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Introduction

• The Kerr solution describes rotating black holes in general relativity
• It is interesting to construct deformations of the Kerr spacetime, in
order to compare to experiments and potentially find signatures of
modified theories of gravity

• Ad hoc deformations of the Kerr spacetime have been introduced in the
past (Psaltis+, 2011; Johannsen, 2013; Papadopoulos+, 2018...)

• Using the disformal map, we present a deformed version of the Kerr
spacetime which is a solution to a higher order scalar-tensor theory
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1. Properties of the Kerr metric



Kerr solution

• Vacuum solution of GR describing a rotating black hole (Kerr, 1963). The
metric g verifies Rµν = 0.

• In Boyer-Lindquist coordinates, the metric tensor is:

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdφ+

sin2 θ

ρ2

[
(r2 + a2)2 − a2∆sin2 θ

]
dφ2

+
ρ2

∆
dr2 + ρ2dθ2

where M is the mass, a is the angular momentum per unit mass, and

ρ2 = r2 + a2 cos2 θ ,
∆ = r2 + a2 − 2Mr .

• RµνασRµνασis singular at ρ =
√
r2 + a2 cos2 θ = 0, so there is a ring

singularity at

r = 0 and θ =
π
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Symmetries and circularity

• The metric is stationary and axi-symmetric, which corresponds to 2
Killing directions

ξ(t) = ∂t and ξ(φ) = ∂φ

• The spacetime is circular, i.e. symmetric under the reflection
(t, φ) → (−t,−φ), because the Killing fields verify the condition

ξ(t) ∧ ξ(φ) ∧ dξ(t) = ξ(t) ∧ ξ(φ) ∧ dξ(φ) = 0 .

• The Kerr spacetime also admits a nontrivial Killing 2-tensor K verifying
the equation

∇(µKνσ) = 0 .

• This defines a third nontrivial constant of motion along geodesics
(Carter’s constant). The geodesic equations thus reduce to a first order
system.
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Stationary observers

• Consider constant (r, θ) observers, with a 4-velocity

u = ∂t + ω∂φ

• The condition u2 ≤ 0 implies ω ∈ [ω−, ω+], where

ω± =
|gtφ|
gφφ

(
1±

√
1− gttgφφ

g2tφ

)

• Inside the ergosphere, where gtt > 0, one necessarily has ω− > 0
• This surface is defined by gtt = 0, which implies

rE = M+
√
M2 − a2 cos2 θ

• These observers stop to exist at the outer event horizon when
gttgφφ − g2tφ = 0, at the radius

r+ = M+
√
M2 − a2
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Stationary observers

Graf, GR lecture notes
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Killing horizon

• Rigidity theoreom (Hawking): The event horizon H of a real analytic,
stationary, regular, vacuum spacetime is a Killing horizon: ∃ a Killing
field k normal to H which verifies k2 = 0 on H.

• For the outer horizon of the Kerr spacetime, this Killing vector is

k = ∂t +
a

2Mr+
∂φ

• One can define the surface gravity κ+ of H as

kµ∇µkν = κ+kν

• The surface gravity is constant on H and is related to the Hawking
temperature TH = κ+/2π
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Kerr summary

Outer ergosurface

Inner ergosurface

r+E = m+
√
m2 − a2 cos2 θ

r− = m−
√
m2 − a2

r−E = m−
√
m2 − a2 cos2 θ

z

y

x

Symmetry axis θ = 0, π

Outer event horizon
r+ = m+

√
m2 − a2

Inner event horizon

Ring singularity
x2 + y2 = a2 and z = 0

Ergoregion

Visser, 2007
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2. Stealth-Kerr solution in DHOST
theories



Degenerate Higher Order Scalar-Tensor (DHOST) theories

S = M2
P

∫
d4x

√
−g
(
f(ϕ, X)R+ K(ϕ, X)− G3(ϕ, X)�ϕ+

5∑
i=1

Ai(ϕ, X)Li

)
+Sm [gµν , ψm]

L1 = ϕµνϕ
µν , L2 = (�ϕ)2, L3 = ϕµνϕ

µϕν�ϕ,
L4 = ϕµϕ

νϕµαϕνα, L5 = (ϕµνϕ
µϕν)2

X = ϕµϕµ

• Different classes of DHOST theories can be obtained (Langlois, Noui;
Crisostomi+, 2016), but only one (subclass Ia) is viable for phenomenology:

A2 = −A1

A4 =
−16XA31 + 4(3f + 16XfX)A

2
1 − X2 fA23 − (16X2 fX − 12Xf)A3A1 − 16fX(3f + 4XfX)A1 + 8f(XfX − f)A3 + 48ff2X

8(f − XA1)2

A5 =
(4fX − 2A1 + XA3)(−2A21 − 3XA1A3 + 4fXA1 + 4fA3)

8(f − XA1)2 9



Stability of the DHOST class under the disformal map

• These theories can be obtained from Horndeski theories by a disformal
transformation of the metric (Ben Achour+; Crisostomi+, 2016...):

g̃µν = C(ϕ, X)gµν + D(ϕ, X)∂µϕ∂νϕ

Langlois, 2018
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Stealth-Kerr solution

• A stealth-Kerr solution was constructed (Charmousis+, 2019), where the
scalar field is the Hamilton-Jacobi potential of the Kerr spacetime

g = gKerr

ϕ = −Et+ Lzφ±
∫ √

R(r)
∆

dr±
∫

Θ(θ)dθ

• One looks for a solution to the Hamilton-Jacobi equation

gµν∂µϕ∂νϕ = −q2

• A separable solution exists because the Kerr solution admits a Killing
tensor K, linked to the Carter constant Q

Q = Kµν∂µϕ∂νϕ+ (aE− Lz)2

• The resulting scalar defines a geodesic because one has

∇µϕ∇ν∇µϕ = ∇µϕ∇µ∇νϕ = 0
11



Stealth-Kerr solution

• In order for ∂µϕ to be regular at the poles, one must set Lz = 0, which
implies

η ≡ − E
q

R(r) = q2
(
r2 + a2

)(
η2(r2 + a2)−∆

)
Θ(θ) = a2q2 sin2 θ(1− η2)

• In the following, we set η = 1, so that the scalar field depends on r only

E = −q

R(r) = 2Mrq2
(
r2 + a2

)
Θ(θ) = 0
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3. Disformed Kerr metric



Disformed Kerr metric

• Starting from the Kerr solution, we perform the transformation:

g̃µν = gµν − D
q2 ∂µϕ∂νϕ ,

ϕ = q
[
t+
∫ √

2Mr(a2 + r2)
∆

dr
]
.

• The line element is now

ds̃2 = −
(
1− 2M̃r

ρ2

)
dt2−2D

√
2M̃r(a2 + r2)

∆
dtdr+ ρ2∆− 2M̃(1+ D)rD(a2 + r2)

∆2 dr2

−
4
√
1+ DM̃ar sin2 θ

ρ2
dtdφ+

sin2 θ

ρ2

[(
r2 + a2

)2
− a2∆sin2 θ

]
dφ2 + ρ2dθ2

with M̃ = M/(1+ D) and the rescaling t→
√
1+ Dt

• The scalar again defines a geodesic direction, since

X̃ = g̃µν∂µϕ∂νϕ =
X

1+ D
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Regular solution

• The disformed metric has the following curvature scalars

R̃ = −Da
2Mr[1+ 3 cos(2θ)]

(1+ D)ρ6 , R̃µναβ R̃µναβ =
M2Q2(r, θ)

ρ12(r2 + a2)(1+ D)2 ,

• The solution is not Ricci-flat, but the only singularity is at ρ = 0, like
Kerr. To verify this, one changes coordinates to

t→ v− r−
∫

2Mr
∆

dr , φ→ −χ− a
∫

dr
∆

• The metric components are regular in these coordinates, and the scalar
field reads

ϕ = q

v− r+
∫

dr

1+
√

r2+a2
2Mr
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Non-circularity in the general case

• If a = 0, there exists a diffeomorphism dt→ dT+ f(r)dr that brings the
metric to the form (Babichev+, 2017; Achour+, 2019)

ds̃2 = −
(
1− 2M̃

r

)
dT2 +

(
1− 2M̃

r

)−1

dr2 + r2dΩ2 .

• In the general case, we still have the two Killing vectors

ξ(t) = ∂t and ξ(φ) = ∂φ

• However, we now have

ξ(t) ∧ ξ(φ) ∧ dξ(t) = −D
4a2M̃r

√
2M̃r(a2 + r2) cos θ sin3 θ

ρ4
dt ∧ dr ∧ dθ ∧ dφ

• This means we cannot write the metric in a form that is invariant under
(t, φ) → (−t,−φ)
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Asymptotically similar to Kerr

• Asymptotically, the Kerr metric can be written

ds2Kerr = −
[
1− 2M̃

r +O
(
1
r3

)]
dT2 −

[
4ãM̃
r3 +O

(
1
r5

)]
[xdy− ydx]dT

+

[
1+O

(
1
r

)] [
dx2 + dy2 + dz2

]
• After a coordinate transformation, one can write the disformal metric as

ds̃2 = ds2Kerr +
D

1+ D

[
O
(
ã2M̃
r3

)
dT2 +O

(
ã2M̃3/2

r7/2

)
αidTdxi +O

(
ã2

r2

)
βijdxidxj

]
.

with ã = a
√
1+ D and αi, βij ∼ O(1).

• The corrections subleading corrections in dTdxi terms are larger than
what is expected for the Kerr spacetime
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Stationary observers

• Consider constant (r, θ) observers, with a 4-velocity

u = ∂t + ω∂φ

• The condition u2 ≤ 0 implies ω ∈ [ω−, ω+], where

ω± =
1
g̃φφ

(
−g̃tφ ±

√
g̃2tφ − g̃ttg̃φφ

)
• Inside the static limit defined by g̃tt = 0, one necessarily has ω− > 0
• These observers no longer exist when g̃2tφ − g̃ttg̃φφ = 0, which happens
when

P(r, θ) ≡ r2 + a2 − 2M̃r+ 2M̃Da2r sin2 θ
ρ2(r, θ) = 0

• The outermost surface r = R0(θ) which satisfies P(R0(θ), θ) = 0 is called
the stationary limit
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Nature of the stationary limit

• When D = 0, the stationary limit coincides with the event horizon
• In the general case, the normal vector N to this surface is

Nµ =
(
0, 1,−R′

0(θ), 0
)

• One can check that

N2|r=R0 = g̃rr + g̃θθR′2
0 > 0

• Hence the surface is timelike and cannot be the event horizon in th
general case

• All Killing vectors of the form ∂t + ω∂φ are spacelike inside this surface
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Static and stationary limits

• The ergosphere and stationary limit surface touch at the poles
• For D = −0.2 and a = 0.7, we have the following picture, with
R+ ≡ M̃2 +

√
M̃2 − a2

Re R0 R+

-2 -1 1 2
x

-1.5

-1.0

-0.5

0.5

1.0

1.5

z
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Event horizon ?

• For Kerr, the horizons are found by solving grr = 0 =⇒ ∆ = 0 which
admits constant r solutions. In our case, we have g̃rr = 0 =⇒ P = 0,
which doesn’t admit constant r solutions when D ̸= 0

• We look for more general null hypersurface of the form r = R(θ). The
normal has components

nµ =
(
0, 1,−R′(θ), 0

)
• The condition n2 = 0 yields

R′(θ)2 + P(R, θ) = R′(θ)2 + R2 + a2 − 2M̃R+
2M̃Da2R sin2 θ
ρ2(R, θ) = 0

• To have a smooth solution, we must have

R′(0) = R′(
π

2 ) = 0
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Bounds on the rotation parameter

• After imposing R′(π2 ) = 0, an expansion around θ = π
2 yields a necessary

condition to have R′′(π2 ) ∈ R (and similar arguments at θ = 0).
• In units where M̃ = 1, one must have a < ac, where

Q4(a2c) = 0, D < 0

ac =
1√

1+ 4D
, D > 0

-1 1 2 3
D

0.2

0.4

0.6

0.8

1.0

ac
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Numerical bounds on a

• Numerically, one can start the integration at θ = 0, and check if
R′(π2 ) = 0 (if D > 0 one instead integrates from θ = π/2 to θ = π)

D=-0.75

D=-0.3

D=-0.1

0.6 0.7 0.8 0.9 1.0
a

0.1

0.2

0.3

0.4

R
′
π

2

• As one increases numerical precision, this becomes consistent from the
bounds coming from the expansion around. θ = π/2.
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Numerical integration

• For θ = 0, the black hole looks like Kerr, and we have

R(0) = R+ ≡ M̃2 +

√
M̃2 − a2

• This initial condition guarantees R′(0) = 0, and a numerical integration
with a = 0.9 yields

D=-0.75

D=-0.3

D=-0.1

D=0.05

D=0.1

R-R+

R0-R+

0
π

8

π

4

3π

8

π

2

θ

-0.2

0.0

0.2

0.4

• What happens in the region between R and R0 ? 23



Different surfaces

• D = −0.2 and a = 0.95 (not smooth)

Re R0 R(θ)

-2 -1 1 2
x

-1.0

-0.5

0.5

1.0

z
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Event horizon ?

• In the Kerr spacetime, the event horizon is located at r = R+. By
considering the hypersurfaces r = R+ + ζ , one can show that these
surfaces are timelike outside the event horizon, and become spacelike
between the horizons

• Similarly, we introduce the family of surfaces

Rζ(θ) = R(θ) + ζ

• Under the assumption R(θ) ≥ M̃, one can show that ∃ ζ0 such that the
surfaces r = Rζ(θ) are

timelike for ζ > 0
spacelike for ζ0 < ζ < 0

• These correspond to coordinates adapted to the horizon, in which the
horizon is located at ζ = 0
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Killing tensor ?

• Another important feature of the Kerr metric is the existence of a Killing
tensor, which allows to separate the Hamilton-Jacobi equation.

• We have considered small deformations D≪ 1 and checked that the
disformed spacetime does not even admit an approximate Killing tensor
K̃ = K+ DδK satisfying the Killing equation at first order in D, meaning
that

∇̃(µK̃νσ) = O
(
D2
)

• There are papers implying that a separable spacetime should be circular
(Benenti+, 1979...)

• Even if there is no Killing tensor, it is possible to study geodesics
numerically, or consider equatorial geodesics for which only 3 constants
are needed
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Conclusion

• Alternatives to the Kerr spacetime are interesting to detect possible
effects of modified theories of gravity

• We have constructed a solution of a particular DHOST theory by
performing a disformal transformation of the Kerr solution using a
geodesic scalar

• While asymptotically very similar to Kerr, the solution presents many
interesting properties: non-circularity, horizon not located at constant r
and not a Killing horizon, the stationary limit is distinct from the event
horizon...

• These aspects are worthy of study, along with the geodesics of this new
spacetime

• Other papers have studied some aspects of these solutions: the
particular DHOST theories that these objects are a solution of (Achour+,
2020); shadows of this black hole (Long+, 2020)
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Regular coordinates

• In regular coordinates, the disformed Kerr metric reads

ds̃2 = −
(
1 + D−

2Mr
ρ2

)
dv2 + 2

1 + D−
D

1 +
√

r2+a2
2Mr

 dvdr− D

1−
1

1 +
√

a2+r2
2Mr


2

dr2

+
4aMr sin2 θ

ρ2
dvdχ + 2a sin2 θdrdχ + ρ

2dθ2

+
sin2 θ

(
2a4 cos2 θ + 4a2Mr sin2 θ + a2r2 [3 + 2 cos(2θ)] + 2r4

)
2ρ2

dχ2 .
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