

Testing the nature of compact objects with gravitational waves

Paolo Pani

Sapienza University of Rome & INFN Roma1

https://web.uniroma1.it/gmunu

http://www.DarkGRA.org

- ▶ **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)
- Observations of exotic compact objects (ECOs) would imply new physics / new matter

- ▶ **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)
- Observations of exotic compact objects (ECOs) would imply new physics / new matter
 - 1. BHs and neutron stars might co-exist with other "species"
 - ECOs might explain LIGO/Virgo mass-gap events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)

- ▶ **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)
- Observations of exotic compact objects (ECOs) would imply new physics / new matter
 - 1. BHs and neutron stars might co-exist with other "species"
 - ECOs might explain LIGO/Virgo mass-gap events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)
 - 2. Strong theoretical motivation (singularity and/or information-loss problems):
 - New physics at the horizon (e.g. firewalls, nonlocality) [Almheri+, Giddings+, 2012-2017]
 - Regular, horizonless compact objects (e.g. fuzzballs) [Mathur+, Bena+, Bianchi+, Giusto+, ...]

- ▶ **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)
- ▶ Observations of exotic compact objects (ECOs) would imply new physics / new matter
 - 1. BHs and neutron stars might co-exist with other "species"
 - ECOs might explain LIGO/Virgo mass-gap events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)
 - 2. Strong theoretical motivation (singularity and/or information-loss problems):
 - ▶ New physics at the horizon (e.g. firewalls, nonlocality) [Almheri+, Giddings+, 2012-2017]
 - Regular, horizonless compact objects (e.g. fuzzballs) [Mathur+, Bena+, Bianchi+, Giusto+, ...]
 - 3. At the very least: quantify the "BH-ness" of GW sources across mass ranges

The zoo of ECOs

Solutions to GR with exotic matter sources (e.g. anisotropic stars, boson stars, axion stars, gravastars, wormholes)

Solutions to modified gravity (e.g. fuzzballs/microstates, 2-2 holes, superspinars, wormholes)

- No sharp distinction in some cases
- ▶ Some ECOs require modified gravity only in the interior / close to the horizon \rightarrow assuming GR in the exterior is often a good approx.
- Here we focus on GW phenomenology agnostically
 [Cardoso & Pani, Living Rev Relativ (2019) 22:4 for ECO modeling, constraints, and details]

Compactness

 $r_0 = r_+(1+\epsilon)$

 ϵ

A compass to navigate the ECO atlas

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

Evading Buchdhal: anisotropic stars

$$T_{\mu\nu} = T_{\mu\nu}^{\rm ISO} + \sigma_1 k_\mu k_\nu + \sigma_2 \xi_\mu \xi_\nu + \sigma_3 \eta_\mu \eta_\nu$$

- Covariant framework for anisotropic fluids in GR, ready for 3+1 simulations
- Consistent proxy for ultracompact objects
- Satisfy WEC and SEC; highlyanisotropic configurations violate DEC
- Display all ECO typical phenomenology

Shadows: BH vs Boson Star

Telling the shadow of a boson star from a Kerr BH is very challenging

- Lot of dirty astrophysics [Gralla 2019-2020]
- Tests based on shadows can at most constrain $\rightarrow \epsilon \sim \mathcal{O}(1)$

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

GW-based tests of ECOs

Slide concept by T. Hinderer and A. Maselli

ECO spectroscopy

▶ **Prompt ringdown**: superposition of quasinormal modes (QNMs)

[e.g. Kokkotas & Schmidt (1999), Berti, Cardoso, Starinets (2009)]

$$h_{+} + ih_{\times} \sim \sum_{i} A_{i} \sin(\omega_{i}t + \phi_{i})e^{-t/\tau_{i}}$$

- ▶ $3G/LISA \rightarrow O(100-1000)$ events/yr allowing for BH spectroscopy [Berti+ (2016)]
- Overtones also important \rightarrow multimode/multitone analysis? [Gieser+ 2019, Isi+ 2019, Bhagwat+ 2020, Ota-Chirenti 2020, Forteza+ 2020]
- ECO smoking guns in the prompt ringdown (shared with modified gravity):
 - Shift of the entire QNM spectrum
 - Extra ringdown modes (e.g., extra polarizations, matter modes) \rightarrow amplitudes?
 - Isospectrality breaking
- Ringdown parametrizations sufficient for null-hypothesis tests

 $[{\rm Meidam}+\ (2014),\ {\rm Glampedakis}+\ (2017),\ {\rm Carullo}+\ (2018),\ {\rm Cardoso}+\ (2019),\ {\rm McManus}+\ (2019),\ {\rm Maselli}+\ (2020)]$

How does an ECO ringdown?

[Maggio+ PRD 2020]

- \blacktriangleright Neglecting spin and assuming GR in the exterior \rightarrow Schwarzschild
- ▶ Interior modeled extending the BH membrane paradigm [Damour, Thorne, ...]
- Boundary conditions \rightarrow viscosity of a *fictitious* fluid

Axial and polar modes are not isospectral but harder to resolve

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

How does an ECO ringdown?

[Maggio+ PRD 2020]

 $\eta_{\rm BH}$

- \blacktriangleright Neglecting spin and assuming GR in the exterior \rightarrow Schwarzschild
- ▶ Interior modeled extending the BH membrane paradigm [Damour, Thorne, ...]
- Boundary conditions \rightarrow viscosity of a *fictitious* fluid

Axial and polar modes are not isospectral but harder to resolve

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

GW echoes

1.0

 For ultracompact ECOs (ε<0.01) prompt ringdown is identical to
 BHs but GW "echoes" at later times
 Kokkotas 1996; Ferrari & Kokkotas, PRD 2000 Cardoso, Franzin, PP, PRL (2016), Cardoso+, PRD (2016)

Only (classical) horizons absorb everything!

- Reflectivity arises in many contexts:
 - Stellar-like regular interior
 - "Fuzziness"
 - Quantum emission from horizon
- Lot of progress on echo waveform modeling and searches [Abedi+, Universe (2020)]

0.10

Cardoso & PP, Nature Astronomy (2017)

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

GW echo slideshow

Waveforms, templates, and movies available @ http://www.DarkGRA.org/gw-echo-catalogue.html

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

Echo detectability

Contrasting results with LIGO data [Abedi+, 2017/18, Conklin+ 2018/19, Ashton+ 2017, Westerweck+ 2018] but no statistical evidence in O1-O2 [Uchikata+ 2019, Tsang+ 2019] and in O3a [GWTC-2, Oct 2020]

- Near-horizon corrections are within reach!
 - ▶ Large reflectivity crucial for detection with LIGO/Virgo
 - ▶ Much better prospects with 3G and LISA

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

$$\tilde{h}(f) = \mathcal{A}(f)e^{i(\boldsymbol{\psi}_{\mathbf{PP}} + \boldsymbol{\psi}_{\mathrm{TH}} + \boldsymbol{\psi}_{\mathrm{TD}})}$$

Blanchet, Living Rev. Relativity 17, 2 (2014)

 $1\text{PN} = \frac{v^2}{c^2}$

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\underbrace{\psi_{\rm PP}}+\psi_{\rm TH}+\psi_{\rm TD}}) \qquad 1 \text{PN} = \frac{v^2}{c^2}$$

Blanchet, Living Rev. Relativity 17, 2 (2014)

0

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

$$\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{\rm PP} + \psi_{\rm TH} + \psi_{\rm TD})}$$

$$1 \text{PN} = 1 \text{PN} + \psi_{\rm TH} + \psi_{\rm TD} + \psi_{\rm TH} + \psi_{\rm TD} + \psi_{\rm TD}$$

Blanchet, Living Rev. Relativity 17, 2 (2014)

Schwarzschild

- ▶ **2PN:** Point-particle phase depends on **multipole moments** of the bodies
 - Tests of the BH no-hair theorem [Hansen 1974]

 $M_{\ell}^{\mathrm{Kerr}} + iS_{\ell}^{\mathrm{Kerr}} = M^{\ell+1} \left(i\chi \right)^{\ell}$

Mass moments

Spin moments

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\underbrace{\psi_{\rm PP}}{+}\psi_{\rm TH}} + \psi_{\rm TD}) \qquad 1 \text{PN} = \frac{v^2}{c^2}$$

Blanchet, Living Rev. Relativity 17, 2 (2014)

2PN: Point-particle phase depends on **multipole moments** of the bodies

► Tests of the BH no-hair theorem [Hansen 1974]

$$M_{\ell}^{\text{Kerr}} + iS_{\ell}^{\text{Kerr}} = M^{\ell+1} \left(i\chi \right)^{\ell}$$

Mass moments

Spin moments

ECOs (axisymmetric case):

$$M_{\ell} = M_{\ell}^{\text{Kerr}} + \delta M_{\ell} \qquad S_{\ell} = S_{\ell}^{\text{Kerr}} + \delta S_{\ell}$$

▶ 3G/LISA can constrain mass quadrupole (M_2) and spin octupole (S_3) [Krishnendu+ 2018]

▶ In the BH limit \rightarrow "hair conditioner" [Raposo, PP, Emparan, PRD 2019]

$$\frac{\delta M_{\ell}}{M^{\ell+1}} \to a_{\ell} \frac{\chi^{\ell}}{\log \epsilon} + b_{\ell} \epsilon + \dots \qquad \frac{\delta S_{\ell}}{M^{\ell+1}} \to c_{\ell} \frac{\chi^{\ell}}{\log \epsilon} + d_{\ell} \epsilon + \dots$$

(assumes exterior is \sim GR and curvature near the surface is small)

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

Post-Newtonian inspiral: BH vs ECO $\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{\text{PP}} + \psi_{\text{TH}} + \psi_{\text{TD}})} \qquad 1\text{PN} = \frac{v^2}{c^2}$

Blanchet, Living Rev. Relativity 17, 2 (2014)

Stationary) ECOs can break: [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]

- ▶ equatorial symm.: e.g. $S_2 \neq 0$, $M_3 \neq 0$
- ▶ axial symm.: e.g. $M_{20} \neq 0$, $M_{21} \neq 0$, $M_{22} \neq 0$

Post-Newtonian inspiral: BH vs ECO $\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{\text{PP}} + \psi_{\text{TH}} + \psi_{\text{TD}})} \qquad 1\text{PN} = \frac{v^2}{c^2}$ Blanchet, Living Rev. Relativity 17, 2 (2014)

Stationary) ECOs can break: [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]

• equatorial symm.: e.g. $S_2 \neq 0$, $M_3 \neq 0$

Post-Newtonian inspiral: BH vs ECO $\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{\text{PP}} + \psi_{\text{TH}} + \psi_{\text{TD}})} \qquad 1\text{PN} = \frac{v^2}{c^2}$

Blanchet, Living Rev. Relativity 17, 2 (2014)

Stationary) ECOs can break: [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]

• equatorial symm.: e.g. $S_2 \neq 0$, $M_3 \neq 0$

- ► Fuzzballs (in N=2 supergravity):
 - certain multipole ratios are ~ universal [Bena-Mayerson PRL 2006.10750, 2007.09152]
 - ▶ certain multipole invariants are minimum for BHs [Bianchi+ PRL 2007.01743, 2008.01445]

Lot of progress: <u>current waveforms should be extended beyond Kerr symmetries</u>

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

$$\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{\mathbf{PP}} + \psi_{\mathbf{TH}}) + \psi_{\mathbf{TD}})}$$

- ► 2.5log PN: tidal heating [Alvi PRD 2001, Poisson, PRD 2009]
 - ▶ BHs absorb radiation at horizon
 - ▶ Tidal heating is ~ absent for ECOs
 - ▶ Small even for 3G for $q\sim 1 \rightarrow$ IMRIs or LISA

[Maselli+, 2018, Hughes PRD 2001, Datta+ PRD 2020]

- ► 2.5log PN: tidal heating [Alvi PRD 2001, Poisson, PRD 2009]
 - ▶ BHs absorb radiation at horizon
 - \blacktriangleright Tidal heating is ~ absent for ECOs
 - Small even for 3G for $q \sim 1 \rightarrow IMRIs$ or LISA

[Maselli+, 2018, Hughes PRD 2001, Datta+ PRD 2020]

► 5PN: tidal deformability and Love numbers [Flanagan & Hinder, PRD77 021502 2008]

- Love = 0 for a BH in GR [Damour '86, Binnington-Poisson PRD 2009; Damour-Nagar PRD 2009; PP+, PRD 2015] (but see Le Tiec-Casal 2007.00214 and Chia 2010.07300 for spinning BHs!)
- Love $\neq 0$ for ECOs and BHs in modified gravity [Porto+ Fortsch. Phys. 2016, Cardoso+, PRD 2017]
- ► 3G/LISA will be able to distinguish BHs from any boson star model [Cardoso+, PRD 2017]
- ▶ In several ECO models Love scales logarithmically \rightarrow strong constraints [Maselli+, 2018-2019]

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

BH vs Boson Stars: coherent model $\mathcal{L} = \frac{R}{16\pi G} - \partial_{\mu}\phi \,\partial^{\mu}\phi^{\star} - m^{2}|\phi|^{2} + \lambda|\phi|^{4} + \gamma|\phi|^{6} + \dots$

Coherent inspiral waveform \rightarrow all deviations from Kerr (multipoles, tidal, etc) depend only on masses & spins and on the theory's coupling constants

- ▶ Tidal deformability strongest, but coherent model significantly improves the constraints
- ▶ Constraining power of current detectors is marginal: merger detections in 3G/LISA are required to constrain boson-star couplings

P. Pani - Testing the nature of compact objects with GWs - IAP online - 9 Nov 2020

ECO tests with EMRIs/IMRIs

- ▶ EMRIs are unique probes of *both* multipolar structure and dynamics
- ▶ ECO corrections are amplified for small mass-ratio, lessons form EMRIs:
 - Spin-induced multipole moments $ightarrow \delta \bar{M}_2 \sim 10^{-4}$ [Barack-Cutler, PRD 2007, Babak+ 2017]
 - Tidal heating \rightarrow large for highly-spinning objects $\rightarrow |\mathcal{R}|^2 \lesssim 10^{-4}$ [Datta+ PRD 2020]
 - Tidal Love numbers $\rightarrow \bar{\Lambda} \sim 10^{-5}$ [Pani & Maselli 2019]

• Tests of the Kerr bound (χ <1) could be much simpler and accurate with EMRIs if one can measure the spin of the secondary [Piovano, Maselli, PP, 2003.08448, 2004.02654]

► ECO tests with EMRIs/IMRIs → many challenges in modeling, parameter estimation, rates, etc...

Conclusion & Open problems

- Future detectors have superior potential to search for departures from classical BHs \rightarrow discovery opportunity for new physics
- Very least: orders of magnitude improvements on current constraints
- ▶ Dramatic improvements on ECOs on all fronts in the last few years
- Better understanding/modeling is needed (simulations, coalescence, inspiral-merger-ringdown waveforms, and theoretical issues)
- Testing quantum gravity? In the search of a log...

Comprehensive living review: Cardoso & Pani, 1904.05363 for description of the effects, caveats, constraints, and references