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Cosmology is the study of the evolution of the universe according
to the laws of gravity subject to the matter content.

How do quantum fluctuations backreact on a given background
spacetime ? 

Motivation

Matter in our universe is a manifestation of quantum fields which 
necessarily exhibit quantum fluctuations.

According to the equivalence principle, quantum fluctuations are
expected to gravitate thus influencing the evolution of the universe.



Absent a theory of quantum gravity the question of backreaction 
can be addressed in the framework of QFT on curved spacetime.

How do quantum fluctuations backreact on dS space? 

Motivation

More tractable when considering backgrounds with maximal  
symmetry, with de Sitter (dS) space of particular 
phenomenological importance.

While quantisation in curved spacetime is textbook material, 
explicit calculations regarding backreaction are technically hard.



Long-standing set of hints that dS space may be unstable  
against fluctuations:

Motivation

Hints for a thermodynamic instability
Possible instability due to
graviton fluctuations and fluctuations of massless scalars

[ Mukhanov, Abramo, Brandenberger ’97;  
   Abramo, Woodard ’99 ]

[Mottola ’85]

[Antoniadis, Iliopoulos, Tomaras ’86;
  Tsamis, Woodard ’96, ’97]
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against fluctuations:
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graviton fluctuations and fluctuations of massless scalars

Motivation

[ Mukhanov, Abramo, Brandenberger ’97;  
   Abramo, Woodard ’99 ]

[Mottola ’85]

[Antoniadis, Iliopoulos, Tomaras ’86;
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Observed difficulty of obtaining de Sitter vacua from 
string theory compactifications:

Conjecture that de Sitter vacua are forbidden in quantum 
gravity. [Obied, Ooguri, Spodyneiko, Vafa ’18;  Ooguri, Palti, Shiu, Vafa, ’18]
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T =
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The dS horizon acts like a system with negative specific heat.

Negative specific heat was also observed for a massive    
scalar field on a dS background. [Mazur, Mottola ’85]

Thermodynamically unstable

1. Thermodynamics

dS temperature: dS horizon entropy: SH ⇠ 1

T 2



Hints for instability due to graviton fluctuations:

2. Graviton Fluctuations

[ Tsamis, Woodard ’96]
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secular term acts to reduce Hubble parameter 
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Could this be an artefact of perturbation theory?

secular term acts to reduce Hubble parameter 

2. Graviton Fluctuations

Compute perturbatively:



Hints from string theory compactifications:

3. String Theory

Typical potential for a string compactification including classical         
+ leading quantum contributions:

0 �

V

dS maximum

AdS minimum



Hints from string theory compactifications:

3. String Theory

Typical potential for a string compactification including classical         
+ leading quantum contributions:

0 �

V

dS minimum

AdS minimum

dS maximum

“Uplift” terms that elevate the AdS min. to
a dS min suffer from poor theoretical control. 

See e.g. dS construction of [Kachru, Kallosh, Linde, Trivedi ’03]
and the ensuing debate regarding its consistency.



Hints from string theory compactifications:

3. String Theory

AdS minima and dS maxima are generic. 
dS minima difficult to construct & theoretical control is in doubt.

Conjecture that dS minima are forbidden.
This can be ensured by requiring:

V 0 � c

Mp
V , V 00  � c0

M2
p

V .

Note that the conditions in this form do not follow directly from 
string theory.

[Obied, Ooguri, Spodyneiko, Vafa ’18;  
 Ooguri, Palti, Shiu, Vafa, ’18]



Long-standing set of hints that dS space may be unstable  
against fluctuations.

Motivation

Here:  use techniques of gauge-gravity duality to study back-
reaction of holographic QFTs on dS. 

Could the instabilities (due to massless fields) could just be
artefacts of perturbation theory?  

Observed difficulty of obtaining de Sitter vacua from 
string theory compactifications.
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       obtained by integrating out the QFT:gµ⌫

Backreacting a QFT
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This includes the phenomenologically interesting cases of
max. symmetric space-times (Minkowski, AdS, dS).
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Motivation

So far, this analysis has been performed for special cases:

massive free scalar on de Sitter [see e.g. Mazur, Mottola 1986]

   -theory on de Sitter via non-perturbative RG techniques.�4

[Moreau, Serreau 2018]
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Motivation

So far, this analysis has been performed for special cases:

massive free scalar on de Sitter [see e.g. Mazur, Mottola 1986]

   -theory on de Sitter via non-perturbative RG techniques.�4

[Moreau, Serreau 2018]

Here, we will employ holography to integrate out a QFT on an 
Einstein manifold and calculate            .

=

Z
d4x

p
|g| f(R)

Se↵[g] = S0[g] +Wqft[g]

Wqft[g]



Outline
1.) Setup:  What types of QFTs are back-reacted?

Integrating out via holography
UV divergences & renormalisation

2.) Results for constant-curvature solutions:
Case 1:  The physical system is UV-complete 
(Case II:  QFT with a UV cutoff)

3.) Stability of the dS solutions  

4.) Conclusions & open questions



Setup



We will consider large-     theories at infinite coupling. 

Setup: QFTs
Nc
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2.) RG flow QFTs:
RG flows driven by a relevant operator     of dimension    
from a UV fixed point to a IR fixed point.
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2.) RG flow QFTs:
RG flows driven by a relevant operator     of dimension    
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ãir,�
ir

1.) CFTs:

NcWe will consider large-     theories at infinite coupling. 
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Postulate that the 4d QFT possesses a holographic dual 
given by a 5d gravitational theory.

Zqft,4d[g] = Zgrav,5d[g]Duality:

with

Zgrav,5d[g] =

Z

G|@M=g
d[G] eiSgrav[G]and

Zqft,4d[g] =

Z
d[�] eiSqft[g,�] = eiWqft[g]

Setup: Integrating out via holography
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The gravity dual is dominated by classical gravity, i.e.

Setup: Integrating out via holography

We take the QFTs to be at large      and at infinite coupling.Nc

Wqft[g] = Son-shell
grav [g]
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Setup: Integrating out via holography

We take the QFTs to be at large      and at infinite coupling.Nc

The limit                implies                        but              can be
chosen finite.

Nc ! 1 ã, ãuv, ãir ! 1 ãuv/ãir

The gravity dual is dominated by classical gravity, i.e.

Wqft[g] = Son-shell
grav [g]
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Setup: the holographic dual

Einstein manifold
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Ansatz:
ds2 = du2 + eA(u)gµ⌫dx

µdx⌫ , '(u, xµ) = '(u)

u

UV boundary

Setup: the holographic dual

[Ghosh, Kiritsis, Nitti, LW 2017]
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Z
du d4x

p
|G|

✓
R(G) � (@')2 � V (')

◆
+ Sghy .

Ansatz:
ds2 = du2 + eA(u)gµ⌫dx

µdx⌫ , '(u, xµ) = '(u)

Setup: the holographic dual

Dilaton potential:

V (')

UV CFT

IR CFT

[Ghosh, Kiritsis, Nitti, LW 2017]



We will consider large-     theories at infinite coupling of the 
following type and integrate out via holography:

Setup: Summary

1.) CFTs

2.) RG flow QFTs:
RG flows driven by a relevant operator     of dimension    
from a UV fixed point to a IR fixed point.

O �uv

Nc

The QFTs are defined on Einstein manifolds.

Se↵[g] = S0[g] + Son-shell
grav [g]
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Regulate UV divergences via a UV cutoff.
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Setup: UV divergences
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Integrating out a QFT typically leads to UV divergences.

Regulate UV divergences via a UV cutoff.

The term          renormalizes the cosmological constant⇠ ⇤4
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Setup: Case 1
E

The system of bare grav. theory and QFT is “UV-complete”.

0

⇤ ! 1 Take cutoff to infinity

Absorb the divergent terms in renormalized quantities:
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Results: UV complete case (1)
E

The system of bare grav. theory and QFT is “UV-complete”.

0

⇤ ! 1 Absorb divergent terms in renormalized quantities.

Equation for constant-curvature solutions:
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Equation for constant-curvature solutions:
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3

�ren

M2
ren

!

-4 -2 2 4 6 8 10

-20

20

40

60

80

100
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ãuv�ren

M2
ren
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Results: cutoff QFT (2)
Eq. for const.-curv. sol.: M2
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ã�0M
�2
0 = 1.00

R = 4�0 � 24ã2
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Results: cutoff QFT (2)
Eq. for const.-curv. sol.: M2
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ã2⇤4
+

M4
0�0
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R(⇤ = 0) = 4�0

Increasing      always decreases     .⇤ R

For sufficiently large      the curvature      becomes negative.⇤ R

The (thermal) entropy of dS space scales as                 .
Increasing     thus increases       of dS which may be naively
expected. Can this entropic argument be made precise? 
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⇤ Sth
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Condition on thermodynamic stability:

Stability

For a        -theory stability about a constant-   -solution implies:

[Mazur, Mottola ’86]
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Condition on thermodynamic stability:

Stability

fR �RfRR < 0

For a CFT: ãR
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Note that a        -theory can be written as an Einstein-dilaton  
theory with dilaton potential: 

Stability
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Thermodynamic stability: 

Stability

Se↵[g] =
1

2

Z
d4x

p
|g| f(R)

Then the two conditions are only consistent             .

Dilaton stability: fR �RfRR

fRfRR
> 0

fR �RfRR < 0

fRR < 0

For the graviton not to be a ghost require           .fR > 0
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The sign of         will depend on the quadratic term                .
Note that this term drops out from                .
The coefficient    is constrained by the condition           .fR > 0
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Thermodynamic stability: 
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Then the two conditions are only consistent             .

Dilaton stability: fR �RfRR
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For the graviton not to be a ghost require           .fR > 0

For a CFT:  for any fixed     find              for          .
In the Minkowski limit thermodyn. stability = dilation stability
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thermo. stab.:

Stability

For a CFT: ãR
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Summary
0.) Advantages from holography:  

Integrating out a QFT via its gravity-dual is highly tractable.

1.) UV complete setting (case 1)
CFTs:  only have solution if                      .�ren  3

ã
M2

ren

RG flow QFTs:  back-reaction effect interpolates 
between that of the UV CFT and the IR CFT.

2.) Stability
Thermodyn. stability and stability in dilaton-formulation
coincide for sufficiently small background curvature.
These solutions are then unstable according to both 
criteria.



Open Questions
Is it possible to develop a precise and quantitative entropic 
understanding of the back-reaction effect of a cutoff QFT?

Are the solutions found stable under small perturbations 
that deform the geometry away from dS?  To what extent 
can this question be addressed in the simplified setup 
considered here with                  ?               r⇢Rµ⌫ = 0
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Many thanks for your attention!


