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A new observational window on gravitation

The detection of gravitational waves has open a new window on the
gravitational physics of our universe
I For the first time detection and test of GR in the strong gravity coupling

regime
I For the first time dynamics of Black hole (not just static object curving

space-time)
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A new observational window on gravitation

[Yunes, Yagi, Pretorius] have listed theoretical implications of
GW150914 in particular

GW150914 constrains a number of theoretical
mechanisms that modify GW propagation
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Quantum gravity as an effective field theory

[Donoghue] has explained that one can evaluate some long-range infra-red
contributions in any quantum gravity theory and obtain reliable answers

Some physical properties of quantum gravity are universal being independent
of the UV completion

The one-loop infra-red contributions depend only the structure the low-energy
fields and the classical background
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Physics of the effective field theory approach

Using the effective field theory approach to gravity one can compute
I the classical (post-Newtonian) and quantum contributions to the

gravitational potential between masses
I Quantum corrections to the bending angle of massless particle by a

massive classical object
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Classical physics from loops

We will be considering the pure gravitational interaction between massive and
massless matter of various spin

LEH ∼

∫
d4x

(
−

2
κ2 R+ κhµνTµνmatter

)
,

We will be considering perturbative computations κ2 = 32πGN

M =
1
 h
Mtree +  h0M1−loop + · · · .
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Double expansion : classical and quantum parameters

We have two scales in the problem:

I The Schwarzschild radius

rS =
2GNM

c2

I The Compton wave-length

o =
 h

Mc

I Dual with respect to the Planck length

rSλ =
2GN  h

c3 = 2 `2P

Pierre Vanhove (IPhT& HSE) On-shell methods 19/03/2017 7 / 33



Double expansion : classical and quantum contributions

Starting from the PPN expansion

Vclass(r) =
∑
m>0

vm,0

(rS

r

)m

If λ =  h/(Mc) is the characteristic length of the quantum fluctuations we
have at first order

1
(r ± o)n '

1
rn ±

o

rn+1

leading to the modified potential

V(r ± λ) '
∑

m

(
vm,0

rm
S

rm + vm,1
rm

S λ

rm+1

)
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Double expansion : classical and quantum contributions

Since
rSλ =

2GN  h

c3 = 2 `2P

We have

V(r ± λ) '
∑

m

(
vm,0

rm
S

rm + vm,1
rm−1

S `2P
rm+1

)
This motivates the appearance of the first quantum corrections to the
gravitational potential We will use scattering amplitudes to evaluate both the
classical and the quantum part of the long range potential.
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Classical physics at tree-level

The tree-level contribution is the 1-graviton exchange giving the classical
Newtonian potential in the non-relativistic limit

Mtree ∝ GN
(m1m2)

2

~q2

The potential is obtained by

V(r) =
∫

d3~q
(2π)3

1
4m1m2

M(~q) ei~q·~r
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Classical physics from loops

For a 2 body scattering an L-loop gravitational amplitudes has to following
dependence in D = 4 dimensions

[ML−loop] = κ2L+2  hL−1Λ2L+2

The classical piece will manifest itself through contributions of the form

ML−loop
∣∣∣
classical

= m4κ2L+2  hL−1 (q2)L−1

(
m

 hc
√

q2

)L

=
1
 h

m3

q2

(
rS

√
q2
)L

Which after Fourier transform in D = 3 gives

V(r) =
1

m2

∫
ML−loop eiq·r d3q =

1
 h

(rS

r

)L

This how the Schwarzschild radius arises inside quantum loop amplitudes
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

Putting back the factors of  h and c the Klein-Gordon equation reads

(�−
m2c2

 h2︸  ︷︷  ︸
o−2

)φ = 0
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads∫
d4`

(`+ p1)2(`2 − 1
o2 )(`− p2)2

∣∣∣∣∣
finite part

∼
1

m2

(
log(s) +

π2

o
√

s

)
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads

κ2

2λ
√

s
=

rS√
s

Fourier transformed with respect to the non-relativistic momentum transfert
|~q| =

√
s leads to rS/r corrections
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Classical physics from loops

The 1/ h term at one-loop contributes to the same order as the classical tree
term [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Donoghue, Holstein; Bjerrum-Bohr, Donoghue, Vanhove]

M =
1
 h

(
GN(m1m2)

2

~q2 +
G2

N(m1m2)
2(m1 + m2)

|~q|
+ · · ·

)
+ h0G2

N O(log(~q2))+· · ·

For the scattering between a massive matter of mass m and massless matter of
energy E one gets

M ∼
1
 h

(
GN

(mE)2

~q2 + G2
N

m3E2

|~q|

)
+  hG2

NO
(

log(~q2), log2(~q2)
)

.

The mechanisms generalizes to higher loop-order amplitudes to leads to the
higher order post-Newtonian corrections
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Classical metric [Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; to appear]

By considering the graviton emission 〈p1|Tµν|p2〉 one can obtain the metric
(in harmonic gauge) by extracting the classical pieces from higher loop
amplitudes

g00 =
1 − GM

r

1 + GM
r

= 1 + 2
∑
k>1

(−1)k
(

GM
r

)k

The kth order term is a k − 1-loop term

The tree skeleton graphs are the one computed by [Duff, PRD(1973)]
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections

I Q in the potential V(r) is ambiguous but V(r) is not observable

The coefficients of 1/
√
−q2 and log(−q2) in the amplitude are

unambiguously defined and depend on the long range physics
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2Q ′G2

N(m1m2)
2)

I Q ′ is the short distance UV divergences of quantum gravity: need to add
the R2 term [’t Hooft-Veltman]

S =

∫
d4x|− g|

1
2

[
2

32πGN
R+ c1R

2 + c2RµνRµν + · · ·
]
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Effective field theory and gravity

We are working in the context of an effective field theory assuming :
I standard QFT (local, unitary, lorentz invariant, . . . )
I The low-energy DOF: graviton, usual matter fields
I Standard symmetries: General relativity as we know it

We will allow in the lagrangian only the low energy DOF with higher
derivative term suppressed by some high energy scale M∗

Seff =

∫
M4

d4x
√

g

Λ4 +
M2

Pl
2

R(4) + c0 R2 +
∑
k>1

dk

(
R

M2
∗

)2+k

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Effective field theory and gravity

Energy

The parameters may be derived from a fundamental microscopic theory but in
EFT treatment we can work without knowing the explicit relations

Pierre Vanhove (IPhT& HSE) On-shell methods 19/03/2017 16 / 33



Recovering classical General relativity

The classical contribution from the matter scattering must reproduce the
post-Newtonian contributions to the gravitational potential derived from
General relativity

VGR(r) = −
GNm1m2

r

(
1 + 3GN

m1 + m2

r

)
When scattering massless matter we can consider the bending angle on the
massive object of Schwarzschild radius rS = 2GNm/c3

θGR =
2rS

b
+

15π
16

(rS

b

)2

We need to see that the classical pieces from the loop match the general
relativity answer (i.e. satisfy the equivalence principle)
We can determine quantum corrections to gauge invariant quantities
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Perturbative technics

Classical Newton’s potential is obtained in the non-relativistic limit

V(|~q|) =
GNm1m2

~q2 V(r) = −
GNm1m2

r

m1 m2

q2

hµν

is derived by a tree-level graph exchanging a graviton
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Loop amplitude

Since we are only interested in the long range (low energy) graviton
exchange, it is enough to just evaluate the gravitons cut

hµν

hµν
m1

m2

we need to know the gravitational Compton amplitudes on a particle of spin s
with mass m

Xs,m + graviton→ Xs,m + graviton
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Gravitational compton scattering

Gravitational Compton scatting off a massive particle of spin s = 0, 1
2 , 1

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

using Feynman rules and DeWitt or Sannan’s 3- and 4-point vertices this is a
big mess but this will be simplified using the momentum kernel formalism to
gravity amplitude
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The Momentum Kernel formalism Gravity amplitude

The KLT relation allow to express the field theory multi-particle tree-level
amplitudes as bilinear of color ordered Yang-Mills amplitudes

Mtree
n = (−1)n−3

∑
σ,γ∈Sn−3

S[γ(2, . . . , n − 2)|σ(2, . . . , n − 2)]k1

×An(1,σ(2, . . . , n − 2), n − 1, n)Ãn(n − 1, n,γ(2, . . . , n − 2), 1)

The color ordered Yang-Mills amplitudes satisfy the annihilation relation
∀β ∈ Sn−2

∑
σ∈Sn−2

S(σ(2, . . . , n − 1)|β(2, . . . , n − 1))|k1A(1,σ(2, . . . , n − 1), n) = 0

[Bern, Carrasco, Johansson] [Kawai,Lewellen, Tye; Tye, Zhang;Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard,

Søndergaard, Vanhove; Stieberger]
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The Momentum kernel in field theory

The α ′ → 0 limit of the monodromy relations between string theory
amplitudes lead to an object named momentum kernel S

S[i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

(
p · kit +

k∑
q>t

θ(t, q) kit · kiq

)

θ(t, q) = 1 if (it − iq)(jt − jq) < 0 and 0 otherwise

[Bern, Carrasco, Johansson; Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes [Kawai, Lewellen, Tye], [Bern, Carrasco, Johansson]

M(Xsg→ Xsg) = GN × (p1 · k1)As(1234)Ã0(1324)

As(1234) is the color ordered amplitudes scattering a gluon off a massive spin
s state Xsg→ Xsg
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two QED Compton
amplitudes using the monodromy relations [Bjerrum-Bohr, Donoghue, Vanhove]

(k1 · k2)As(1234) = (p1 · k2)As(1324)

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

The gravity Compton scattering is expressed as the square of QED (abelian)
Compton amplitudes [Bjerrum-Bohr, Donoghue, Vanhove]

++=

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The cut contributions

M1−loop|singlet cut =

∫
d4−2ε`

`21`
2
2
∏4

i=1 `1 · pi

M1−loop|non−singlet cut =

∫
d4−2ε`

<e
(

tr−(/̀1/p1
/̀2/p2)

)4

`21`
2
2
∏4

i=1 `1 · pi
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I In the non-relativistic limit the amplitude decomposes

M1−loop ' G2
N (m1m2)

4(I4(s, t)+ I4(s, u))+G2
N(m1m2)

3s(I4(s, t)− I4(s, u))

+ G2
N(m1m2)

2 (I3(s, m1) + I3(s, m2))

+ G2
N(m1m2)

2I2(s)
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

The result is given by

M1−loop ' G2
N(m1m2)

2

 6π︸︷︷︸
C

m1 + m2√
−q2

−
41
5︸ ︷︷ ︸

Q

log(−q2)


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Universality of the result

In the case of scattering of particles of different spin S1 and S2 the
non-relativistic potential reads

M1−loop(q2) ' G2
N(m1m2)

2

(
C
(m1 + m2)√

−q2
+ Q h log(−q2)

)
C and Q have a spin-independent and a spin-orbit contribution

C, Q = C, QS−I 〈S1|S1〉 〈S2|S2〉+ C, QS−O
1,2 〈S1|S1〉~S2 ·

~p3 × p4

m2
+ (1↔ 2)

This expression is generic for all type of matter

the numerical coefficients are the same for all matter type
The universality of the coefficients with respect to the spin of the external
states is a consequence of

I The reduction to the product of QED amplitudes
I the low-energy theorems of [Low, Gell-Mann, Goldberger] and [Weinberg]

In the non-relativistic limit the QED Compton amplitudes reads

A(Xsγ→ Xsγ) ' 〈S|S〉A(X0γ→ X0γ) +
~S · Â

m
The KLT formula gives that the tree gravity amplitude reads

M(Xsg→ Xsg) ' 〈S|S〉M(X0g→ X0g) +
~S · M̂

m

The low-energy theorem imply that Â and M̂ are independent of the spin s
I In the cut this leads to universality of the result [Bjerrum-Bohr, Donoghue, Vanhove]

I This is totally what one expects from the equivalence principle and the
multipole expansion of the gravitational interaction between massive
states

I The long range quantum correction involves low-energy gravity degrees
of freedom and is independent of any microscopic high-energy model
dependent contributions
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The two-loop amplitude [Planté, Phd thesis]

3.5. NON-SINGLET CUT AND FINAL EXPRESSION 77

Figure 3.17 – The full classification of the integrals generated by the three
particles cut. Note that the frames are inclusive. As at one-loop, the triangle
will give classical terms but also quantum ones.

Only the green box contributes to the classical 2PN effective potential

δV2−loop = −
17G3m1m2(m2

1 + m2
2)

4r3 +
3G3m2

1m2
2

2r3

The blue box to the first quantum correction and the red box to two-loop
quantum corrections
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The two-loop amplitude [Planté, Phd thesis]

3.5. NON-SINGLET CUT AND FINAL EXPRESSION 77

Figure 3.17 – The full classification of the integrals generated by the three
particles cut. Note that the frames are inclusive. As at one-loop, the triangle
will give classical terms but also quantum ones.

The green box gives the complete classical 2PN effective radial action
integral for a test mass S

GNm1m2
= −Et + hϕ+

∫
dr
√

R(r, E, h)

R(r, E, 0) = 2E +
8EGNM

c2r
+

(6c2 + 15E)(GNM)2

c4r2 +
17(GNM)3

2c4
1
r3 + O(E)
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The one-loop amplitude for massless particles

ℓ1

ℓ2

p1

p2
p3

p4

We consider the gravitational one-loop amplitude between a massless particle
of spin S and a massive scalar

κ−4 iM1−loop
S = boS(s, t) I4(s, t) + boS(s, u) I4(s, u)

+ tS
12(s) I3(s, 0) + tS

34(s) I3(s, M2)
+ buS(s, 0) I2(s, 0) .

The coefficients satisfy interesting BCJ relations

boS(s, t)
t − M2 +

boS(s, u)
u − M2 = tS

12(s)
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The amplitude

The low-energy approximation

iMtree+1−loop
S =

N(S)

 h

[
κ2 (2Mω)2

16q2

+  h
κ4

16

(
4(Mω)4(I4(t, s) + I4(t, u)) + 3(Mω)2sI3(t)

−
15
4
(M2ω)2I3(t, M) + buS(Mω)2I2(t)

)]
For photon scattering only the amplitudes with helicity (++) and (−−) are
non-vanishing.

Therefore there is no birefringence effects to contrary to case with electrons
loops contributing to the interaction [Drummond, Hathrell;Berends,

Gastmans]
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The amplitude

iMtree+1−loop
S ' N(S)

 h

(Mω)2

4

×
[κ2

q2 + κ4 15
512

M√
−q2

+  hκ4 15
512π2 log

(
−q2

M2

)
−  hκ4 buS

(8π)2 log
(
−q2

µ2

)
+  hκ4 3

128π2 log2
(
−q2

µ2

)
+ κ4 Mω

8π
i
s

log
(
−q2

M2

)]
The last line contains the infrared divergences

p1

p2

` ∝
∫

0

d4−2ε`

`2 2` · p1 2` · p2
∼
(t/µ2)−ε

ε2 t
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The bending angle via Eikonal approximation

iM(b) ' 2(s − M2)
[
ei(χ1+χ2) − 1

]
χ1(b) is the Fourier transform of the one graviton (tree-level) exchange

χ1(b) =
1

2M2E

∫
d2q
(2π)2 e−iq·bM

(1)
S (q) ' 4GNME

[
1

d − 2
− log(b/2) − γE

]

χ2(b) is the Fourier transform of the two gravitons (one-loop) exchange

χ2(b) =
1

2M2E

∫
d2q
(2π)2 e−iq·b M

(2)
X (q)

' −G2
NM2E

15π
4b

−
G2

NM2E
2πb2

(
8buS + 9 − 48 log

b
2b0

)
.
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The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

I The classical contribution including the 1rst Post-Newtonian correction
is correctly reproduced

I The quantum corrections are new: not only from a quantum corrected
metric
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The bending angle

The bending angle θS ' − 1
E
∂
∂b (χ1(b) + χ2(b)) is

θS '
4GM

b
+

15
4

G2M2π

b2 +
8buS + 9 − 48 log b

2b0

π

G2 hM
b3 .

The difference between the bending angle for a massless photon and massless
scalar

θγ − θϕ =
8(buγ − buϕ)

π

G2 hM
b3 .
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Outlook

Recent progresses from string theory technics, on-shell unitarity, double-copy
formalism simplifies a lot perturbative gravity amplitudes computations

I The amplitudes relations discovered in the context of massless
supergravity theories extend to the pure gravity case with massive matter

I The use of quantum gravity as an effective field theory allows to
compute universal contributions from the long-range corrections

I We can reproduce the classical GR post-Newtonian corrections to the
potential and understand some generic properties using low-energy
theorems: hope to be able to simplify the computation of PPN
corrections.
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