The exoplanet HD 80606b as a new laboratory for gravity

François Larrouturou working with: L. Blanchet & G. Hébrard based on: arXiv:1905.06630

Institut d'Astrophysique de Paris

 $\mathcal{GR} \in \mathbb{CO}$ seminar 30. September 2019

Motivation: Testing our theory of gravitation

The current tests can be roughly decomposed in two classes

 \hookrightarrow local tests: ie. Earth-based and Solar System tests.

They are limited in range but have an extremely good accuracy (eg. $|\gamma^{PPN} - 1| \leq 2 \cdot 10^{-5}$).

→ distant tests: ie. Hulse-Taylor pulsar, gravitational radiation of binary Black Holes, motion of S2, motion of the stars in distant galaxies,...

For a good accuracy, only extremal regimes.

Motivation: Testing our theory of gravitation

- ⇒ The aim of this work is to address the usual Solar-System tests in a distant stellar system.
 - The periastron precession in GR is given by

$$\Delta_{
m GR} = rac{6\pi GM}{ac^2(1-e^2)}\,.$$

- Detecting the periastron advance in star binaries was proposed by A. Gimenez in 1985¹. But in all currently investigated systems, the tidal effects dominate² ⇒ no possible clean detection...
- \hookrightarrow So we need a (transiting) exoplanet
 - with high eccentricity,
 - and high compactness.

¹Gimenez, 1985, Astrophys. J., 405, 167. ²Wolf *et al.*, 2010, Astron. and Astrophys., 509, A18.

Contents

- 1 HD 80606b, a remarkable exoplanet
- **2** Measuring the relativistic effects on the transit timings
- **3** Other theoretical approaches
- 4 How clean can the measure be ?

Midsummer Night's Star Formation mechanism Atmospheric properties

1 HD 80606b, a remarkable exoplanet

- A Midsummer Night's Star
- Formation mechanism
- Atmospheric properties

2 Measuring the relativistic effects on the transit timing

3 Other theoretical approaches

4. How clean can the measure be ?

A Midsummer Night's Star Formation mechanism Atmospheric properties

A Midsummer Night's Star

- The Solar-type star HD 80606 is located at 58pc from Earth,
- it has a companion star, distant from 1200 AU, HD 80607.
- Around it is orbiting a Jupiter-like planet $(M_p \simeq 4M_J)$, HD 80606b, quite peculiar:
- \hookrightarrow it has a high eccentricity e = 0.933,
- \hookrightarrow and a strong spin-orbit misalignment $\lambda \simeq 42^{\circ}$.

Mercury		HD 80606b	
0.206	Eccentricity	0.933	
0.31 AU	Periastron	0.03 AU	
0.47 AU	Apastron	0.88 AU	
116 days	Period	111 days	••
42 "/ct	Δ_{GR}	215 "/ct	

A Midsummer Night's Star Formation mechanism Atmospheric properties

A lucky detection

- HD 80606b was discovered through radial velocity in 2001³
 ⇒ due to its eccentricity, the odds for observing a transit were estimated to be 1/100,
- \hookrightarrow an eclipse (anti-transit) was fortunately detected in 2009⁴ \Rightarrow the odds for observing the transit increased to 1/10,
- \hookrightarrow during the night of January 13, 2010, the full 12h-long transit was recorded⁵ by the *Spitzer* satellite and the *SOPHIE* spectrograph of the Haute-Provence Observatory.

³Naef *et al.*, 2001, Astron. and Astrophys., 375, L27.
 ⁴Laughlin *et al.*, 2009, Nature, 457, 562.
 ⁵Hébrard *et al.*, 2011, Astron. and Astrophys., 516, A95.

HD 80606b, a remarkable exoplane

Measuring the relativistic effects on the transit timings Other theoretical approaches How clean can the measure be ? A Midsummer Night's Sta Formation mechanism Atmospheric properties

A lucky detection

From Hébrard et al., A&A, A95(2011)516.

 The simultaneous observation of the transit in photometry and radial velocities allowed to fully characterize the system

 → notably the spin-orbit misalignment is constrained via. the Rossiter-McLaughlin effect.

A Midsummer Night's Star Formation mechanism Atmospheric properties

Formation mechanism

The currently favoured formation mechanism, is a "Kozaï migration"⁶

- The planet is formed
 - \hookrightarrow in a plane inclined wrt. the companion's plane,
 - \hookrightarrow further away (\gtrsim 5 AU),
 - \hookrightarrow with a small eccentricity $e \lesssim 0.1$.
- → Kozaï-Lidov oscillations increase *e*, keeping *a* and $\sqrt{1 e^2} \cos l$ constant,
- \rightsquigarrow tidal dissipative effects of the companion shrink the orbit,
- \Rightarrow today the Kozaï mechanism is negligible: the orbit is quite stable.

Other disfavoured possibilities are

- dynamical friction between the planet and the gas disks, but seems impossible to produce $e \gtrsim 0.60$,
- planet-planet scattering,
 - but seems not strong enough to produce $e \gtrsim 0.90$.

⁶Wu & Murray, 2003, Astr. Journal, 589, 1.

D 80606b, a remarkable exoplanet

Measuring the relativistic effects on the transit timings Other theoretical approaches How clean can the measure be ? A Midsummer Night's Star Formation mechanism Atmospheric properties

Atmospheric properties

• At the apastron, HD 80606b grazes the limit of its parent's habitable zone,

 at the periastron, it is only a few R* away from the star.

- ⇒ Extreme atmospheric conditions:
- → within 6 hours, the temperature increases from ~ 800K to ~ 1500K, to be compared with T^{eff}_{*} ≃ 5800K,
 → heat shock waves that induce violent storms.

Figure from

Laughlin et al., Nature, 457 (2009) 562.

General conventions Parametrisation of the motion Relativistic effects on the transit

' HD 80606b, a remarkable exoplane

2 Measuring the relativistic effects on the transit timings

- General conventions
- Parametrisation of the motion
- Relativistic effects on the transit

3 Other theoretical approaches

4. How clean can the measure be

General conventions Parametrisation of the motion Relativistic effects on the transit

General conventions: Geometry

- There are two types of contributions:
 - \hookrightarrow the periodic ones (that average to 0 over one cycle),
 - \hookrightarrow the secular ones (that induce long-term contributions).
- *Spoiler:* the secular relativistic corrections affect the motion by:
 - \hookrightarrow shifting the trajectory (periastron shift),
 - \hookrightarrow shifting the period.
- *NB:* for practical purposes, we have taken $\vec{z} \propto \vec{J}_{\star}$, but of course there is a rotational invariance in the plane of the sky.

eneral conventions Parametrisation of the motion Relativistic effects on the transit

General conventions: Transit times

Let's define the transit times as

- T₁ and T₂: the beginning and end of entrance,
- T₃ and T₄: the beginning and end of exit,
- *T_m*: the time of passage at closest point from the center of the star.

The eclipse times are defined similarly.

General conventions Parametrisation of the motion Relativistic effects on the transit

General conventions: Transit times

Mathematically, those points are defined as

$$r(\varphi)\sin\varphi = Y(b),$$

with

$$Y(b) = \begin{cases} b \cot l + \sqrt{(R_{\star} + R_{p})^{2} - b^{2}} & (T_{1} \text{ and } \overline{T}_{4}), \\ b \cot l + \sqrt{(R_{\star} - R_{p})^{2} - b^{2}} & (T_{2} \text{ and } \overline{T}_{3}), \\ b \cot l & (T_{m} \text{ and } \overline{T}_{m}), \\ b \cot l - \sqrt{(R_{\star} - R_{p})^{2} - b^{2}} & (T_{3} \text{ and } \overline{T}_{2}), \\ b \cot l - \sqrt{(R_{\star} + R_{p})^{2} - b^{2}} & (T_{4} \text{ and } \overline{T}_{1}). \end{cases}$$

The impact parameter is simply $b \simeq r(\pi) \sin \Omega \sin I$ $\bar{b} \simeq r(0) \sin \Omega \sin I$.

NB: we neglect the effects of the local ellipticity, they are $\lesssim 1\%$.

General conventions Parametrisation of the motion Relativistic effects on the transit

Reminder: Keplerian parametrisation of the motion

We need $r(\varphi)$ and $t(\varphi)$ to solve

 $r(\varphi)\sin \varphi = Y(b),$ with $b \simeq r(\pi)\sin \Omega \sin I.$

The Keplerian parametrisation uses

- ↔ the mean anomaly, $\ell = n_0(t t_{0,P})$, with $n_0 = 2\pi/P = \sqrt{GM/a^3}$ the usual Kepler's third law,
- $\label{eq:phi} \stackrel{\hookrightarrow}{\to} \mbox{the eccentric anomaly} \\ \psi = 2 \arctan \left(\sqrt{\frac{1-e}{1+e}} \tan \frac{\varphi-\omega_0}{2} \right) \mbox{,}$

 \Rightarrow so that $\ell = \psi - e \sin \psi$ and

$$r=rac{a(1-e^2)}{1+e\cos(arphi-\omega_0)}=aig(1-e\cos\psiig).$$

General conventions Parametrisation of the motion Relativistic effects on the transit

Post-Keplerian parametrisation of the motion

The first relativistic correction⁷ can be put in an elegant form, called quasi-Keplerian representation⁸

It uses

- \hookrightarrow the mean anomaly, $\ell = n(t t_P)$, with $n = 2\pi/P$,
- $\begin{array}{l} \hookrightarrow \mbox{ the eccentric anomaly} \\ \psi = 2 \arctan \left(\sqrt{\frac{1-e_{\varphi}}{1+e_{\varphi}}} \tan \frac{\varphi-\omega_0}{2K} \right), \end{array} \end{array}$

 \Rightarrow so that $\ell = \psi - e_t \sin \psi$ and

$$r = rac{a_r(1-e_r^2)}{1+e_r\cos\left[rac{arphi-\omega_0}{K}-rac{1}{6}k\,e_r\,
u\sin\left(rac{arphi-\omega_0}{K}
ight)
ight]} = a_rig(1-e_r\cos\psiig)\,.$$

⁷Wagoner & Will, 1976, Astr. J., 210, 764.
 ⁸Damour & Deruelle, 1985, Annales Inst. H. Poincaré Phys. Théor., 43, 107.

General conventions Parametrisation of the motion Relativistic effects on the transit

Post-Keplerian parametrisation of the motion

The first relativistic correction⁹ can be put in an elegant form, called quasi-Keplerian representation¹⁰

It uses

- \hookrightarrow the mean anomaly, $\ell = n(t t_P)$, with $n = 2\pi/P$,
- $\begin{array}{l} \hookrightarrow \mbox{ the eccentric anomaly} \\ \psi = 2 \arctan \left(\sqrt{\frac{1-e_{\varphi}}{1+e_{\varphi}}} \tan \frac{\varphi-\omega_0}{2K} \right), \end{array} \end{array}$

 \Rightarrow so that $\ell = \psi - e_t \sin \psi$ and

$$r = \frac{a_r (1 - e_r^2)}{1 + e_r \cos\left[\frac{\varphi - \omega_0}{K} - \frac{1}{6} k e_r \nu \sin\left(\frac{\varphi - \omega_0}{K}\right)\right]} = a_r (1 - e_r \cos \psi)$$

⁹Wagoner & Will, 1976, Astr. J., 210, 764.
 ¹⁰Damour & Deruelle, 1985, Annales Inst. H. Poincaré Phys. Théor., 43, 107.

General conventions Parametrisation of the motion Relativistic effects on the transit

Post-Keplerian parametrisation of the motion

The quasi-Keplerian representation is roughly a Keplerian one, where some parameters receive corrections (with $\nu = M_{\star}M_{p}/M^{2}$)

$$\begin{split} \mathcal{K} &= 1 + k = 1 + \frac{3GM}{ac^2(1 - e^2)} \,, \\ n &= n_0 \left(1 + \zeta \right) = n_0 + \frac{GMn_0}{8ac^2} \left(-15 + \nu \right) \,, \\ a_r &= a \left(1 + \xi \right) = a + \frac{GM}{4c^2} \left(-7 + \nu \right) \,, \\ e_r &= e + \varepsilon_r = e + \frac{GM}{8ac^2} \left[\frac{9 + \nu}{e} + \left(15 - 5\nu \right) e \right] \,, \\ e_t &= e + \varepsilon_t = e + \frac{GM}{8ac^2} \left[\frac{9 + \nu}{e} + \left(-17 + 7\nu \right) e \right] \,, \\ e_\varphi &= e + \varepsilon_\varphi = e + \frac{GM}{8ac^2} \left[\frac{9 + \nu}{e} + \left(15 - \nu \right) e \right] \,. \end{split}$$

General conventions Parametrisation of the motion Relativistic effects on the transit

Relativistic effects on the motion

- The "real" motion is the fully relativistic one.
- \hookrightarrow But it is well approximated by taking a Keplerian one, together with the first relativistic corrections.
- \Rightarrow We will thus decompose any quantity as $q = q_0 + \delta q$,
- \hookrightarrow solve the Newtonian problem for q_0 ,
- \hookrightarrow add the perturbation δq on top of it, and solve for δq .
 - In order to do so we have to express the perturbation in terms of the conserved quantities E and J.

For convenience, we will use the Newtonian formulae

$$E = -\frac{GM\mu}{2a}$$
, and $J = \mu\sqrt{GMa(1-e^2)}$

General conventions Parametrisation of the motion Relativistic effects on the transit

Relativistic effects on the motion

Applying the method to the time of passage at a point *i*, it comes after *N* orbits

$$t=t_{0,i}+\frac{2\pi N}{n_0}+\delta t,$$

where δt can be split as

$$\begin{split} \delta t_{\text{sec}} &= \frac{1}{n_0} \left[(1 - e \cos \psi_0) \delta \psi_{\text{sec}} - (\psi_0 - e \sin \psi_0) \zeta \right], \\ \delta t_{\text{per}} &= \frac{1}{n_0} \left[(1 - e \cos \psi_0) \delta \psi_{\text{per}} - \varepsilon_t \sin \psi_0 \right], \end{split}$$

with, for a transit,

$$\delta\psi_{\text{sec}} = \frac{2k\left[\left(\cos\psi_0 - e\right)\cos\omega_0 - \sqrt{1 - e^2}\sin\psi_0\sin\omega_0\right]\arctan\left(\sqrt{\frac{1 + e}{1 - e}}\tan\frac{\psi_0}{2}\right) - a^{-1}\delta Y_{\text{sec}}}{\sin\psi_0\sin\omega_0 - \sqrt{1 - e^2}\cos\psi_0\cos\omega_0}$$

$$\delta Y_{\text{sec}} = -\left. \frac{\partial Y}{\partial b} \right|_{b_0} \left. \frac{k \, b_0 \, e \sin \omega_0}{1 - e \cos \omega_0} \left[(2N+1)\pi - \omega_0 + \frac{e\nu \, \sin \omega_0}{6} \right] \right]$$

General conventions Parametrisation of the motion Relativistic effects on the transit

Relativistic effects on the transit

In the case of HD 80606b, taking the reference time $\delta t = 0$ at the periastron passage of January 9, 2010, it comes (all times are in seconds)

N	$\delta t_1(N)$	$\delta t_m(N)$	$\delta t_{14}(N)$	$\delta \bar{t}_1(N)$	$\delta \overline{t}_m(N)$	$\delta \bar{t}_{14}(N)$
0	-2.65	-2.73	0.04	$7.3 \cdot 10^{-3}$	$8.6 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$
1	-7.70	-7.94	0.09	0.33	0.34	$6.8 \cdot 10^{-3}$
2	-12.76	-13.16	0.15	0.65	0.66	$1.3 \cdot 10^{-2}$
	÷	Not the			:	
32	-164.3	-169.5	1.93	10.35	10.46	0.19
33	-169.3	-174.7	1.99	10.67	10.78	0.19
	:	:	:			
48	-245.1	-252.9	2.88	15.51	15.68	0.28
49	-250.2	-258.1	2.94	15.84	16.01	0.29

General conventions Parametrisation of the motion Relativistic effects on the transit

Seeking for an observable quantity

For the N^{th} orbit after the reference point, let's define $t_{\text{tr}-\text{ec}}(N) = t_m(N) - \overline{t}_m(N)$, which yields the observable quantity

$$\Delta t_{tr-ec}(N) = t_{tr-ec}(N) - t_{tr-ec}(0) = \delta t_m(N) - \delta \overline{t}_m(N) - \delta t_m(0) + \delta \overline{t}_m(0)$$

A Hamiltonian derivation .agrangian perturbation theory n a nutshell : a rough but reliable estimate

📘 HD 80606b, a remarkable exoplane

2 Measuring the relativistic effects on the transit timings

3 Other theoretical approaches

- A Hamiltonian derivation
- Lagrangian perturbation theory
- In a nutshell : a rough but reliable estimate

4. How clean can the measure be

A Hamiltonian derivation Lagrangian perturbation theory In a nutshell : a rough but reliable estimate

The 1PN Hamiltonian

- A second way to compute the relativistic effects is by using a Hamiltonian integration of the equations of motion.
- ⇒ At the first post-Newtonian correction, the reduced Hamiltonian of the relative motion is constructed of

$$\hookrightarrow \vec{X} = \vec{y}_{\star} + \vec{y}_{
ho}$$
 (with $R = |\vec{X}|$),

 $\begin{array}{l} \hookrightarrow \mbox{ its reduced conjugate momentum } \vec{P} = (\vec{p}_{\star} + \vec{p}_{p})/\mu \mbox{ (with } P^{2} = \vec{P}^{2}), \\ \hookrightarrow \mbox{ } P_{R} = \vec{P} \cdot \vec{X}/R, \end{array}$

and reads

$$\frac{H}{\mu} = \frac{1}{2}P^2 - \frac{GM}{R} + \frac{1}{c^2} \left[\frac{3\nu - 1}{8} P^4 - \frac{GM}{2R} \left(\nu P_R^2 + (3 + \nu)P^2 \right) + \frac{G^2 M^2}{2R^2} \right]$$

A Hamiltonian derivation Lagrangian perturbation theory In a nutshell : a rough but reliable estimate

The 1PN Hamiltonian

$$\frac{H}{\mu} = \frac{1}{2}P^2 - \frac{GM}{R} + \frac{1}{c^2} \left[\frac{3\nu - 1}{8} P^4 - \frac{GM}{2R} \left(\nu P_R^2 + (3 + \nu)P^2 \right) + \frac{G^2 M^2}{2R^2} \right]$$

• Neglecting the spins, the angular momentum is conserved \Rightarrow the motion takes place in a plane \Rightarrow *I* and Ω are fixed.

One can use the Newtonian-looking parametrisation

$$R = a(1 - e\cos\psi) , \quad P^2 = \frac{GM}{a} \frac{1 + e\cos\psi}{1 - e\cos\psi} , \quad P^2_R = \frac{GM}{a} \frac{e^2\sin^2\psi}{(1 - e\cos\psi)^2} ,$$

with $\ell = \psi - e \sin \psi$, to deduce

$$\frac{H}{\mu} = -\frac{GM}{2a} + \frac{1}{2} \left(\frac{GM}{ac}\right)^2 \left[\frac{3\nu - 1}{4} + \frac{4 - \nu}{\mathcal{X}} - \frac{6 + \nu}{\mathcal{X}^2} + \nu \frac{1 - e^2}{\mathcal{X}^3}\right]$$

where we introduced $\mathcal{X} = 1 - e \cos \psi$ for convenience.

A Hamiltonian derivation .agrangian perturbation theory n a nutshell : a rough but reliable estimate

The Delaunay-Poincaré canonical variables

Let's introduce the Delaunay-Poincaré canonical variables

$$\begin{split} \lambda &= \ell + \omega \,, & \Lambda &= \mu \sqrt{\mathsf{GMa}} \,, \\ h &= -\omega \,, & \mathcal{H} &= \mu \sqrt{\mathsf{GMa}} \left(1 - \sqrt{1 - e^2} \right) \end{split}$$

 \hookrightarrow We have the rough correspondences:

$$\lambda \sim (k, \zeta), \quad h \sim k, \quad \Lambda \sim E, \quad \mathcal{H} \sim (E, J).$$

Those variables naturally satisfy the Hamilton-Jacobi equations

$d\lambda \partial H$	dΛ	ðН
$\overline{\mathrm{d}t} = \overline{\partial \Lambda}$,	$\frac{1}{dt} = -$	$-\frac{1}{\partial\lambda}$,
dh ∂H	$d\mathcal{H}$	∂H
$\overline{\mathrm{d}t} = \overline{\partial \mathcal{H}},$	$\frac{1}{dt} = -$	∂h .

A Hamiltonian derivation Lagrangian perturbation theory In a nutshell : a rough but reliable estimate

Variation of the parameters

By integrating the Hamilton-Jacobi equations, it comes

$$\begin{split} \delta a &= \frac{GM}{c^2} \left(\frac{1-3\nu}{4} + \frac{\nu-4}{\mathcal{X}_0} + \frac{6+\nu}{\mathcal{X}_0^2} - \nu \frac{1-e_0^2}{\mathcal{X}_0^3} \right), \\ \delta e &= \frac{1-e_0^2}{2a_0 e_0} \, \delta a, \\ \delta \omega &= \frac{6 \, GM}{a_0 c^2 (1-e_0^2)} \arctan \left[\sqrt{\frac{1+e_0}{1-e_0}} \tan \frac{\psi}{2} \right] \\ &\quad + \frac{GM}{2a_0 e_0 \sqrt{1-e_0^2} c^2} \left(\frac{(\nu+2)(1-e_0^2)+6e_0^2}{\mathcal{X}_0} + 6 \frac{1-e_0^2}{\mathcal{X}_0^2} - \nu \frac{(1-e_0^2)^2}{\mathcal{X}_0^3} \right) \sin \psi, \\ \delta \ell &= \frac{GM(\nu-15)}{8a_0 c^2} \ell_0 \\ &\quad - \frac{GM}{2a_0 e_0 c^2} \left((4-\nu)e_0^2 + \frac{2+\nu+4e_0^2}{\mathcal{X}_0} + 6 \frac{1-e_0^2}{\mathcal{X}_0^2} - \nu \frac{(1-e_0^2)^2}{\mathcal{X}_0^3} \right) \sin \psi, \end{split}$$

A Hamiltonian derivation Lagrangian perturbation theory n a nutshell : a rough but reliable estimate

Relativistic effects on the motion

Finally the modification of the instants of transits are

$$\delta t = rac{1}{n_0} \left[(1 - e \cos \psi_0) \delta \psi - \delta \ell - \sin \psi_0 \, \delta e
ight],$$

where $\delta\psi$ is computed taking in account $\delta\omega$ and

$$\delta b = b_0 \left[\frac{\delta a}{a_0} - \frac{2e_0 \,\delta e}{1 - e_0^2} + \frac{\cos \omega_0 \,\delta e}{1 - e_0 \cos \omega_0} - \frac{\sin \omega_0 \,\delta \omega}{1 - e_0 \cos \omega_0} \right]$$

- ⇒ This methods agrees with the quasi-Keplerian one within 0.5% after 33 cycles,
- \hookrightarrow the difference is due to different approaches for computing δb .
 - Reminder: in the quasi-Keplerian derivation,

$$\delta t = \frac{1}{n_0} \left[(1 - e_0 \cos \psi_0) \delta \psi - (\psi_0 - e_0 \sin \psi_0) \zeta - \varepsilon_t \sin \psi_0 \right].$$

A Hamiltonian derivation Lagrangian perturbation theory n a nutshell : a rough but reliable estimate

Lagrangian perturbation theory

- A nice way to control our derivation is to compute the effect of the secular effects, via. celestial perturbation theory.
- ⇒ At the first post-Newtonian correction, the Lagragian can be expressed as

$$rac{L}{\mu}=rac{v^2}{2}-rac{GM}{r}+\mathcal{R}(ec{x},ec{v})\,,$$

with the perturbation function

$$\mathcal{R} = \frac{1}{2c^2} \left[\frac{1-3\nu}{4} v^4 + \frac{GM}{r} \left(\nu \, \dot{r}^2 + (3+\nu) \, v^2 \right) - \frac{G^2 M^2}{r^2} \right]$$

A Hamiltonian derivation Lagrangian perturbation theory n a nutshell : a rough but reliable estimate

Lagrangian perturbation theory

- When dealing with secular effects, one can apply directly the usual perturbation equations of celestial mechanics to R

$$\frac{\mathrm{d}\ell}{\mathrm{d}t} = n - \frac{1}{a^2 n} \Big[2a \frac{\partial \mathcal{R}}{\partial a} + \frac{1 - e^2}{e} \frac{\partial \mathcal{R}}{\partial e} \Big], \quad \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{ea^2 n} \frac{\partial \mathcal{R}}{\partial e}$$

 \hookrightarrow When averaged over one orbit, it comes

$$\left\langle \frac{\mathrm{d}a}{\mathrm{d}t} \right\rangle = \left\langle \frac{\mathrm{d}e}{\mathrm{d}t} \right\rangle = 0, \qquad \left\langle \frac{\mathrm{d}\ell}{\mathrm{d}t} \right\rangle = n_0 + \frac{GMn_0\left(\nu - 15\right)}{8 a_0 c^2} = n_0\left(1 + \zeta\right),$$

$$\left\langle \frac{\mathrm{d}\omega}{\mathrm{d}t} \right\rangle = \frac{3GMn_0}{a_0c^2(1-e_0^2)} = n_0\mathbf{k}.$$

Hamiltonian derivation
 agrangian perturbation theory
 a nutshell : a rough but reliable estimate

WN

 P_N

δt_P

N-:

In a nutshell : a rough but reliable estimate

Taking only the two secular effects:

X

- $\hookrightarrow\,$ considering a sequence of successive Keplerian orbits,
- \hookrightarrow and correcting at each step for the change in period.

 T_{N-1}

 $T'_{N-1} \delta t_k$

rom a theoretical point of view n real life n space

- 1 HD 80606b, a remarkable exoplanet
- 2 Measuring the relativistic effects on the transit timings
- 3 Other theoretical approaches
- 4 How clean can the measure be ?
 - From a theoretical point of view
 - In real life
 - In space

From a theoretical point of view In real life In space

Cleanliness of the measure: Theoretical point of view

Other effects may induce a periastron shift:

 \hookrightarrow Presence of a companion (star or planet),

 \hookrightarrow Oblateness of the star,

$$\Delta_{J_2} = rac{3\pi J_2 \, R_\star^2}{a^2(1-e^2)^2} \, .$$

From a theoretical point of view in real life in space

Cleanliness of the measure: Theoretical point of view

• Other effects may induce a periastron shift:

 \hookrightarrow Tidal interactions,

$$\Delta_{\rm T}^{\star \to p} = 30\pi \, k_p \, \frac{M_\star R_p^5}{M_p a^5} \frac{1 + \frac{3}{2}e^2 + \frac{1}{8}e^4}{(1 - e^2)^5} \,,$$
$$\Delta_{\rm T}^{p \to \star} = 30\pi \, k_\star \, \frac{M_p R_\star^5}{M_\star a^5} \frac{1 + \frac{3}{2}e^2 + \frac{1}{8}e^4}{(1 - e^2)^5} \,,$$

 \hookrightarrow Lense-Thirring effect,

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{2G J_{\star}}{c^2 a^3 (1 - e^2)^{3/2}} \,.$$

From a theoretical point of view in real life in space

Cleanliness of the measure: Theoretical point of view

- HD 80607 is too far, and no hints for a planetary companion via. radial velocity measurements.
- The effects of the mass loss due to stellar winds are also negligible.¹¹
- To estimate other effects, typical values for the Sun and hot Jupiters have been used.
- Let's recall

 $\Delta_{GR}^{Merc} \simeq 42 \text{ arcsec/century}$ and $\Delta_{GR}^{HD} \simeq 215 \text{ arcsec/century}.$

Mercury		HD 80606b
12.4	$\Delta_{ m comp}/\Delta_{ m GR}$	/
$5 \cdot 10^{-3}$	$\Delta_{ m obl}/\Delta_{ m GR}$	$2 \cdot 10^{-3}$
$5 \cdot 10^{-6}$	Δ_{tid}/Δ_{GR}	0.16
$5 \cdot 10^{-5}$	$\Delta_{ m LT}/\Delta_{ m GR}$	$3 \cdot 10^{-4}$

⇒ HD 80606b is much cleaner than the Solar System ! ¹¹Lecavelier des Étangs. 2007. A&A, 461, 1185 and Boué *et al.*,2012, A&A, 537, L3.

From a theoretical point of view n real life n space

Cleanliness of the measure: In real life

- The final method would be to relativistically fit the trajectory and infer its parameters (*cf.* Hulse-Taylor pulsar).
- But we lack precision: we determine the effect from the parameters.
- \hookrightarrow The precision of the measured values¹² will affect our prediction of $\mathcal{O} = \Delta t_{tr-ec}(49)$.

Parameter	$\delta p/p$	$\delta O/O$
а	1.7 %	1.7 %
е	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
ω	$5 \cdot 10^{-3}$	$5 \cdot 10^{-4}$
b	$9 \cdot 10^{-3}$	$3 \cdot 10^{-4}$
<i>M</i> *	5.0 %	5 %
M _p	3.4 %	$1.3 \cdot 10^{-4}$
R _*	2.4 %	$\lesssim 10^{-7}$
R _p	2.3 %	$\lesssim 10^{-7}$

¹²Taken in: Hébrard et al., 2011, Astron. and Astrophys., 516, A95.

From a theoretical point of view n real life n space

Cleanliness of the measure: In space

Spitzer

- In operation since 2003, but "hot" since 2009.
- Fortunately, the 3.6 and 4.5 μm bands of the IRAC camera can operate even without liquid He.
- \hookrightarrow Measured $t_{\rm tr-ec}$ (Jan. 2009) \sim 5.9 days with precision ±275 sec.
- \Rightarrow At the edge of precision to detect

 $\Delta t_{\rm tr-ec}$ (Dec. 2024) = -271 s.

From a theoretical point of view n real life n space

Cleanliness of the measure: In space

James-Webb Space Telescope

Shall be launched in 2021 (??).

Two potentially interesting cameras:
 → NIRCam: 0.6 - 5 µm,
 → MIRI: 5 - 28 µm,

 \Rightarrow Should be able to detect

 $\Delta t_{\rm tr-ec}$ (Dec. 2024) = -271 s.

Summary

- We proposed a new way to test our current theory of gravitation: detecting the relativistic effects on the motion of exoplanets.
- → This will be the first "Solar-System"-like test in a distant stellar system.
 - We have deduced an observable quantity: the shift in time elapsed between successive eclipses and transits.

By focusing on the remarkable case of HD 80606b, we computed

 t_{tr-ec} (Dec. 2024) = t_{tr-ec} (Jan. 2010) – 271 s.

 \Rightarrow This effect should be detectable around 2025, with *Spitzer* or *JWST*.

Summary

I would like to thank A. Lecavelier des Étangs and S. Dalal for their patience in answering my questions on exoplanets.

TOUTES LES PYRÉNÉES

Thank you for your attention

Montreurs d'Ours

A. Villatte, Editeur, Tarbes