# Inflationary correlators from the stochastic spectral expansion

#### arXiv:1904.11917,1811.02586,1910.????

"Scalar correlation functions in de Sitter space from the stochastic spectral

expansion",

"Spectator Dark Matter",

"Scalar correlation functions for a double-well potential in de Sitter space"

#### Tommi Markkanen<sup>1</sup>

with: Arttu Rajantie<sup>1</sup>, Stephen Stopyra<sup>2</sup> and Tommi Tenkanen<sup>3</sup> <sup>1</sup>KBFI Tallinn, <sup>2</sup>University College London, <sup>3</sup>Johns Hopkins University



October-2019 IAP, Paris



# Outline



- 2 The stochastic spectral expansion
- 3 The double-well potential
- 4
- Application: Spectator Dark Matter





# Outline

#### Introduction

The stochastic spectral expansion

3) The double-well potential

Application: Spectator Dark Matter

# QFT in de Sitter (dS) space ( $a(t) = e^{Ht}$ )

- Field theory on curved backgrounds a well-known framework Textbook: N. Birrell & P. Davies (82)
- Often very difficult analytically, even for free scalars
- No vacuum state for free massless scalars in dS B. Allen (85); B. Allen & A Folacci (87)
- Infrared (IR) divergences,  $\hat{\phi} = \sum_{\mathbf{k}} [\hat{a}_{\mathbf{k}} f_k + \text{h.c.}]$

$$\int_0^{\Lambda_{\rm IR}} dk \, k^2 |f_k|^2 \stackrel{t \to \infty}{\longrightarrow} \infty$$

• Can be cured via resumming

# Resummations, $V(\phi) = \frac{\lambda}{4}\phi^4$

• The perturbative expansion

$$\bigcirc + \bigcirc + \cdot \bigcirc + \cdot \bigcirc \cdot + \mathcal{O}(\lambda^3)$$

• An example of a resummation



- A resummed propagator contains an infinite number of diagrams (i.e. is non-perturbative)
  - $\Rightarrow$  Interactions can cure the IR issues of the free theory

# Stochastic approach for de Sitter

- Ingenious approach: IR as stochastic variables, noise from UV Starobinsky (86); Starobinsky & Yokoyama (94)
- $\Rightarrow$  Classical statistics with the probability density  $P(t, \phi)$

$$\dot{P}(t,\phi) = \frac{1}{3H} \frac{\partial}{\partial \phi} \left[ P(t,\phi) V'(\phi) \right] + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \phi^2} P(t,\phi)$$
(Fokker-Planck)

The 1-point equilibrium distribution
$$P(\phi) = N \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$$

• Light fields  $V''(\phi) \ll H^2$  excited by the expansion

## What about correlators?

• The scalar "condensate" for  $V(\phi) = \frac{\lambda}{4}\phi^4$ 

$$\langle \phi^2 \rangle = \left(\frac{3}{2\pi^2}\right)^{1/2} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \frac{H^2}{\lambda^{1/2}}$$

- However, no information of the correlation length in  $P(\phi)$ 
  - Is there a condensate after all?!

The crucial quantity 
$$\langle \phi(0)\phi({f x})
angle =?$$

Also, in cosmology a very important quantity to know is

 $\langle \delta \rho(\mathbf{0}) \delta \rho(\mathbf{x}) \rangle = ?; \qquad \delta \rho(\mathbf{x}) = \langle \rho \rangle - \rho(\mathbf{x})$ 

# Spectral expansion

#### Introduction

#### 2 The stochastic spectral expansion

3) The double-well potential



# Correlators for scalar $\phi$ from the stochastic approach

Three important assumptions:

- **()**  $\phi$  is a spectator
- 2 Close to dS
- Equilibrium
- Starobinsky & Yokoyama (94): solution via eigenvalues Λ<sub>n</sub> and -functions ψ<sub>n</sub>(φ):

$$\left[\frac{\partial^2}{\partial\phi^2} + \underbrace{\nu''(\phi) - \nu'(\phi)^2}_{\equiv W(\phi)}\right]\psi_n(\phi) = -\frac{8\pi^2\Lambda_n}{H^3}\psi_n(\phi); \quad \nu(\phi) = \frac{4\pi^2}{3H^4}V(\phi)$$

$$\langle f[\phi(0)]f[\phi(t)]\rangle = \sum_{n} f_n^2 e^{-\Lambda_n t}; \qquad f_n = \int d\phi \psi_0(\phi) f(\phi) \psi_n(\phi)$$

Spatial correlators via dS invariance

Example:  $\langle \delta \phi^2(0) \delta \phi^2(\mathbf{x}) \rangle$ 

• No VEV, 
$$\langle \phi \rangle = 0 \quad \Rightarrow \quad \delta \phi^2 = \phi^2 - \langle \phi^2 \rangle$$

$$\begin{split} \langle \delta \phi^2(0) \delta \phi^2(t) \rangle &= \langle [\phi^2(0) - \langle \phi^2(0) \rangle] [\phi^2(t) - \langle \phi^2(t) \rangle] \rangle \\ &= \langle \phi^2(0) \phi^2(t) \rangle - \langle \phi^2 \rangle^2 \\ &= \sum_{n=1}^{\infty} (\phi_n^2)^2 e^{-\Lambda_n t} \,; \qquad \phi_n^2 = \int d\phi \psi_0(\phi) \phi^2 \psi_n(\phi) \end{split}$$

• dS invariant line-element:

$$y = \cosh H(t_1 - t_2) - \frac{H^2}{2}e^{H(t_1 + t_2)}|\mathbf{x}_1 - \mathbf{x}_2|^2$$

• Finally, for  $|\mathbf{x}|H \gtrsim 1$ 

$$\langle \delta \phi^2(0) \delta \phi^2(\mathbf{x}) \rangle = \sum_{n=1}^{\infty} (\phi_n^2)^2 (|\mathbf{x}|H)^{-2\Lambda_n/H}$$

# Power spectrum, spectral tilt and the correlation length

• At cosmological distances  $|\mathbf{x}H| \gg 1$ 

$$egin{aligned} &\langle f[\phi(0)]f[\phi(\mathbf{x})]
angle \sim rac{A_f}{(|\mathbf{x}|H)^{n_f-1}}\,; \quad A_f=f_n^2\ &n_f-1\sim 2rac{\Lambda_n}{H}\ &\mathcal{P}_f(k)\sim A_f\left(n_f-1
ight)\left(rac{k}{H}
ight)^{n_f-1} \end{aligned}$$

# The correlation length $R_c \sim H^{-1}2^{rac{1}{n_f-1}}$

•  $n_f - 1$  is NOT the same for  $\phi$  and  $\delta \rho$ :

Always blue

Example:  $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4$ 

Equation to solve

$$\left[\frac{\partial^2}{\partial\phi^2} - \left(\frac{4\pi^2}{3H^4}\right)^2 \left(m^4\phi^2 + 2\lambda m^2\phi^4 + \lambda^2\phi^6\right) + \frac{4\pi^2}{3H^4} \left(m^2 + 3\lambda\phi^2\right)\right]\psi_n(\phi) = -\frac{8\pi^2}{H^3}\Lambda_n\psi_n(\phi)$$

Essentially, results are functions of a single parameter

$$\alpha \equiv \frac{m^2}{H^2 \sqrt{\lambda}}$$

#### Can use familiar techniques from QM

⇒ Solutions via the simple "overshoot/undershoot" method

- $\alpha \to \infty \quad \Rightarrow \quad \text{quadratic}$
- $\alpha \rightarrow 0 \quad \Rightarrow \quad \text{quartic}$

# Eigenvalues for $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4$



# Eigenfunctions for $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4$



# Approximation schemes, $V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4$

Consider the density contrast in the stochastic formalism

$$\begin{split} \delta &\equiv \frac{\delta\rho}{\langle\rho\rangle} \approx \frac{V(\phi) - \langle V(\phi)\rangle}{\langle V(\phi)\rangle} \\ \Rightarrow \quad \langle \delta(0)\delta(\mathbf{x})\rangle \stackrel{|\mathbf{x}|H \gg 1}{\approx} \frac{A_{\delta}}{(|\mathbf{x}|H)^{n_{\delta}-1}}; \quad n_{\delta} - 1 = 2\frac{\Lambda_{2}}{H}, \ A_{\delta} = (\delta_{2})^{2} \end{split}$$

#### Common approximations:



# Comparison between approximations



All approximations overestimate power on large scales!

# **Double-well**

#### Introduction

The stochastic spectral expansion

#### The double-well potential

Application: Spectator Dark Matter

Spec. exp. for double-well: TM & A. Rajantie in prep.



## Symmetric case, $\beta = 0$



# $\mathcal{P}_{\delta\phi^2}(k)$ for symmetric case, $(\delta\phi^2 \equiv \phi^2 - \langle \phi^2 \rangle)$

$$\langle \delta \phi^2(0) \delta \phi^2(\mathbf{x}) \rangle = \sum_{n=1}^{\infty} (\phi_n^2)^2 (|\mathbf{x}|H)^{-2\Lambda_n/H}; \qquad \phi_n^2 = \int d\phi \psi_0(\phi) \phi^2 \psi_n(\phi)$$



Feature: the tilt jumps on large scales

# Eigenvalues, symmetric case, $\beta = 0$



- At the limit of deep wells numerics becomes difficult, but analytics work
- Spectrum does NOT agree with Starobinsky & Yokoyama (94)

# Asymmetric case, $\beta \neq 0$

- Numerically a straightforward generalization
- Very rich phenomenology



- Also interesting: periodic potentials (axion)
  - Continuous eigenvalue bands?
- Generalization beyond dS?

# **Dark Matter**

#### Introduction

- The stochastic spectral expansion
- 3) The double-well potential
- Application: Spectator Dark Matter

# The Dark Matter (DM) Paradigm



# Spectator Dark Matter; (Peebles & Vilenkin (99))

#### A decoupled singlet with the potential

$$V(\phi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\phi^4$$

- Field excitations during inflation if  $m \ll H$
- $\Rightarrow$  Energy density at the end of inflation:

$$ho_{\rm DM} \sim \langle V(\phi) 
angle = \langle \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 
angle \approx \langle \frac{\lambda}{4} \phi^4 
angle \sim H_{\rm end}^4$$

Abundance today

$$\frac{\Omega_{\phi}h^2}{0.12} \sim \left(\frac{H_{\rm end}}{M_{\rm P}}\right)^{3/2} \frac{m}{{\rm GeV}}.$$

Correct abundance with the appropriate choice for m for a given  $H_{end}$ 

#### Isocurvature

Isocurvature/entropy perturbations

$$\begin{split} S &\equiv \frac{3}{4} \frac{\delta \rho_{\gamma}}{\rho_{\gamma}} - \frac{\delta \rho_{\rm DM}}{\rho_{\rm DM}} \\ \text{adiabatic} \quad \Rightarrow \quad S = 0 \quad \Leftrightarrow \quad \delta \bigg( \frac{n_{\gamma}}{n_{\rm DM}} \bigg) = 0 \,, \end{split}$$

• A decoupled spectator is not adiabatic

$$S \sim rac{\delta 
ho_{\phi}}{
ho_{\phi}}$$

Planck places stringent bounds on isocurvature

 $\mathcal{P}(k_*) \lesssim 0.040 \mathcal{P}_{\zeta}(k_*)$ .

Isocurvature bound sensitive only to scales  $\sim k_*$ 

A sufficiently blue spectrum can avoid the bound!

#### Isocurvature constraints



• Bound avoided for  $\lambda \gtrsim 0.45$ 

# Viable parameter range

 A large range of viable masses

•  $\lambda$  is perturbative,  $\lambda \ll 4\pi$ 



For V(φ) = ½m<sup>2</sup>φ<sup>2</sup> see: Kuzmin & Tkachev (98)
 For m ∼ H stochastic approach guestionable (and not needed)

# Conclusions

#### Introduction

- 2) The stochastic spectral expansion
- 3) The double-well potential
- Application: Spectator Dark Matter

# Conclusions

- The stochastic spectral expansion is a powerful tool for calculating correlators
- Rich phenomenology for double-well potentials
- Decoupled stochastic spectators are a viable candidate of DM

# Thank You!