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Science or Science Fiction?

Gödel universe


Gott time machine


Morris-Thorne wormhole


Bouncing cosmologies


Big Rip phantom cosmology


Negative mass black holes


Super-extremal black holes



Einstein on the Gödel Universe

“... cosmological solutions of 
the gravitation equations have 
been found by Mr Gödel. It 
will be interesting to weigh 
whether these are not to be 
excluded on physical 
grounds.”




“Physical Grounds” or Ad Hoc Criteria?

No closed causal curves


Stable causality


Global hyperbolicity


Cosmic censorship


Geodesic completeness


Generalized second law of thermodynamics


Energy conditions



The Null Energy Condition

The most basic of the energy conditions is the null energy condition (NEC):


where k is any light-like vector.


The weak and strong energy conditions both imply the null energy condition.


Tµ�kµk� � 0



All Metrics are Solutions of Einstein’s Equations

If there are no conditions on the energy-momentum tensor, any metric becomes 
an exact solution to Einstein’s equations: 


Simply define the energy-momentum tensor to equal the Einstein tensor.



Importance of Energy Conditions

Singularity theorems.


Positive energy theorems.


Black hole no-hair theorem.


Laws of black hole mechanics.


Exclusion of traversable wormholes, construction of time machines, creation of 
a universe in the laboratory, and cosmological bounces.


Ḣ = �(⇢+ p)  0



Energy Conditions from Matter?

The energy conditions are conventionally viewed as conditions on the energy-
momentum tensor for matter.




Matter

We have a fantastic framework for understanding matter: quantum field theory.




Violation of the Null Energy Condition in QFT

Consider a well-behaved NEC-obeying theory of matter, theory A.


Let theory B have the same action as theory A but with an overall minus sign.


Theory B then violates the NEC.


But theory B is otherwise just as well-behaved as theory A!


Hence the NEC does not follow from QFT.




In gravitational theorems, the energy conditions are always used in conjunction 
with the equations of motion. 


Why not just start with a condition on the Ricci tensor?


Perhaps the real null “energy condition” is


We will derive this condition.

How the Energy Conditions are Used in Practice

Rµ�kµk� � 0

Tµ�kµk� � 0� (Rµ� �
1
2
Rgµ�)kµk� � 0� Rµ�kµk� � 0



Viewpoint in this Talk

We will take


as a fundamental property of gravity. We will continue to refer to this as the 
“null energy condition”. But note that this is now a condition on geometry.

Rµ�kµk� � 0



Classical Gravity

Property 1:


Property 2:


Rµ�kµk� � 0

Gµ⌫ = Tµ⌫



Where Could the NEC Come From?

The geometric form of the NEC does not come from general relativity. 


We have argued that the matter form does not come from QFT either.


Hence we should look for the origin of the NEC in theories that contain both 
matter and gravity.


That is, the NEC is a clue to the unification of matter and gravity.




Local Holographic Thermodynamics



Premise of Talk

Associate gravitational entropy locally to patches of certain null surfaces.


Assume that this entropy arises from the coarse-graining of some dual 
microscopic statistical-mechanical system.




Emergent Gravity

Jacobson (1995) showed that Einstein’s equations followed from the Clausius 
relation dQ = TdS when applied to “local Rindler horizons”.


Our prescription will be somewhat different. We will attribute thermodynamic 
properties to infinitesimal (patches of) expanding future light cones.




First Law



Generalized Einstein Equations

Consider an arbitrary relativistic diffeomorphism-invariant theory of gravity:


Define


Then the equation of motion of classical gravity is


For example, for Einstein gravity, L = R, and


and this reduces to Einstein’s equations.
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Goal: Gravitational Equations from the First Law

Our goal is to derive the generalized Einstein equations


from the first law of thermodynamics, dM = TdS, applied locally.


We need to define M, T, and S.
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Local Killing Vectors

Consider an arbitrary point, P, in an arbitrary spacetime.


In the vicinity of P, spacetime is approximately flat.


Hence there are local Lorentz symmetries, generated by approximate Killing 
vectors.




M

For a Killing vector


Integrating over a compact region of spacetime, we have 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T

In the vicinity of P, spacetime is approximately flat. The local Lorentz 
symmetries include boosts. Consider a surface generated by radial boosts.


The surface                        is a timelike de Sitter-like hyperboloid. An observer 
moving along a boost has a constant proper acceleration,         . 


Define
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Wald found an expression for black hole entropy in general theories of gravity:


where 


is the “Noether potential” for a timelike Killing vector,      .


The Wald entropy reduces to A/4 for Einstein gravity.
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Change in Entropy due to Infalling Matter
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Variation of Wald Entropy

Apply the Wald entropy formula to our infinitesimal compact surface:


Then, using Stokes’ theorem, the change in Wald entropy is


That is


The term in parenthesis drops out by symmetry in indices c and d.

S =
↵

8

Z

S
dSabJ

ab = �↵

4

Z

S
dSab(P

abcdrc⇠d � 2⇠drcP
abcd)

�S
tot

=
↵

4

Z

⌃

d⌃arb(P
abcdrc⇠d � 2⇠drcP

abcd)

�S
tot

=
↵

4

Z

⌃

d⌃a

⇥
�rb(P

adbc + P acbd)rc⇠d + P abcdrbrc⇠d � 2⇠drbrcP
abcd

⇤



If      were a true Killing vector, it would satisfy Killing’s identity:


The failure of Killing’s identity to hold gives an extra term in the integral. But this 
extra term evaluates precisely to           , i.e. the increase in the entropy due to 
the inherent expansion of the hyperboloid.


That is,
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Therefore the Clausius relation says


where                                                       and


and


Putting this all together (and using the Bianchi identity) we find Einstein’s 
equations:

First Law of Gravity
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Second Law



From the Second Law to the NEC

Quote a result about near-equilibrium thermodynamic systems obeying the 
second law.


Attribute thermodynamic properties to future light cones.


Show that null congruences corresponding to near-equilibrium thermodynamic 
systems exist at every point.


Obtain the null energy condition from the second law.




Onsager Theory

Near-equilibrium thermodynamic systems 
approaching internal equilibrium via the second 
law obey not only


but also
S̈  0

G. Falkovich and A. Fouxon, New J. Phys. 6 (2004) 50.
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Entropy and Area

As before, attribute Bekenstein-Hawking entropy to infinitesimal patches of 
expanding future light cones (perhaps more generally, to all non-contracting 
infinitesimal patches of future-directed null congruences).


Then
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Near-Equilibrium Null Congruences Are Everywhere

Consider an arbitrary point, p, in spacetime. 


Let                                 where C is some constant.


We can find explicit solutions of the Raychaudhuri equation which have


For small enough    , we have


so this congruence is near equilibrium.
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Null Energy Condition from Thermodynamics

The infinitesimal patch obeys the Raychaudhuri equation:


Rewriting that equation we find, for near-equilibrium congruences, that


This is precisely the geometric form of the NEC.


M. P. and A. Svesko, “Thermodynamic Origin of the Null Energy Condition,” arXiv: 1511.06460.
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The First and Second Laws of Gravity

First law:


Second law:


Rµ�kµk� � 0

Gµ⌫ = Tµ⌫



Stringy Origin of the Null Energy Condition



Polyakov action

Worldsheet String Theory
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worldsheet metric


two-dimensional Ricci scalar of worldsheet


spacetime metric


dilaton


Worldsheet string theory = two-dimensional conformal field 
theory of D fields + two-dimensional gravity



For a string propagating in flat space, the worldsheet CFT is free. 


The equation of motion for the worldsheet metric is the 2D Einstein’s equation:


As the Einstein tensor vanishes in 2D, the worldsheet stress tensor must be 0.


Strings in Minkowski Space
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Consider the Virasoro constraint:


 


In light cone coordinates, this becomes


In other words,                        is a spacetime null vector field:


Spacetime Null Vectors from the String Worldsheet
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For a string propagating in curved space, the one-loop effective action is


Virasoro constraint in light-cone coordinates:


At zeroeth order in       we recover our original equation:


But at first order in       we miraculously discover that

Strings in Curved Spacetime
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The spacetime metric appearing in the string action is the string-frame metric.


It is related to the usual (“Einstein-frame”) metric by scaling:


Transforming the Virasoro condition to the Einstein-frame metric, we find


That is


This is precisely the desired geometric form of the null energy condition!

Einstein-Frame Metric
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Summary of Worldsheet Derivation

The null energy condition is not about matter or energy at all.


The geometric form of the “null energy condition” comes from string theory.


The origin of the null energy condition lies in gravity -- 2D gravity!


The ``physical ground” for the null energy condition is two-dimensional 
diffeomorphism invariance.


M. P. and J.-P. van der Schaar, “Derivation of the Null Energy Condition,” arXiv: 1406.5163; Phys. Rev. D.



The Dual Origins of Gravity

We have seen that the null energy condition, when viewed as a property of 
geometry, can be derived in two different ways, each based on a principle.


Similarly, Einstein’s equations can also be derived in two different ways.


But why are there two derivations?




Local Holography?

Closed String 
Worldsheet Spacetime Holographic 

Thermodynamics

Weyl 
invariance Einstein’s equations First law

Diffeomorphism 
invariance Null energy condition   Second law


