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Mathematical description of dark matter (DM)

o dark matter usually described as a perfect fluid with zero pressure
@ baryonic matter is assumed to follow the velocity distribution of DM

@ DM as perfect fluid: no generation of rotational velocity (i.e. vorticity)

From the observational side ...

@ vorticity is produced in our universe (galaxies rotate etc)

@ recently it has been measured to be correlated on scales 20k~ *Mpc

Taylor et Jagannathan [1603.02418]

How to solve this mismatch? How to go beyond the perfect fluid description?
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(1) Dark matter
@ what is CDM and WDM

@ standard description CDM: M

(2) How to go beyond perfect fluid description: possibilities...
(3) What we do: analytic method followed

(4) Results for vorticity power spectrum
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What is dark matter
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ACDM

Standard paradigm to describe evolution observed universe

ACDM

QQDE ~ 0.7
QQ/)M ~ 0.25
Qo{, ~ 0.05

CDM: thermal relics mainly cold

Relics: particle species which are decoupled from primordial plasma
Thermal: in thermal equilibrium before decoupling
Cold: non-relativistic at decoupling

( vs Hot/warm: relativistic at decoupling)
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Time line dark matter

@ early times: primordial plasma with particle species in thermal equilibrium

@ particle specie decouples when T', <« H, (rate interaction lower rate
expansion universe)

@ particle specie with mass m non relativistic when T" < m (sloppily)

e.g. neutrinos: decouple when weak interactions decouple (~ 1 MeV), non relativistic
much later (mass is 10~(1=3) eV)
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Time line dark matter

HDM UR NR
WDM UR NR
CDM NR
decoupling today
>
Temperature
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Depending on prevalence CDM or WDM : # scenarios structure formation

Standard interpretation: baryonic matter clusters in the DM potential wells

o DM mainly warm: particles with big kinetic energy, they tend to escape
from potential wells and make distribution uniform.
Cosmic structure created with a top-down scenario

@ DM mainly cold: particles with smaller kinetic energy. They stay in the
potential wells: small structures formed — bigger ones
Bottom-up scenario

This second scenario seems to be the preferred one by current observations:
dominant component of DM is cold
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Standard description CDM

CDM perfect fluid, pressureless: density and velocity (divergence) fields
continuity equation O+ Vx(1+9)v)=0
Euler equation (O + 0'0;)v; + Hoj + 0i® =0

0 = overdensity, v = peculiar velocity, ® = gravitational potential

Taking the curl of the second equation w = Vx A v

%—w +HwW —VxA[vAw] =0 — homogeneous!
n

If initial vorticity is vanishing, in this description there is no way to generate it.
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How to go beyond the standard description
of DM as perfect fluid




How to go beyond the perfect fluid approximation

e Vlasov equation: exact description!
o Linearize Vlasov? Not possible way...

e Truncation Boltzmann hierarchy!
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Beyond perfect fluid: Vlasov equation

DM description in terms of one-particle phase-space distribution function
f(n,x,p) distribution function
(x,p) comoving coord, conjugate momenta

fn,x,p)d*p d®x prob. having particle with momentum p and coord. x

If interactions are absent: distribution function is conserved in phase space

ﬂ: of +df.vxf+d£.ﬂ:0 Vlasov equation
dn M)«

Vlasov equation exactly describes the evolution of DM particles when
interactions are negligible: no other assumption introduced
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Example: background distribution function

Background distribution f(n,p) in an homogeneous and isotropic universe

S ) )
Pt =—p' physical momentum P*, comoving p*
a
-1 p\2 5 -
Fn, P) \/P2+m2:t1 (E) +m 11
,P)=|exp ——— =|exp—F"F——
! " T() P

+ depending on the spin of particles

After decoupling at Tk, df /dn = 0— f written in terms of comoving momenta does
not depend on a

Tiax

-1
/2 2
flp) = <exp VP~ my + 1) My = axm
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

f(n,x,p) =f(n,p) +6f(n,x,p)

~~ linear Vlasov for § f
U(n,k,n,p) x 6f = Z “Uy(n, k, p) Polpe)
~~Boltzmann hierarchy for ¥,

£ = 1 perfect fluid approximation

£ = 2 velocity dispersion included
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

f(n,x,p) =f(n,p) + 8f(n,%,p) Can we do the same for CDM?
~~ linear Vlasov for § f

\P(n7ka n7p) & 6f = Z(_)Z\IJZPZ(IJ’)
4
~~Boltzmann hierarchy for ¥,

£ = 1 perfect fluid approximation

£ = 2 velocity dispersion included
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Hot dark matter example: linearized Vlasov

Let us try to repeat what is usually done for HDM (e.g. neutrinos)

. CDM

f
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f(n,x,p) =f(n,p) +6f(n,x,p)

~~ linear Vlasov for § f F ~ Dirac deltal

\P(T]7 k7 n7p) & 6f = (—)Z\IJZPE(/J,)
; 6f can not be treated as small quantity

~~Boltzmann hierarchy for ¥,
We can not perturb Vlasov equation!
£ = 1 perfect fluid approximation

£ = 2 velocity dispersion included
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(Non)-relativistic kinetic theory

Solving directly Vlasov equation (perturbed) seems not to work for CDM

Beyond: which other route can be followed?

We take one step backward and we consider how the Euler and continuity

equations describing DM as a perfect fluid are derived

~~ (non)-relativistic kinetic theory
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(Non)-relativistic kinetic theory: single particle dynamics

Starting point (newtonian framework)

Newtonian dynamics of a test particle in an expanding background

8rG
H? = %ﬁ(n) evolution background
Ax® = 47Ga’8p(n, x) Poisson
dp . .
4 = —maVx® evolution particle momentum
7

(n,x) comoving coordinates, ® newtonian potential, p = madx/dn comoving
momentum, p(11,x) = p(n) + 3p(n, x)

Giulia Cusin Generation of vorticity in the universe: a perturbative approach



(Non)-relativistic kinetic theory: from single-particle to continuous

description

Single-particle description — continuous one in terms of Eulerian fields

Neom (1, X) = / d3pf(777 X, Pp) comoving number density

peom (1, X) = /dSP\/ m? + (S)Qf(n,x, p) ~ m/dspf(n,& P) p=a""pcom

; 1 da’
v (n,x) = —— /d3p —f(n,x,p) peculiar velocity
Ncom (777 X) d’?

1 dat da?
Vv o = d3 —_— X, velocity dispersion tensor
iVj U= o / p dn dn f(n,x,p) ty disp t

we can define other macroscopic quantities using higher order momenta
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(Non)-relativistic kinetic theory: Boltzmann hierarchy

For an observable A(x, p) in phase space we define an average over momenta

oy = J@PAK.P)f(n,%,P)
WA, = [ &pf(n,x,p)

(i) ol (e
dn /, dn dn /, dn /,\dn/,
Vlasov equation: continuity equation in phase space

?—f +L~Vf—mavx<l>-(?—f:0
on), ma op

It follows

We can integrate this equation over momenta ...
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Boltzmann hierarchy

(%)X+VX'[(1+5)V] =0

ov ; 1 .
——i—'v'@J) vi + Hvy = —0;® — =& (poyj
<an J p ( J)

o (n,%x) + 2HoV + 0" 0o + o’ + o7F o0’ :W

We truncate the Boltzmann hierarchy setting 7% = (u'u/u*), = 0
@ vanishing background value

@ it contains additional p/m for non-relativistic particles

vs perfect fluid approximation: only first two momenta are considered
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What is this the velocity dispersion tensor o;;

Definition

e () () (i)
dn dn /, dn /,\dn/,

"Physical” parametrization

P Y Y3
0ij = Pdij+ 35 = Sz P a3
Y13 Yoz P

pressure of DM fluid

anisotropic stress of DM fluid
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Set of equations describing CDM with velocity dispersion

(%)X+VX'[(1+5)V] =0

0 . 1,

(871] +'Ujaj) v; + Hu; = —0;® — =9’ (pO'ij)
1 P

Bnoij(n,x) + 2Ho" + vP0L0Y + 6F o7 + 7ROt = 0

Vorticity equation (curl of Euler equation), w =V, A v
e} 1
it +HW —Vx A[vAW]=—-VxA (7VX (p(r))
on p

where (Vxo)! = 9;071
@ limit perfect flud o =0 —>w =0

@ equation for o;; homegeneous: we need initial velocity dispersion!

@ NON-perturbative results
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Equation for vorticity

Vorticity equation (curl of Euler equation)

ow +HW — Vi A[VAW] ==VxA <£Vx (pa))
on p
where (Vxo)! = 9j07"

Source is non-vanishing in two cases. Recalling o;; = Pd;; + 3

@ X;; =0, non barotropic fluid P # P(p) - VP AVp #0

@ X;; # 0 non vanishing anisotropic stress

Giulia Cusin
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Summary until now

We achieved our goal to go beyond the perfect fluid description for CDM

DM described in terms 6, v, pressure P and anisotropic stress ¥
@ new source in Euler equation proportional to o;; = Pd;; + X
@ equation for the evolution of o;;

@ 0;; acts as a source for vorticity

This formalism allows vorticity to be generated!
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How we solve our system of equations
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System of equations that we need to solve

Euler equation and evolution equation for the velocity dispersion tensor

a9
<@ + vj3j> vi + Hv; = —0;P — laj (poij)
on P

8,,0” (n,x) + 2Ho" + v*00™ + 69’ + 07FOvt = 0

How to solve it? Eulerian picture? Lagrangian picture?
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Lagrangian picture and Eulerian picture

We need to solve equations in a perturbation scheme: Eulerian? Lagrangian?

@ Lagrangian picture: observer follows an individual fluid element as it
moves in space
q— 8(77, q) pathline of the volume

| sit in a boat drifting down a river

@ Eulerian picture: observer focuses on specific locations in space through
which the fluid flows as time passes

x=q+8(n,q)

| sit on the bank of a river and | watch the water passing a fixed location
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Lagrangian picture vs Eulerian picture

We use Lagrangian picture and Lagrangian perturbation theory (LPT)

A
v(x) |
JW.
! X
o, 4, % 4
0, % %G, % ‘bﬁ:"/g;/)%
%%, % ‘%@‘9@," . %, {::6 %
fA %
%‘G‘/é‘?’ //OO%

Two main advantages of Lagrangian picture:
@ J is not a dynamical field: dimensional reduction of the system

@ we do not need to linearize over §: we can describe mildly non-linear
regime § ~ 1 (where SPT breaks down)

Important! No analytic access to shell-crossing region

Giulia Cusin Generation of vorticity in the universe: a perturbative approach



Lagrangian picture with velocity dispersion

We define a Lagrangian map 8(n,q,u)

x=q+8(n,q,u)
Peculiar velocity of a fluid element is given by the implicit equation

_dx dS

= % = Tn(n,q,U)

u(n, x)

velocity dispersion induces stochasticity in the velocity of a particle in given x

Giulia Cusin Generation of vorticity in the universe: a perturbative approach



VDT stochasticity vs shell crossing

Shell crossing Velocity dispersion
@ real crossing of pathlines! @ stochastic process
e i>1 e J#1

o fluid approximation breaks down

_ s ol | (n,x) associated probability having
(1, x): crossing 2 volume elements volume element with given velocity
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Lagrangian picture with velocity dispersion

x=q+8(n,q,u)

Lagrangian map has a standard part ¥ and a stochastic part T

S(m,qu) =¥ +T

Standard langrangian displacement field: average of & over momenta

v= <g’;(n,q)>p = <g‘:(mq)>p = %I]’(n,Q)

We can relate the stochastic part to the velocity dispersion tensor via

da® da? dx’ da? i
a”=< —> —< > <—> = (T1Y =0,
i) ) () =00 la
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Some technicalities

e q > x=q+ 8(n,q,u) invertible for a given u

@ jacobian transformation

_ oz' o8" ow' o1
Ji = 55 =0t 5 =0 T 5 Yoy

stochastic part jacobian

@ transformation spatial derivatives

0 0q0 _ ;.0
x  Oxdq oq

@ we neglect stochastic contributions (consistency check a posteriori...)
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Equations in Lagrangian coordinates

Euler equation (curl+divergence) and evolution equation for oy

(7’ — 47rGa2,5) VW + €5k€ipqVjp (7’ — 27rGa2/3> Vgt

. 4wGa?
+eijrepgr¥i,p¥iq (T— 3 ﬁ) VYir = Sdiv
TVA®),; = (VOATVE) = (Sn),
CT»L] + 2%0'”‘ = (S(y‘)z]

where 7 = 8,27 + HOp; all time derivatives are at q = constant. The sources are

Saiv = faw(¥,0)  +[st],
(Scurl)j = fcurl(\ljv U) +[S't]
(So)ij = fo(¥,0) +[sd]

where [s.t.] indicates stochastic contributions
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Equations for vorticity in Lagrangian picture

From the Euler equation: evolution equation for vorticity in Lagrangian picture

Opwe + Hwe = (S5, + (S5),

where

(S5),

(55),

(¥, w) homogeneous!

g(V,0) SOURCE!
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Lagrangian perturbation theory

e Perturbative expansion for displacement field, o;; and vorticity

‘I’:i\y(n), Uij:idgb) w:iw(”)
n=1 n=0 n=1

e EdS universe (pure matter dominated universe)

e 'time’ variable 7 =loga
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Background configurations

Only o has a non-vanishing background contribution (by symmetry)

9 (0)

00

) _ _(0)
7 3

~ 0y 0ij = a*25ij trace!
@ 0 = P(Sij =+ Eij ~ P(O) = a_200/3

e non-relativistic particles: Maxwell-Boltzmann distribution o(®) oc T//m

=1 - [ =T
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Final results for vorticity
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Final results for vorticity

We can solve the evolution equation for vorticity

s W™ o g 3/2 growing modes from second order!

Vorticity is a gaussian field characterized by its power spectrum...
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Final results for vorticity: power spectrum

(e mef? " () = (2m)° (61 = hoky ) 0(d = k) Pk, )

vorticity is divergence free, w - k = 0

108 a(n) / d*w
P,(k,n) = - = = (ki 1) Ps(w)Ps(|k —
k) = 535q,, | @np keme Ps(w)Ps(lk —w))

For the rotational component of peculiar velocity v*(k) = ik ™2k A w(k)

(ol (b, mof (K m) = (2m)° (8 = kil ) 8k = K) P (k1)

1
Py, (k,n) = ﬁp““(k’ n)
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Final results for vorticity: some numbers

Amplitude of power spectra P, and P,,, depends quadratically on oo = To/m

CDM: non-relativistic species at the moment of decoupling, t.

oo x To=T./(1+ 2.)> ~10" "

Piattella et al. 1507.00882

WDM: typical decoupling velocities are still relativistic

oo xTo=Ts/(1+ 24)
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Velocity dispersion (i.e. pressure and anisotropic stress) included in DM
description

@ Boltzmann hierarchy truncated at the third momentum

equation for vorticity is sourced — power spectrum of generated vorticity

result depends on o o< Tp, present dark matter temperature

for warm dark matter at small scales vg ~ vg!
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Vorticity is measured in N-body Plueblas et Scoccimarro [0809.4606], Paduroiu et al. [1506.03789]
@ is it due to shell crossing/large scale effect induced by small scale?
@ is velocity dispersion generated in the evolution?

@ how is vorticity evolving with time?

Comparison with N-body simulation with our initial conditions implemented

Our description breaks down when shell crossing occurs:
@ N-body domain!

@ Analytic methods to access non-linear regime?
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Thank you
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Method used to solve perturbation equations




Equations in Lagrangian coordinates

Euler equation (curl+divergence) and evolution equation for oy

(7’ — 47rGa2,5) VW + €ik€ipq¥Yip <’i’ - 27rGazﬁ> Vgt

. 4rGa?
teijreparVip¥ig (T— 3 ﬁ) Upr = Sdiv
TVA®R),; ~ (VOATVE) = (Sun);
Gij +2Hoiy; = (S0)ij

where 7 = 8,27 + HOp; all time derivatives are at q = constant. The sources are

Saiv = faw(¥,0)  +[st],
(Scurl)j = fcurl(\ljv U) +[S't]
(So)ij = fo(¥,0) +[sd]

where [s.t.] indicates stochastic contributions
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Standard LPT result (0;; = 0)

Growing leading modes

T (k) = zk—k2 5o(K)a(r)

and 3 Kk
(® — 2
v (k) = Ve aoo(k)a(T)

where

ago(k) = / (37:;)3 w(;,‘vk/\_k‘ilp(;o(w)éo(k - w)
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Method used to solve LPT system

In the presence of velocity dispersion we can write the displacement field as

U =Tg + 0V,

Idea:
@ solve eq. for o;; with standard LPT result in the source
@ plug o;; found in the source of eq for ¥ ~~ W,
@ eq. for o;; with corrected ¥ = Vg 4 6¥, in the source
°

reiterate the procedure ...

However:
@ correction 0V, induced by coupling to VDT is subleading wrt Wt

@ VDT solution introduces small op which further suppresses this correction

E.g. first order
v «Dy , 69 x ooDI?

~+ we can just use in the source for o;; the standard LPT result for ¥
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Contributions stochastic terms

Time dependence of the stochastic term I'* = S — U’ can be determined as

o o (D)) oc oo DY
(n) n—3 (n)
~ Iy ocy/ooDy 2 oy W™ o DY

Every time we have neglected in the sources a terms in I';; ; we have considered
an identical term in Uy, ; :

@ which grows faster

@ and it is not suppressed by a factor /oo

~~ for sufficiently small o it is justified to neglect the stochastic contribution!
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Continuity equation automatically implemented in Lagrangian picture

The continuity equation can be rewritten as

d*xp(n,x) = d’qp(q) or p(n,x)=p(a)/J(n,q)

Neglecting stochastic contributions, it follows « d(det ) /dt = det At (A’ldA/dt>

dJ 1d-]
pap— |\ =JV.
J r<J ’l’]) J V

Using p(a) = p(n,x)J(n,q), we get
0 dp
0=—((pJ)=J = V-
Se 00 =7 (5409 )
in the Lagrangian picture the continuity equation is automatically implemented,

independently on the specific form of the map between Lagrangian and
Eulerian coordinates
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Evolution CDM overdensity

Mode is entering horizon in radiation domination

u

Ta

IIb

from Rubakov's book
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