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Inflation as a theory of the early universe

Cosmological inflation

Figure: Standard cosmology with inflation as a model for the early
Universe
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Inflation as a theory of the early universe

Inflation solves problems in standard Big Bang cosmology

Figure: Inflation as a solution to the horizon problem

4 / 38



Mixmasters that bounce

Inflation as a theory of the early universe

Inflation and scale invariance

Starting from an initial quantum vacuum, the curvature
perturbations have a scale invariant primordial power spectrum
Using the facts that

The background is expanding

Can be said to be dominated by an approximately ideal EOS
fluid

we find,

Pζ(k , η) =
1

2

(
a [tH ]

z [tH ]

)2

H2

SCALE-INVARIANT
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What can Inflation do for us?

Causal mechanism of the formation of structure

Horizon problem

Isotropy problem

Flatness problem

Scale-invariance in scalar and tensor spectra

Small non-Gaussianities
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Inflation as a theory of the early universe

THERE IS ALWAYS A BUT
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Inflation as a theory of the early universe

It has some issues...

An inevitable Big Bang singularity

Trans-Planckian problem

Exit from inflation

Multiverse and eternal inflation

The η problem

The initial conditions problem

Various fine-tuning problems

Lack of falsifiability and predictivity

And so on...
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Inflation as a theory of the early universe

THIS PROMPTED THE SEARCH FOR
ALTERNATIVES
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A bounce as a theory of the early Universe

A bouncing cosmology

Figure: A bounce as a theory of the early Universe
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A bounce as a theory of the early Universe

How do we get a bounce?

Coming out of the contracting phase the Hubble rate H is
negative.

H > 0 in the expanding phase

So in the transition or ‘bounce’ phase, H = 0 and

Ḣ =
k

a2
− 1

2
(ρ+ P)

If the spatial curvature k is 0, then for Ḣ > 0 and H = 0, we
must have ρ+ P < 0 (NEC violation)

If we have positive spatial curvature, we can have a bounce,
In the closed radiation FRW universe, exact solutions show
this but need a NEC violating field to have the bounce occur
at non-zero volume.

J.D.Barrow and Christos G.Tsagas, CQG Vol. 26, No. 19 (2009)
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A bounce as a theory of the early Universe

How does a bouncing model perform in solving problems of
Standard Cosmology?

1 Using the fact that as the bounce is approached, H → 0 the
horizon can be made large enough to solve the Horizon
problem.

2 Non-singular bouncing models automatically solve the initial
Big Bang singularity problem

3 Homogeneity? Curvature?

4 Isotropy? THIS TALK
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A bounce as a theory of the early Universe

Scale-invariant spectra from bouncing cosmologies

Using the facts that ..

The background is contracting

Can be said to be dominated by a dust i.e. p = 0 fluid

we find,

SCALE-INVARIANT SPECTRUM ON SUPER-HUBBLE
SCALES
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A bounce as a theory of the early Universe

Theories of the contracting phase

1 Ekpyrosis as a theory of the contracting phase: slow
contraction mediated by a fast rolling scalar field

V = −|V0| exp

(√
2

p

φ

MPl

)

This implies that EOS parameter w � 1.

2 Matter bounce : the contraction is dominated by a matter-like
fluid to ensure a scale-invariant scalar spectrum.
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A bounce as a theory of the early Universe

But how do we get a bounce then?
1 Modified theories of gravity - galileon bounces, massive

gravity ( ghost-free bounce)

2 f (R) mediated bounces, Horava-Lifshitz gravity, modified
Gauss Bonet terms gave some stable bouncing solutions

3 Introducing a −ρ2 term phenomenologically. Also in the
context of LQC models

4 Ghost-condensate bounces - implemented in New Ekpyrotic
Cosmology with specific higher-derivative self-interactions of
the scalar field

5 String gas mediated bounces for example S-brane mediated
bounces

All of these violate the null-energy condition in the case where
positive curvature does not dominate the bounce.

Diane Battefeld, Patrick Peter, Physics Reports, 571, 1 − 66 (2015)
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A bounce as a theory of the early Universe

Non-singular cosmology from a quadratic equation of state

The equation of state used is

P = P0 + αρ+
β

ρC
ρ2

ρC is the energy scale at which non-linearities become relevant

For this work we choose P0 = 0, α = 1/3 and β = −1

Resembles perfect fluid at ρ� ρC which in our case is
radiation

Oscillating solutions have been found in the closed FRW case
which are always non-singular.

Kishore N. Ananda, Marco Bruni, PRD, 74, 023524 (2006)
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A bounce as a theory of the early Universe

“The story so far:
In the beginning the Universe
was created.
This has made a lot of people
very angry and been widely
regarded as a bad move.”

-Douglas Adams
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A bounce as a theory of the early Universe

Anisotropies grow in the contracting phase.

Do anisotropic bouncing
cosmologies still bounce and
isotropise?
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Ekpyrosis as a mechanism of isotropisation

How ekpyrosis solves the anisotropy problem

The metric

ds2 = dt2 − a2(t)dx2 − b2(t)dy2 − c2(t)dz2

Friedmann equation: 3H2 = σ2 + ρmatter ,

The shear evolves as,

σ̇αβ + 3Hσαβ = 0

ρmatter should evolve as V−n, n� 2

J. Khoury, B.A. Ovrut, P. J. Steinhardt and N.Turok, 2001, J. High Energy Phys. 11(2001)041

21 / 38



Mixmasters that bounce

Ekpyrosis as a mechanism of isotropisation

Bianchi Class A: A generalised study of anisotropies

The generalised metric

ds2 = dt2 − habdω
adωb

Having an isotropic ultra stiff field of density ρ with equation
of state p = (γ − 1)ρ, such that γ > 2
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Ekpyrosis as a mechanism of isotropisation

Phase plane analysis and expansion normalised variables

We introduce

σ+ ≡ 1
2 (σ22 + σ33),

σ− ≡ 1
2
√

3
(σ22 − σ33).

Write EFE in terms of expansion normalised variables

Ω ≡ ρ

3H2
, Σ2 ≡ σ2

3H2
, K ≡ −

(3)R

6H2
.
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Ekpyrosis as a mechanism of isotropisation

The phase plane system looks like...

Einstein equations of the form x′ = f(x)

subject to the Friedmann constraint g(x) = 0

where the state vector x ∈ R6 is given by
{H, Σ+,Σ−︸ ︷︷ ︸

shear components

, N1,N2,N3︸ ︷︷ ︸
spatial curvature variables

,Ω}
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Ekpyrosis as a mechanism of isotropisation

The fact that the matter is ultra stiff γ > 2 is used and

A no-hair theorem can be proved for all Bianchi types, I-VIII
as well as IX(separately)

Cosmic no-hair theorem

All initially contracting, spatially homogeneous, orthogonal Bianchi
Type I-VIII cosmologies and all Bianchi type IX universes sourced
by an ultra-stiff fluid with an equation of state such that (γ − 2) is
positive definite, collapse into an isotropic singularity, where the
sink is a spatially flat and isotropic FRW universe.

J.E.Lidsey, CQG, 23, 3517,(2005)

25 / 38



Mixmasters that bounce

Ekpyrosis as a mechanism of isotropisation

Generalising to Bianchi Type IX

It is the most general closed homogeneous universe,
describable by ODEs

It has the closed FRW universe as its isotropic sub-case

It has expansion anisotropy and anisotropic 3-curvature(which
has no Newtonian analogue)

On approach to t → 0, in an open interval 0 < t < T ,
exhibits chaotic Mixmaster oscillations, however oscillations
become finite in number even if t → tPl on the finite interval
tPl < t < T excluding t → 0.
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Ekpyrosis as a mechanism of isotropisation

In a Bianchi IX universe, the quadratic equation of state with
p = 1/3ρ− ρ2 produces bounces which are anisotropic
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Figure: Scale factors in a diagonal anisotropic closed universe in the
presence of the quadratic equation of state fluid

CG and Marco Bruni, PRL, 123, no.202, 201301,(2019)
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Ekpyrosis as a mechanism of isotropisation

Anisotropic stresses in a Bianchi I universe

We go back to our simple flat anisotropic universe and add
anisotropic pressures in.

Friedmann equation

3H2 = σ2 + ρmatter ,

The shear evolves as,

σ̇αβ + 3Hσαβ = µPαβ
anisotropic stress

The equation for the shear isn’t homogeneous and we can’t say
straight away that an ultra stiff field will be able to dominate over
it.
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Ekpyrosis as a mechanism of isotropisation

Anisotropic stresses in Bianchi Class A

Resort to the expansion normalised variables and introduce
Z ≡ µ

3H2 where µ is the anisotropic pressure field energy
density with EOS, pi = (γi − 1)µ and
γ? = (γ1 + γ2 + γ3)/3 > γ

try to perform stability analysis on the state vector
x = {H,Σ+,Σ−,N1,N2,N3,Ω,Z}

Linearise expansion normalised EFE around the FL point

Σ+ = 0, Σ− = 0, N1 = 0, N2 = 0, N3 = 0, Ω = 1, Z = 0
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Ekpyrosis as a mechanism of isotropisation

Stability analysis with anisotropic pressures:the results

We find the following eigenvalues
3
2 (2− γ) of multiplicity 2

3γ−2
2 of multiplicity 3

3(γ − γ?) of multiplicity 1

Using the condition γ? > γ > 2, FL equilibrium point stability
cannot be determined

We can no longer determine the stability of the FL point and
can’t prove a no hair theorem like before.
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Ekpyrosis as a mechanism of isotropisation

Growing anisotropies cause Bianchi IX to collapse
Even if the anisotropic pressures are ultra-stiff on average,
isotropisation doesn’t occur and the Bianchi IX Universe does not
re-expand

Figure: Scale factors in a diagonal anisotropic closed universe in the
presence of positive anisotropic stress

CG and John D. Barrow, CQG, 33, no.12, 125004,(2016)
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Anisotropic pressures can be used to isotropise a bouncing universe
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Anisotropic pressures can be used to isotropise a bouncing universe

The inclusion of shear viscosity

σ̇ab + 3Hσab = πab = κρ1/2σab, κ < 0 and κ is a constant

0 250 500 750 1000 1250 1500 1750 2000

t

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

σ2/ρ

Figure: Normalised dimensionless shear in a diagonal anisotropic closed
universe

CG and Marco Bruni, PRL, 123, no.202, 201301,(2019)
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Anisotropic pressures can be used to isotropise a bouncing universe

Scale factors in the Bianchi IX universe with shear viscosity
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Figure: Scale factors in a diagonal anisotropic closed universe

Mixmaster chaotic behaviour mitigated as the Lyapunov index
is negative.

CG and Marco Bruni, PRL, 123, no.202, 201301,(2019)
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Conclusions and future outlook

The take-home!

1 A Big Bang singularity isn’t the end of the story:
non-singular cosmologies may describe our very
early Universe.

2 Non -linear fluids sourcing a cosmology is
another way to have a bounce.

3 Anisotropies are suppressed in the contracting
phase if you include dissipative shear viscous
effects.
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Conclusions and future outlook

Outlook and Future work

Exploring the construction of a field theory example of this
kind of quadratic equation of state, as well as a model of how
shear viscous effects could arise in the early Universe. A
possible idea is through a black hole gas?

The role of inhomogeneities need to be studied.

Is it possible to have perturbations travel through this
bouncing model?

The question of whether the Mixmaster chaotic behaviour is
truly suppressed instead of just mitigated also needs to be
explored in more detail.
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Conclusions and future outlook

Thank you
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Bianchi Cosmologies

Explaining all the symbols

Definition:Bianchi models are spatially homogeneous cosmologies
admitting a three-parameter local group G3 of isometries that act
simply transitively on spacelike hypersurfaces Σt .

ds2 = dt2 − habdω
adωb

where dωa = 1
2C

a
bcω

b ∧ ωc and C a
bc are the structure constants of

the Lie algebra G3 As C a
(bc) = 0, there are 9 independent

components, and
C a
bc = ncdεdab + δc[aAb]

where nab is a symmetric 3× 3 matrix, and Ab = C a
ab is a 3× 1

vector.
Using the Jacobi identity, C e

d [aC
d
bc], we have nabAb = 0. Choose

Ab = (A, 0, 0) and nab =diag[n1, n2, n3], to get,

n1A = 0

If A = 0, Bianchi Class A models, and if A 6= 0(n1 = 0), Bianchi
Class B.
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Bianchi Cosmologies

Orthonormal frame formalism

We define the unit timelike vector field u perpendicular to the
group orbits and the projection tensor hab

ua;b = σab + ωab + 1
3 Θhab − u̇aub

We have specialised to cases where the total stress
tensor(isotropic+anisotropic) is diagonal

We can write EFE as x′ = f(x). The functions f(x) are
homogeneous of degree 2

System is invariant under scale transformation x̃ = λx and
dt̃/dt = λ

so we can introduce dimensionless variables, as well as because
the variables in their current form diverge close to the big
bang and tend to zero at late times in ever-expanding models

Things evolve wrt the scale factor, so it seems natural to
normalise wrt the Hubble rate
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Explicit solutions for the axisymmetric universe

We have ρ and µ for isotropic and anisotropic pressure fields
which follow the equations of state p = (γ − 1)ρ and
pi = (γi − 1)µ with γ? = (γ1 + γ2 + γ3)/3 and γ? > γ

the 3 scale factors in the 3 directions are expressed as,

a(t) ≡ eα(t), b(t) ≡ eβ(t), c(t) ≡ eδ(t)

Define

x ≡ α′(t)− β′(t),

y ≡ α′(t)− δ′(t),

H ≡ 1

3

(
α′(t) + β′(t) + δ′(t)

)
.

Choose initial conditions satisfying the Friedmann constraint
for the variable system

{x , y ,H, α, β, δ, ρ, µ}
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Explicit solutions for the axisymmetric universe

The setup

The setup

The generalised metric

ds2 = −dt2 + habdω
adωb

Having isotropic ultra stiff ghost field of density ρ with
equation of state p = (γ − 1)ρ

and anisotropic pressure ultra stiff field of density µ with
equation of state pi = (γi − 1)µ

with γ? = (γ1 + γ2 + γ3)/3 and γ? > γ

4 / 4
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