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Introduction

Why are we interested in de Sitter spacetime?

e Inflationary dynamics lI(!IIl'l:JAIIIIII'I' I]AIII(!?HI'EII; BELIEVE ME °

e Formal interest

o Gravitational wave
background anisotropies b et

e Dark matter generation

e EW vacuum decay

@ Current spacetime of the
Universe
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Introduction

Cosmological de Sitter spacetime

Metric:

ds® = dt* — a(t)*(dr® + r?d03) ; a(t) = et

@ Horizon at Ry = 1/H.

R_
M
@ Subhorizon: wavelengths < 1/H »
Superhorizon: wavelengths > 1/H
COSMolozjvcal

potdn
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Introduction

Spectator scalar field in de Sitter

@ Action:

1
 2a(t)?

(V§)> = V(g) + 125H2¢>2]

@ Equation of motion:

d‘) B ™
(7%) a (3H7T + - é)QVng —V'(¢) - 12§H2¢>
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Introduction

State of play

@ QFT in a curved spacetime can be used to calculate de Sitter
correlators in free field theory; however, introducing self-interactions
results in a breakdown of perturbation theory due to IR divergences.

Archie Cable Imperial College London



Introduction

State of play

@ QFT in a curved spacetime can be used to calculate de Sitter
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@ Alternative approach: the stochastic method

Quantum modes can be summarised by a statistical noise
contribution to the classical equations of motion, for large
spacetime separations.
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Introduction

State of play

@ QFT in a curved spacetime can be used to calculate de Sitter
correlators in free field theory; however, introducing self-interactions
results in a breakdown of perturbation theory due to IR divergences.

@ Alternative approach: the stochastic method

Quantum modes can be summarised by a statistical noise
contribution to the classical equations of motion, for large
spacetime separations.

@ In the massless limit m2/H2 << 1, this is achieved by introducing a
hard cut-off between subhorizon (quantum) and superhorizon
(classical) modes in order to calculate the noise [Starobinsky,
Yokoyama; 1994] This does not work for massive fields.
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Introduction

Notable work

Development of the stochastic approach
o Early work - Starobinsky, Yokoyama; 1994
@ Path integral method - Rigopolous; 2016 & Moss, Rigopoulos; 2017
@ Multifield generalisation - Pinol, Renaux-Petel, Tada; 2019 & 2020

Applications

@ Stochastic inflation - Vennin, Starobinsky; 2015 & Grain, Vennin;
2017

@ Dark energy - Glavan, Prokopec, Starobinsky; 2018
@ Vacuum decay - Markkanen, Rajantie; 2020
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Introduction

To extend the stochastic approach beyond the massless limit

How?
@ We will calculate thelstochastic correlators for free fields i.e.
V() + 126H?¢* = §m2¢>2, for a general noise term.

@ These will be matched to the exact solutions from the QFT in order
to calculate the noise.

@ Introducing self-interactions is left for future work.
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The stochastic approach

The massless (m?/H? << 1) limit
[Starobinsky, Yokoyama; 1994]

In the massless limit, the equation of motions simplifies to

0 =3H¢+m>p.
The field is split as ¢ = ¢ + d¢, where ¢ contains the classical modes and

3 ~
5o (t,x) = / (;lﬂk):i@(k—ea(t)H)m(t,x).

€ is introduced as a cut-off parameter which is sufficiently small such that
O(€?) is negligible.
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The stochastic approach

The massless (m?/H? << 1) limit

The equation of motion now becomes

0=3H¢+m?¢—¢
where .
£(t,x) = ea(t)H? / (27r)35(k—ea(t)H)gi3k(t,x).

The equation of motion can be approximated by a Langevin equation
0=3H¢+m?p—¢

with a stochastic white noise contribution

R . 5
(&t %), x)) = lim (&8, %)) = 2ot — 1)
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The stochastic approach

The massless (m?/H? << 1) limit

The time evolution of the probability distribution function (PDF) P(¢;t) is
given by the Fokker-Planck equation associated with the Langevin equation

OP(¢;t) m?2 ' m? OP(¢;t)  H3 0?P(¢;t)
~ L(#:t) + 37H¢87¢> + 82 047

ot  3H

From this, the overdamped correlators can be calculated via a spectral
expansion [Markkanen et. al.; 2019].
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The stochastic approach

Extended SY approach

To extend beyond the massless limit, we also make the split 7 =7 + i
where

3
om(t,x) = / ((2171_1){39% —ea(t)H)my(t, x).

Combining this with the ¢ split given, the equation of motion reads

where
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The stochastic approach

Extended SY approach

Again, the equation of motion can be approximated by a Langevin

equation
()= o) (£63)

with a stochastic white noise contribution

(&x)& (%)) = (G(LXEGE %)) = oy 0(t ~ 1),

where i,7 € {¢,7}. O’%Yﬂ:j are calculated using the mode functions in the
Bunch-Davies vacuum [Bunch, Davies; 1978].
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The stochastic approach

The Fokker-Planck equation

Now, we consider a general white noise with the form

<§Z (t, X)fj (t/7 X)> - O’%(S(t - t/)'

The time evolution of the probability distribution function (PDF)
P(¢,m;t) is given by the Fokker-Planck equation associated with the
Langevin equation

C{)P((ZS,W,t) _ . _ 8P(¢,7T,t) 2 ap((ﬁaﬂ-at)
—a =3HP(¢,m;t) ﬂ'i&é + (B3HT + m°¢) — 5
1 5, 0%P(¢,m;t) 5 O*P(¢,mt) 1 , 0%°P(¢,m;t)
T30 9gz "o agam 2™ oa2
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The stochastic approach

Equilibrium solution

OP(¢,m;t)
ot

In equilibrium, = 0, which can be solved to give

Pey(p, ) x e @

where

?)H(((QH2 + m2)0§¢ + 6Hc7§,7r +o2 )%+ 6Hm20§,¢¢7r + (m20§¢ + Uiﬂ)m2¢2)
(m203, +3Ho} +0%:)2+9H?(0} 02, — 0}.)

Q=

with normalisation /dgb/deeq(gb,ﬂ) =1.
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Evaluation of correlators

Solving the Fokker-Planck equation: Outline

@ Write (¢, ) in terms of a new set of dynamical variables (g, p), where
the Fokker-Planck equation for (g, p) is simpler than that of (¢, 7).

@ Solve the (g, p) Fokker-Planck equation and thus calculate the
(q, p)-correlators.

e Write the (¢, ) correlators in terms of their (g, p) counterparts and
hence evaluate them.
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Evaluation of correlators

New dynamical variables (q, p)

We define (¢, p) in terms of (¢, 7) as

1 1 oaH
()= (”)
q 1— GH 1 ¢

where « =3/2 —v and 8 =3/2+ v, with v =

»&\@
m\
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Evaluation of correlators

Stochastic field correlator

We want to calculate

We can similarly find the m — ¢ and @ — 7 correlators but we won't here.
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Evaluation of correlators

(¢,p) Langevin equation

In these new variables, the Langevin equation is

()= Com) (&)

These are 1-dimensionall
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Evaluation of correlators

(¢,p) Fokker-Planck equation

The associated Fokker-Planck equation is

OP(q,p;t) OP(g,p;t) | 1 5 0*P(q,p;t)
2\ Y L H . ZNLABEY 22 2\
o aHP(q,p;t) + aHq 9 iy
. OP(g,p;t) | 1 5 8°P(g,p;t)
+BHP(q,p;t) + ﬁHpiap + R

9?P(q,p;t)
2 LN g}
+ogp dqop

where <£Z(t,X)£](t,X)> = 07,2]6(t - t,) ; how, Za] €4q,p-

The equilibrium solution is

2 52 4.2 2 .2
_ 9H(ogeBp” —3ogpaBaptop,aq”)

2 2 4
anqrrpp—4aﬁnqp

Pey(q,p) x e
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Evaluation of correlators

Time-evolution operator

To calculate the (g, p) correlators, we need the time-evolution operator
U(qo, ¢, po, p;t), which is defined as the Green's function of the (¢, p)
Fokker-Planck equation and therefore obeys

oU (qo, ¢, o, ; t)
dq

AU (qo, q,po, p; t)
ot

:aHU(QOa q,Po, P; t) + qu

1, 0*U(qo,q,po,p;t)

3% o + BHU (g0, 4, po, p; t)
OU(qo, g, po,pit) | 1 o 0*U(qo, g, po,p;t)
H _
+ BHp ap + 5 a2
+0,2 aQU(QOaQ)p()up; t)
qap aqap
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Evaluation of correlators

Time-evolution operator

Since we only need to calculate the ¢ — ¢, ¢ — p and p — p correlators, we
only need to evolve ¢ or p forward in time - not both - for any given
correlator.

Hence, we need the separate g and p time-evolution operators, U,(qo, g;t)
and Up(po, p;t) respectively, which obey the 1-d Fokker-Planck equations

IUq(qo,q5t) _ OUqg(qo, ;) 1 5 9?Uq(qo, q;t)

— —aHUq(qo,q,t)+quT 50‘”87&’
U, (po,pit) _ OUp(po,pit) | 1 o 0*Up(po,p;t)
T - BHUP(pOap’ t) + ﬂHpT + ia-ppT

These can be solved via a spectral expansion.
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Evaluation of correlators

(¢,p) correlators

The (q,p) correlators are thus given by

dpo / dg
0 / dq
q0 / dp
dp / dpo

2
94qq ookt
20H ’
2
Igp ookt
3H ’
2
Tgp o—BHL
3H ’

0.2

QBH

dqoPeq(q0, p0)Uq(qo0, g t)q0q =

dqoPeq(q0,P0)Uq(q0, 45 t)pog =

U

dpoPeq(qo, po)Up(po, p; t)qop =

dqo Peq(q0s o) Up(po, p; t)pop = e PHL,

=)
8
||
—— — —
<
— — — —
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Evaluation of correlators

Stochastic field correlator

The equal-space stochastic correlator is given by

m202 02 0'2 02
t — 949 qap —aHt pp o qp 7BHt'
(60, x)6 (¢, x)) <4H31/a2 6r2y | T\ 1EnmE e )©

Due to the de Sitter symmetry, the equal-time correlator is given by

m2a?, o2 o2 oz,
0,0)¢(0,x)) = — x| s Hx| .
(¢(0,0)0(0,x%)) <4H3ya2 6H21/>| x| +<4H31/52 6H2 >| x|
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Evaluation of correlators

Quantum field correlator

In the Bunch-Davies vacuum,

~ ~ 2 9
(o0} 5fon (o) G- (g vas- 1)

[Bunch, Davies; 1978]
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Evaluation of correlators

Stochastic vs quantum field correlator

To leading order in the large spacetime separations,

@ Quantum

(6(0,0)9(0,x))

H? [T —v)T(20)43~ Con T(=20)T(2 4+ v)astv

@ Stochastic

m20.2 0.2 0.2 0.2
— 9 ap H —2a pp _ qp o —24
(9(0,0)¢(0,x)) <4H31/a2 6H2y>| x| 4H3vp?  6H?v | Fx]
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Evaluation of correlators

Extended SY correlator

If we use the extended SY approach to calculate the noise, the stochastic
field correlator is given by

363
(6(0,0)6(0,%)) 5y :3Hs4ﬁ {E(HS_)I(E) =1 @) (2 () = 31 () - H 2, ()

+ 1D (@) (=3e(H21 () = 1P () + 4v(3 - )mP (e))} | Hx| 2

el & (1) @) 2) @)
- i {E(HH(E) = H1(0) (1P 1(0) = 31 () — ) (0)

— 13 () (3e(H2 1 () - HE (@) + w3+ v)HD (e))} |Hx| 2.

This does not reproduce the quantum correlator at all masses for any e.
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Evaluation of correlators

Matched noise

However, we can match the noises to the QFT result, giving

2 H3v T(2v)D(5 — v)4l—
M,qq 27r25 F(%—i— ) )

_ HBuT(=2u)T(3 + v)att”

2
TMpp = T2 F(% —v) ’
2 2 0.

OM,qp = OM,pqg =

This choice reproduces all free QFT correlators.
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Evaluation of correlators

Matched vs SY noise
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Figure: The matched (blue) O’%er and extended SY (red) noises J%Yﬂq with
€ = 0.01 (solid), e = 0.5 (dashed) and € = 0.99 (dotted)
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Conclusion

@ The stochastic approach can be used to reproduce all quantum

correlators to leading order in large spacetime separations beyond the
massless limit.

@ It requires us to match the noise with the exact result.

@ How do we extend to include self-interactions?
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Physical interpretation

) 9H

In the massless limit, app Ogp = 0 and a ——. If we look closer,

47 H
2 _

N N

volume

temperature

Quantum modes are summarised as a thermal contribution, with de Sitter
temperature [Rigopolous; 2016].

Archie Cable Imperial College London



Physical interpretation

@ At leading order in mass, the stochastic correlator is true for any
spacetime separations
= the thermal interpretation is a manifestation of the thermal
nature of the Bunch-Davies vacuum

@ Beyond the massless limit, the stochastic correlator only gives results
at leading order in large spacetime separations
— information is lost and therefore the noise is not pure thermal
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