][X?] 42X
ca = 57 (IX]* = 6XP[X?) + B[P + 8[X)[X7] — 6[x1)

24



Equsations of motion

7!
GH  — m2 (T,u —|—A 5,u) | I v(matter)
v % g-u | 2 Variation of
P mass term

Non-derivative
3
= 2 (VY Tl/ Y coupling of the
y — M \/7 . two metrics
— K

G, 1s the Einstein tensor for metric g,

G, 1s the Einstein tensor for metric f,,



Spherical symmetry and

beyond




Two types of (static) spherically
symmeliric solutions

Bi-diagonal: When two metrics can be put in
the diagonal form simultaneously.

Non Bi-diagonal: When this is not the case

A “no-go theorem” for bi-diagonal black holes
[Deffayet, Jacobson’1l1]



Spherically symmetric solutions

Bi-diagonal

4 Solutions with source.

Vainshtein mechanism: GR is
restored, tiny modification of GR

4 Black holes

- Bi-diagonal solutions: the two
metrics are GR-like and equal or
proportional (horizons coinside).

- hairy black holes (numerics), non-
GR

4 Stability of black holes

- Black holes are unstable (mild
tachyon-like instability)

Non Bi-diagonal

4 Solutions with source.

GR is perfectly restored

4 Black holes

- Non bi-diagonal solutions: the two
metrics are GR-like and not
proportional (horizons may not
coinside).

4 Stability of black holes
- Black holes are stable

4 Rotating solutions
- Two GR-like equal metrics

4 Rotating solutions
- Two GR-like non-equal metrics




Solutions with a8 source




Vainshtein mechanism IiNn bi-gravity

Weak-field approximation [EB,Deffayet,Ziour’10]
Vainshtein mechanism in bi-gravity [Volkov'’12] [EB,Crisostomi’13]

ds?
df?

—eVdt? 4+ eMNdr? + r2dQ2,
—e"dt? + € (r + fr,u)’2 dr? + (r + ru)QdQQ

Ny, Lbntgl, {rX, v, rl',rn'} <1

Linearized Einstein equations for metric g

Linearized Einstein equations for metric f

* Inside the Compton length r < 1/m

,u7 + ...=20 Algebraic equation of 7th order on U

All other metric functions depend on U



recovery of OR

Vainshtein mechanism IiNn bi-gravity

1.15

1.10 -

A/AGR

V'/V'gr

O Rt Ay ) [

1.05 - / -

1.00 - == |

0.95 - -




Non-Vainshtein recovery of OR

[EB unpublished]

Physical metric in the EF form,

ds? = —h(r)dv® + 2k(r)dvdr + r*d§)?

2
g
Ansatz for the second metric

ds?
& = —dv” + 25 dvdr + () = 82) dr? + (rpp)?dQ?

For C such that
B(C —1) —2a(C—1)+1=0

Recovery of GR up to a Lambda-term ~ m2



BLACK HOLES




Black holes

Schvvarzschild metric

[ Salam & Strathdee’77]

Non-bidiagonal BHs [Isham & Storey’78]
Koyama, Niz, Tasinato’l1l]+many others

Ansatz (bi-Eddington-Finkelstein form) [EB& Fabbri’13]

dsz = (1 rQ) dv® + 2dvdr + r2dQ?,
r
ds?c — {— (1 Tf) dv? - 2dvdr 4 frdeQ}
r

| Py = g bi-diagonal
Two choices: {5(0 _ 1)2 —2a(C—-1)+1=0 non-bidiagonal

For these choices the extra “mass” energy-momentum tensor
reduces to effective cosmological constant



Charged Bllack holes

Electromagnetic field coupled to g [EB& Fabbri’13]

1 2
ds® = — <1 g @ T ) dv? + 2dvdr + r*dQ)?,

2 2
r r lg

r 2

I 9
dsfe — (% |— (1 T ) dv® + 2dvdr + r*d)?
L /




Rotating Black holes

Original Kerr metric

dsg = — (1 ng) (dv + asin? 9dgb)2
+ 2 (dv + asin? Hdgb) (dfr + asin? 9d¢) + p° (d92 + sin” 9d¢2)

0> = 1%+ a*cos’d

fis flat, but unusual form

ds?c —=C"? [—dv2 + 2dvdr + 2a sin® Odrde + p*df* + (7“2 + a2) sin” 9d¢2]

( - 2 2 2 2 2
Obtained from dsy; = —dt® + dz* + dy” + dz

by:
t=v—r, x+iy=(r—ia)e’siné, z =rcosf

r—Cr, v—Cv, a— Ca
N y




Hairy bi-diagonal black holes

Asymptotically AdS hairy solutions exist [volkov’12]

— Q% dt* + N~*dr® + R°dQ°,
— a?dt* + b* dr* + U*dO?,

gudxtdz”

Juwdz"dx”

Numerical integration of a system of coupled ODEs

1.01

N' = Fi(r,N,Y,U, u, k, s, ay) i
Y/ — ‘F2(T7 N7 Y’ U7 //L7 /{7 &37 a4) |
U' = Fg(’l”, N7 Y7 Ualua Kk, Qs3, 054).

0.98 -
0.97 |
096 [ ./

0.95

0.94




Hairy bi-diagonal black holes

Asymptotically flat hairy solutions [Brito,cardoso,Pani’13]

N=1-— e "M,
2r 2r
v_1. G Gl+try |
2r 2r
O 1 2,,2
U — r 2( +T2/LQ—|—T,LL) —Tu
AT

Yukawa decay

For generic potential
only for large BH mass.

re~1/H

4 )

- J

No solutions for u<u,_

_——— O(3='O(4




PERTURBATIONS

of BLACK HOLES




FPerturbations

spherically symmetric ansatz for perturbations

[EB & Fabbri’1l4]

Perturbations of both metrics
G = Gy + 1) fuw = £+ hil)

2 /—
6Gr, =5, 09", = "5 (V4T )

; 7
Z?5> Eri Z?’J) Eri 8 8
vr r TTr r
T T @50
I 0 0 2, 0
0 0 0 hig ()
r2 sin? 6
WZ) = higy = Cohyy 18 hi%y(r) = higy(r) = hif)(r)



FPerturbations

spherically symmetric ansatz for perturbations

[EB & Fabbri’1l4]

Perturbations of both metrics
G = Gy + 1) fuw = £+ hil)

2 [/
SGH = m25TH . G = "6 <—?T ‘L) -

K
0 )0
Qu NS (T
By 6_ (f) (f) RO% (1) (2 > 0)
) C? 0 0 ) 0
h@@ (’I")
0 0 0 7“2(;)112 0

WY = R — C2pHY



Spherical Perturbations

Regularity at horizons and infinity !



Ferturbations for bidiagonal case

h(—)l::h/;_ﬁﬁ m’zm\/1+1//<;
R = p 4 b

1/_

4 ) . .
KL(=) is massive

0By (+) _ o
go0nit) =0

+)
hih)is massless

- J

~N

( VYR =K =0
hG) 4+ 2R A RS = m”h()

\_ J




Bi-diagonal case
G instability

A system of equations of second order plus 2 constraintson H;,, H;., H,,, K

Playing with equations we can obtain a single equation
on g (a combination of Hy, H,, and H;,)

& 4
d?“z 0 T [wQ - V(T)] Yo = 0 0.010

*

Unstable (£2 > 0) mode, ho
satisfying boundary conditions? |

~0.005 r

Vo = ( — T—g) {QM - 4 MM — r)m™ + 6r°(r — 4M)m”
ro (2M + r3m/2)’



Bi-diagonal case: Instability

Instability

Confirmed independently by [Brito, Cardoso, Pani’13]



Instability of black holes

rate of instability

Rate of instability

0.1

02 03 04 05 06 07 08 09
ISR

Approximately linear o « 1/m’
dependance

Q=m

for m’ ~ H%[TN H_a

Very slow instability !



Non-bidiagonal case

General solution for perturbations

[EB & Fabbri’1l4]

m pr (g, f) pr(g,f)
gy =har ™"+ Nim)

/

Wi, = —VHeY — vV EH



Non-Bi-diagonal case

explicit solution for perturbations

il =
0 ch 0 0
h,ul/(g) BQU Qe ¢ (Q — %) 0 0
0 0 cor > 0
0 0 0 co csc?(0)r—s

Qu
rr(g) _ Alrg —rp)e
rr(f) _1 rr(g)
Ay = R gy
Sinceat r — o0 v =1t -+ r the perturbations are not regular at infinity.

NO unstable modes
Non-bidiagonal solution is stable against radial perturbations



Non-Bi-diagonal case
Non-radial perturbations: QNN

[EB,Brito,Pani’1l5]
Decomposition of perturbations in axial and polar modes

The quasinormal modes are the same as those of a Schwarzschild BH in GR !

- QNM are vibration of a relativistic self-gravitating object.
- The boundary conditions are important.

For a mode to be QN, the perturbation must behave as
Ingoing wave near the horizon,

N e—i(wt—l—k_r*)
and outgoing at the infinity,

N ei(k+ Tx—wt)



Non-Bi-diagonal case

Non-radial perturbations: general perturbations

In general we do not have to assume outgoing behavior at infinity. Then the
modes are not quasinormal.

GR bi-diagonal non bi-diagonal
| dynamical “free propagating”
moncpoie pure gauge (2nd order PDE) mode
Polar dipole . “free propagating”
= pure gauge dynamical ode
. . dynamical
POlar’Iggczl axial dynamical (ddggsr:g;l{) (double GR +

source term)




CONCLUSIONS

4+ It is possible to construct non-bidiagonal solutions in massive gravity, which
are analogues of corresponding GR solutions (Schwarzschild, charged,
rotating).

There are hairy massive gravity black holes

+ ¢+

The non-bidiagonal black holes in massive gravity are stable

*

The bi-diagonal spherically symmetric BHs are unstable due to the helicity-O
mode instability. The rate of instability is extremely small.

Superradiant instability for rotating BHs in massive gravity.

The fate of unstable BHs? The endpoint of gravitational collapse?
Rotating hairy BHs?

dS hairy black holes?

Do perturbations around black holes contain ghosts?

+++ 4+



