Disforming the Kerr metric

GReCO seminar, IAP

Laboratoire de Physique des 2 Infinis

Timothy Anson (IJCLab, Orsay) November 2, 2020

based on arXiv:2006.06461, TA, E. Babichev, C. Charmousis, M. Hassaine

- The Kerr solution describes rotating black holes in general relativity
- It is interesting to construct deformations of the Kerr spacetime, in order to compare to experiments and potentially find signatures of modified theories of gravity
- Ad hoc deformations of the Kerr spacetime have been introduced in the past (Psaltis+, 2011; Johannsen, 2013; Papadopoulos+, 2018...)
- Using the disformal map, we present a deformed version of the Kerr spacetime which is a solution to a higher order scalar-tensor theory

1. Properties of the Kerr metric

2. Stealth-Kerr solution in DHOST theories

3. Disformed Kerr metric

1. Properties of the Kerr metric

Kerr solution

- Vacuum solution of GR describing a rotating black hole (Kerr, 1963). The metric g verifies $R_{\mu\nu} = 0$.
- In Boyer-Lindquist coordinates, the metric tensor is:

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4aMr\sin^{2}\theta}{\rho^{2}}dtd\varphi + \frac{\sin^{2}\theta}{\rho^{2}}\left[(r^{2} + a^{2})^{2} - a^{2}\Delta\sin^{2}\theta\right]d\varphi^{2}$$
$$+ \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2}$$

where M is the mass, a is the angular momentum per unit mass, and

$$\rho^2 = r^2 + a^2 \cos^2 \theta ,$$

$$\Delta = r^2 + a^2 - 2Mr .$$

• $R_{\mu\nu\alpha\sigma}R^{\mu\nu\alpha\sigma}$ is singular at $\rho = \sqrt{r^2 + a^2 \cos^2 \theta} = 0$, so there is a ring singularity at

$$r = 0$$
 and $\theta = \frac{\pi}{2}$

Symmetries and circularity

• The metric is stationary and axi-symmetric, which corresponds to 2 Killing directions

$$\xi_{(t)} = \partial_t$$
 and $\xi_{(\varphi)} = \partial_{\varphi}$

• The spacetime is circular, i.e. symmetric under the reflection $(t, \varphi) \rightarrow (-t, -\varphi)$, because the Killing fields verify the condition

$$\xi_{(t)} \wedge \xi_{(\varphi)} \wedge \mathsf{d}\xi_{(t)} = \xi_{(t)} \wedge \xi_{(\varphi)} \wedge \mathsf{d}\xi_{(\varphi)} = 0 \; .$$

• The Kerr spacetime also admits a nontrivial Killing 2-tensor K verifying the equation

$$\nabla_{(\mu}K_{\nu\sigma)}=0.$$

• This defines a third nontrivial constant of motion along geodesics (Carter's constant). The geodesic equations thus reduce to a first order system.

• Consider constant (r, θ) observers, with a 4-velocity

$$u=\partial_t+\omega\partial_\varphi$$

• The condition $u^2 \leq 0$ implies $\omega \in [\omega_-, \omega_+]$, where

$$\omega_{\pm} = \frac{|g_{t\varphi}|}{g_{\varphi\varphi}} \left(1 \pm \sqrt{1 - \frac{g_{tt}g_{\varphi\varphi}}{g_{t\varphi}^2}} \right)$$

- Inside the *ergosphere*, where $g_{tt} > 0$, one necessarily has $\omega_{-} > 0$
- This surface is defined by $g_{tt} = 0$, which implies

$$r_{\rm E}=M+\sqrt{M^2-a^2\cos^2\theta}$$

• These observers stop to exist at the outer event horizon when $g_{tt}g_{\varphi\varphi} - g_{t\varphi}^2 = 0$, at the radius

$$r_+ = M + \sqrt{M^2 - a^2}$$

Graf, GR lecture notes

Killing horizon

- Rigidity theoreom (Hawking): The event horizon \mathcal{H} of a real analytic, stationary, regular, vacuum spacetime is a Killing horizon: \exists a Killing field k normal to \mathcal{H} which verifies $k^2 = 0$ on \mathcal{H} .
- For the outer horizon of the Kerr spacetime, this Killing vector is

$$k = \partial_t + \frac{a}{2Mr_+}\partial_{\varphi}$$

 \cdot One can define the surface gravity κ_+ of ${\mathcal H}$ as

$$k^{\mu}\nabla_{\mu}k^{\nu}=\kappa_{+}k^{\nu}$$

• The surface gravity is constant on \mathcal{H} and is related to the Hawking temperature $T_{H} = \kappa_{+}/2\pi$

2. Stealth-Kerr solution in DHOST theories

$$S = M_P^2 \int d^4x \sqrt{-g} \left(f(\phi, X)R + K(\phi, X) - G_3(\phi, X) \Box \phi + \sum_{i=1}^5 A_i(\phi, X) \mathcal{L}_i \right)$$
$$+ S_m \left[g_{\mu\nu}, \psi_m \right]$$

$$\mathcal{L}_{1} = \phi_{\mu\nu}\phi^{\mu\nu}, \quad \mathcal{L}_{2} = (\Box\phi)^{2}, \quad \mathcal{L}_{3} = \phi_{\mu\nu}\phi^{\mu}\phi^{\nu}\Box\phi,$$

$$\mathcal{L}_{4} = \phi_{\mu}\phi^{\nu}\phi^{\mu\alpha}\phi_{\nu\alpha}, \quad \mathcal{L}_{5} = (\phi_{\mu\nu}\phi^{\mu}\phi^{\nu})^{2}$$

$$X = \phi^{\mu}\phi_{\mu}$$

 Different classes of DHOST theories can be obtained (Langlois, Noui; Crisostomi+, 2016), but only one (subclass Ia) is viable for phenomenology:

$$A_{2} = -A_{1}$$

$$A_{4} = \frac{-16XA_{1}^{3} + 4(3f + 16Xf_{X})A_{1}^{2} - X^{2}fA_{3}^{2} - (16X^{2}f_{X} - 12Xf)A_{3}A_{1} - 16f_{X}(3f + 4Xf_{X})A_{1} + 8f(Xf_{X} - f)A_{3} + 48ff_{X}^{2}}{8(f - XA_{1})^{2}}$$

$$A_{5} = \frac{(4f_{X} - 2A_{1} + XA_{3})(-2A_{1}^{2} - 3XA_{1}A_{3} + 4f_{X}A_{1} + 4fA_{3})}{8(f - XA_{1})^{2}}$$

Stability of the DHOST class under the disformal map

• These theories can be obtained from Horndeski theories by a disformal transformation of the metric (Ben Achour+; Crisostomi+, 2016...):

$$\tilde{g}_{\mu\nu} = C(\phi, X)g_{\mu\nu} + D(\phi, X)\partial_{\mu}\phi\partial_{\nu}\phi$$

Langlois, 2018

Stealth-Kerr solution

• A stealth-Kerr solution was constructed (Charmousis+, 2019), where the scalar field is the Hamilton-Jacobi potential of the Kerr spacetime

$$g = g_{\text{Kerr}}$$

$$\phi = -Et + L_z \varphi \pm \int \frac{\sqrt{\mathcal{R}(r)}}{\Delta} dr \pm \int \Theta(\theta) d\theta$$

• One looks for a solution to the Hamilton-Jacobi equation

$$g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi = -q^2$$

• A separable solution exists because the Kerr solution admits a Killing tensor *K*, linked to the Carter constant *Q*

$$\mathcal{Q} = \mathcal{K}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + (aE - L_z)^2$$

• The resulting scalar defines a geodesic because one has

$$\nabla^{\mu}\phi\nabla_{\nu}\nabla_{\mu}\phi = \nabla^{\mu}\phi\nabla_{\mu}\nabla_{\nu}\phi = 0$$

- In order for $\partial_{\mu}\phi$ to be regular at the poles, one must set $L_z = 0$, which implies

$$\eta \equiv -\frac{E}{q}$$
$$\mathcal{R}(r) = q^2 \left(r^2 + a^2\right) \left(\eta^2 (r^2 + a^2) - \Delta\right)$$
$$\Theta(\theta) = a^2 q^2 \sin^2 \theta (1 - \eta^2)$$

 \cdot In the following, we set $\eta =$ 1, so that the scalar field depends on *r* only

$$E = -q$$
$$\mathcal{R}(r) = 2Mrq^2 \left(r^2 + a^2\right)$$
$$\Theta(\theta) = 0$$

3. Disformed Kerr metric

Disformed Kerr metric

• Starting from the Kerr solution, we perform the transformation:

$$\begin{split} \tilde{g}_{\mu\nu} &= g_{\mu\nu} - \frac{D}{q^2} \; \partial_{\mu}\phi \, \partial_{\nu}\phi \; , \\ \phi &= q \left[t + \int \frac{\sqrt{2Mr(a^2 + r^2)}}{\Delta} \mathrm{d}r \right] \; . \end{split}$$

 $\cdot\,$ The line element is now

$$d\tilde{s}^{2} = -\left(1 - \frac{2\tilde{M}r}{\rho^{2}}\right)dt^{2} - 2D\frac{\sqrt{2\tilde{M}r(a^{2} + r^{2})}}{\Delta}dtdr + \frac{\rho^{2}\Delta - 2\tilde{M}(1+D)rD(a^{2} + r^{2})}{\Delta^{2}}dr^{2}$$
$$-\frac{4\sqrt{1+D\tilde{M}ar\sin^{2}\theta}}{\rho^{2}}dtd\varphi + \frac{\sin^{2}\theta}{\rho^{2}}\left[\left(r^{2} + a^{2}\right)^{2} - a^{2}\Delta\sin^{2}\theta\right]d\varphi^{2} + \rho^{2}d\theta^{2}$$

with $\tilde{M} = M/(1+D)$ and the rescaling $t \to \sqrt{1+D}t$

• The scalar again defines a geodesic direction, since

$$\tilde{X} = \tilde{g}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = \frac{X}{1+D}$$

 \cdot The disformed metric has the following curvature scalars

$$\tilde{R} = -\frac{Da^2 Mr[1+3\cos(2\theta)]}{(1+D)\rho^6}, \quad \tilde{R}_{\mu\nu\alpha\beta}\tilde{R}^{\mu\nu\alpha\beta} = \frac{M^2 Q_2(r,\theta)}{\rho^{12}(r^2+a^2)(1+D)^2} ,$$

• The solution is not Ricci-flat, but the only singularity is at $\rho = 0$, like Kerr. To verify this, one changes coordinates to

$$t \rightarrow v - r - \int \frac{2Mr}{\Delta} dr$$
, $\varphi \rightarrow -\chi - a \int \frac{dr}{\Delta}$

• The metric components are regular in these coordinates, and the scalar field reads

$$\phi = q \left(v - r + \int \frac{\mathrm{d}r}{1 + \sqrt{\frac{r^2 + a^2}{2Mr}}} \right)$$

Non-circularity in the general case

• If a = 0, there exists a diffeomorphism $dt \rightarrow dT + f(r)dr$ that brings the metric to the form (Babichev+, 2017; Achour+, 2019)

$$\mathrm{d}\tilde{s}^2 = -\left(1-\frac{2\tilde{M}}{r}\right)\mathrm{d}T^2 + \left(1-\frac{2\tilde{M}}{r}\right)^{-1}\mathrm{d}r^2 + r^2\mathrm{d}\Omega^2 \;.$$

• In the general case, we still have the two Killing vectors

$$\xi_{(t)} = \partial_t$$
 and $\xi_{(\varphi)} = \partial_{\varphi}$

However, we now have

$$\xi_{(t)} \wedge \xi_{(\varphi)} \wedge d\xi_{(t)} = -D \frac{4a^2 \tilde{M}r \sqrt{2\tilde{M}r(a^2 + r^2)} \cos\theta \sin^3 \theta}{\rho^4} dt \wedge dr \wedge d\theta \wedge d\varphi$$

- This means we cannot write the metric in a form that is invariant under $(t,\varphi) \rightarrow (-t,-\varphi)$

• Asymptotically, the Kerr metric can be written

$$ds_{Kerr}^{2} = -\left[1 - \frac{2\tilde{M}}{r} + \mathcal{O}\left(\frac{1}{r^{3}}\right)\right] dT^{2} - \left[\frac{4\tilde{a}\tilde{M}}{r^{3}} + \mathcal{O}\left(\frac{1}{r^{5}}\right)\right] [xdy - ydx] dT + \left[1 + \mathcal{O}\left(\frac{1}{r}\right)\right] \left[dx^{2} + dy^{2} + dz^{2}\right]$$

• After a coordinate transformation, one can write the disformal metric as

$$\mathrm{d}\tilde{s}^{2} = \mathrm{d}s_{\mathrm{Kerr}}^{2} + \frac{D}{1+D}\left[\mathcal{O}\left(\frac{\tilde{a}^{2}\tilde{M}}{r^{3}}\right)\mathrm{d}T^{2} + \mathcal{O}\left(\frac{\tilde{a}^{2}\tilde{M}^{3/2}}{r^{7/2}}\right)\alpha_{i}\mathrm{d}T\mathrm{d}x^{i} + \mathcal{O}\left(\frac{\tilde{a}^{2}}{r^{2}}\right)\beta_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}\right]$$

with $\tilde{a} = a\sqrt{1+D}$ and $\alpha_i, \beta_{ij} \sim \mathcal{O}(1)$.

• The corrections subleading corrections in dTdxⁱ terms are larger than what is expected for the Kerr spacetime

• Consider constant (r, θ) observers, with a 4-velocity

$$u=\partial_t+\omega\partial_\varphi$$

• The condition $u^2 \leq 0$ implies $\omega \in [\omega_-, \omega_+]$, where

$$\omega_{\pm} = \frac{1}{\tilde{g}_{\varphi\varphi}} \left(-\tilde{g}_{t\varphi} \pm \sqrt{\tilde{g}_{t\varphi}^2 - \tilde{g}_{tt}\tilde{g}_{\varphi\varphi}} \right)$$

- Inside the static limit defined by $\tilde{g}_{tt}=$ 0, one necessarily has $\omega_->0$
- These observers no longer exist when $\tilde{g}_{t\varphi}^2-\tilde{g}_{tt}\tilde{g}_{\varphi\varphi}=$ 0, which happens when

$$P(r,\theta) \equiv r^2 + a^2 - 2\tilde{M}r + \frac{2\tilde{M}Da^2r\sin^2\theta}{\rho^2(r,\theta)} = 0$$

• The outermost surface $r = R_0(\theta)$ which satisfies $P(R_0(\theta), \theta) = 0$ is called the stationary limit

Nature of the stationary limit

- When D = 0, the stationary limit coincides with the event horizon
- In the general case, the normal vector N to this surface is

$$N_{\mu} = (0, 1, -R_0'(\theta), 0)$$

• One can check that

$$N^2|_{r=R_0} = \tilde{g}^{rr} + \tilde{g}^{\theta\theta}R_0^{\prime 2} > 0$$

- Hence the surface is timelike and cannot be the event horizon in th general case
- · All Killing vectors of the form $\partial_t + \omega \partial_{\varphi}$ are spacelike inside this surface

Static and stationary limits

- The ergosphere and stationary limit surface touch at the poles
- For D = -0.2 and a = 0.7, we have the following picture, with $R_+ \equiv \tilde{M}^2 + \sqrt{\tilde{M}^2 a^2}$

Event horizon ?

- For Kerr, the horizons are found by solving $g^{rr} = 0 \implies \Delta = 0$ which admits constant *r* solutions. In our case, we have $\tilde{g}^{rr} = 0 \implies P = 0$, which doesn't admit constant *r* solutions when $D \neq 0$
- We look for more general null hypersurface of the form $r = R(\theta)$. The normal has components

$$n_{\mu} = (0, 1, -R'(\theta), 0)$$

• The condition $n^2 = 0$ yields

$$R'(\theta)^2 + P(R,\theta) = R'(\theta)^2 + R^2 + a^2 - 2\tilde{M}R + \frac{2\tilde{M}Da^2R\sin^2\theta}{\rho^2(R,\theta)} = 0$$

 \cdot To have a smooth solution, we must have

$$R'(0)=R'(\frac{\pi}{2})=0$$

Bounds on the rotation parameter

- After imposing $R'(\frac{\pi}{2}) = 0$, an expansion around $\theta = \frac{\pi}{2}$ yields a necessary condition to have $R''(\frac{\pi}{2}) \in \mathbb{R}$ (and similar arguments at $\theta = 0$).
- In units where $\tilde{M} = 1$, one must have $a < a_c$, where

$$Q_4(a_c^2) = 0, \qquad D < 0$$

 $a_c = \frac{1}{\sqrt{1+4D}}, \qquad D > 0$

• Numerically, one can start the integration at $\theta = 0$, and check if $R'(\frac{\pi}{2}) = 0$ (if D > 0 one instead integrates from $\theta = \pi/2$ to $\theta = \pi$)

• As one increases numerical precision, this becomes consistent from the bounds coming from the expansion around. $\theta = \pi/2$.

 \cdot For $\theta =$ 0, the black hole looks like Kerr, and we have

$$R(0) = R_+ \equiv \tilde{M}^2 + \sqrt{\tilde{M}^2 - a^2}$$

• This initial condition guarantees R'(0) = 0, and a numerical integration with a = 0.9 yields

• What happens in the region between R and R_0 ?

• D = -0.2 and a = 0.95 (not smooth)

- In the Kerr spacetime, the event horizon is located at $r = R_+$. By considering the hypersurfaces $r = R_+ + \zeta$, one can show that these surfaces are timelike outside the event horizon, and become spacelike between the horizons
- Similarly, we introduce the family of surfaces

 $R_{\zeta}(\theta) = R(\theta) + \zeta$

• Under the assumption $R(\theta) \ge \tilde{M}$, one can show that $\exists \zeta_0$ such that the surfaces $r = R_{\zeta}(\theta)$ are

timelike for $\zeta > 0$ spacelike for $\zeta_0 < \zeta < 0$

- These correspond to coordinates adapted to the horizon, in which the horizon is located at $\zeta = 0$

- Another important feature of the Kerr metric is the existence of a Killing tensor, which allows to separate the Hamilton-Jacobi equation.
- We have considered small deformations $D \ll 1$ and checked that the disformed spacetime does not even admit an approximate Killing tensor $\tilde{K} = K + D\delta K$ satisfying the Killing equation at first order in *D*, meaning that

$$\tilde{\nabla}_{(\mu}\tilde{K}_{\nu\sigma)}=\mathcal{O}\left(\boldsymbol{D}^{2}\right)$$

- There are papers implying that a separable spacetime should be circular (Benenti+, 1979...)
- Even if there is no Killing tensor, it is possible to study geodesics numerically, or consider equatorial geodesics for which only 3 constants are needed

Conclusion

- Alternatives to the Kerr spacetime are interesting to detect possible effects of modified theories of gravity
- We have constructed a solution of a particular DHOST theory by performing a disformal transformation of the Kerr solution using a geodesic scalar
- While asymptotically very similar to Kerr, the solution presents many interesting properties: non-circularity, horizon not located at constant *r* and not a Killing horizon, the stationary limit is distinct from the event horizon...
- These aspects are worthy of study, along with the geodesics of this new spacetime
- Other papers have studied some aspects of these solutions: the particular DHOST theories that these objects are a solution of (Achour+, 2020); shadows of this black hole (Long+, 2020)

Thank you for your attention.

• In regular coordinates, the disformed Kerr metric reads

$$\begin{split} \mathrm{d}\tilde{S}^{2} &= -\left(1+D-\frac{2Mr}{\rho^{2}}\right)\mathrm{d}v^{2}+2\left(1+D-\frac{D}{1+\sqrt{\frac{r^{2}+q^{2}}{2Mr}}}\right)\mathrm{d}v\mathrm{d}r-D\left(1-\frac{1}{1+\sqrt{\frac{q^{2}+r^{2}}{2Mr}}}\right)^{2}\mathrm{d}r^{2} \\ &+\frac{4aMr\sin^{2}\theta}{\rho^{2}}\mathrm{d}v\mathrm{d}\chi+2a\sin^{2}\theta\mathrm{d}r\mathrm{d}\chi+\rho^{2}\mathrm{d}\theta^{2} \\ &+\frac{\sin^{2}\theta\left(2a^{4}\cos^{2}\theta+4a^{2}Mr\sin^{2}\theta+a^{2}r^{2}\left[3+2\cos(2\theta)\right]+2r^{4}\right)}{2\rho^{2}}\mathrm{d}\chi^{2} \;. \end{split}$$