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Introduction to cosmic strings

References :
(Nielsen & Olesen, 1973)

(Kibble, 1976)
(Vilenkin & Shellard, 2001)

(Ringeval, Sakellariadou, & Bouchet, 2007)
(Ringeval, 2010)

(Vachaspati, Pogosian, & Steer, 2015)
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Cosmic strings (Kibble, 1976)
1D topological defects

• Cosmic strings are 1D topological defects that
may appear after a symmetry breaking phase
transition

• After the phase transition the field falls into the
new vacuum manifold M
• Strings arise if M is not simply connected, i.e.
M contains holes around which loops can be
trapped

• We expect strings to be formed in most models
of spontaneous symmetry breaking Figure: String formation in the ”Mexican hat” potential

V (|φ|). Figure taken from (Ringeval, 2010)

As an example, the Lagrangian for the Nielsen-Olesen string (Nielsen & Olesen, 1973)

L = −1

4
FµνFµν + (Dµφ)∗Dµφ− λ

4

(
|φ|2 − η2)
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Nambu-Goto strings: the one-dimensional limit

• The width of the string is very small compared to the other length scales in the problem, and the thin
string limit is commonly adopted.

• Then the string is simply modeled as a line with mass per unit length µ ∝ T 2 using the Nambu-Goto
action which minimizes the area swept by the string

S = −µ
∫ √

−det(γ)d2ζ

ζa = (t, ζ) and γab the induced metric on the string

Energy scale Width Linear density

GUT : 1016 GeV 2× 10−32 m Gµ ≈ 10−6

3× 1010 GeV 5× 10−27 m Gµ ≈ 10−17

108 GeV 2× 10−24 m Gµ ≈ 10−22

EW : 100 GeV 2× 10−18 m Gµ ≈ 10−34
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Closed loops of cosmic strings
Oscillation and gravitational wave emissions

The general solution for a Nambu-Goto string in a Minkowski background is

~X(t, ζ) =
1

2

[
~a(ζ − t) +~b(t+ ζ)

]
~a′2 = ~b′2 = 1

For a closed loop Xµ(t, ζ + `) = Xµ(t, ζ). One can show that the loop oscillates with a period T =
`

2
.

These oscillations lead to a gravitational radiation. The quadrupole formula can give a rough estimate of the
power emitted (Vilenkin & Shellard, 2001)

Ė ≈ G
(

d3D

dt3

)2

≈ GM2L4ω6 ≈ ΓGµ2

in which D ≈ML2 is the quadrupole moment, M = µL is the mass and ω ≈ L−1 the characteristic frequency.
NOTE : it does not depend on the loop length !
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Typical properties of cosmic strings
Loop formation and scaling

• When strings intersect, they change partner

• Analytical arguments and numerical simulations
show the existence of an attractor solution
independent of initial conditions called scaling

• During scaling, all length-scales are proportional
to t cosmic time.

• In particular, it means loop can survive until today

ρ∞ ∝ t−2 ∝

{
a−4 during radiation era

a−3 during matter era
Figure: (Ringeval et al., 2007)
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Observational signatures of cosmic strings
Selection of observational signatures

• CMB : line discontinuities in the temperature or
polarization patterns, and statistical methods
based on calculations of various correlation
functions. Gµ < few× 10−7

• 21-cm : brightness fluctuations or spatial
correlations between the 21 cm and CMB
anisotropies. Future experiments can in principle
constrain Gµ ≈ 10−10 − 10−12

• The metric around a cosmic string can result in
characteristic lensing patterns of distant light
sources. Figure: CLS-1, discovered in 2003, raised a lot of interest

from the cosmic strings community but turned out to be
two similar galaxies close to each other
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Gravitational wave emission from cosmic strings

References in this section :
(Vachaspati & Vilenkin, 1985)

(Damour & Vilenkin, 2001)
(Siemens et al., 2006)

(Blanco-Pillado & Olum, 2017)
(Abbott et al., 2018)

(Collaboration & the Virgo Collaboration, 2019)
(Auclair, Blanco-Pillado, et al., 2019)
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Bursts of gravitational waves

Figure: F. Robinet

A typical loop will have a number of kinks and cusps, and the spectrum of high frequency gravitational
radiation emitted from a string depends on these features

• kinks are discontinuities in the tangent vector of the string. Kinks are formed when strings intercommute
and travel along the string at the speed of light, q = 5/3.

• cusps travel instantly at the speed of light, q = 4/3.

The waveform of the gravitational wave arriving at the detector is known (Damour & Vilenkin, 2001)

hq(`, z, f) = Aq(`, z, f)f−q , Aq = g1,q
Gµ`2−q

(1 + z)q−1r(z)
(1)
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Rate of bursts

For a given loop distribution, you can estimate the GW burst rate (Siemens et al., 2006)

d2Rq
dV d`

=
1

1 + z
× d3νq

dtd`dV
×∆q

as a function of

• ∆q geometrical factor for the fraction of GWs you can access (linked to a beaming angle)

• d3νq
dtd`dV

=
2

`
Nq

d2N
d`dV

number of events per space time volume per unit length

• Nq mean number of events per oscillation, which is suposed to be a fixed number.

• z redshift at emission

The effective burst rate in the detector depends on its sensitivity.

Rq =

∫
dAq eq(Aq)

dRq
dAq

(Gµ,Nq) (2)
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LIGO/Virgo burst search during O1

The parameter space (Gµ,Nq), is scanned and excluded at a 95% level when Rq exceeds 2.996/Tobs which is
the rate expected from a random Poisson process over an observation time Tobs.

• No cosmic string burst detected during
O1 and O2 runs

• Allows to put upper bounds on the
string tension which are not very
competitive with respect to the
Stochastic Background of GW

• We are currently involved in the
LIGO/Virgo collaboration to produce
constraints for the O3 run

Figure: (Abbott et al., 2018)
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Emission of gravitational waves by a cosmic string loop

Ė = ΓGµ2, Γ =
∑
m

Pm = O(50)

• All the energy radiated by loops is converted to
gravitational waves

• An effective average power Pm emitted in mode
m determined by simulations and/or analytical
arguments

The high frequency regime is dominated by
contributions from burst-like events

Pm ∝

{
m−4/3 for cusps

m−5/3 for kinks

Low-frequency modes are dominated by the
oscillations of the loops

Figure: Averaged power spectrum determined numerically
in (Blanco-Pillado & Olum, 2017)
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The stochastic background of gravitational waves

The uncorrelated sum of all the GW signals produced by cosmic string loops during the History of the
Universe constitutes a Stochastic Background of GW.
We can estimate this background using energetic arguments

ΩGW(ln f) =
8πG

3H2
0

fρGW

ρGW(f) =

∫ t0

0

dt

[1 + z(t)]4
Pgw(t, f ′)

∂f ′

∂f

Pgw[t, f ′] = Gµ2
∑
m

2m

f ′2
Pm

d2N
d`dV

[
2m

f ′
, t

]

The loop distribution
d2N
d`dV

remains to be specified, more in the next section.
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Existing constrained from LIGO/Virgo O1 run

• The constraint from burst is less
stringent than the one from stochastic

• The intercommutation probability p is
set to 1 in the present seminar

• There is a huge disparity between
different models especially on these
relatively high-frequency experiments.
More on that later

Figure: 95% confidence exclusion regions (Abbott et al., 2018)
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Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)
Analysis done within the LISA cosmology working group
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g
w

Pn from simulation using Model II

Figure: A comparison of the LISA sensitivity curve to the predicted
SBGW. LISA will probe strings with tensions higher than Gµ = 10−17

with little dependence on the cosmic string model.

Ωgw(f →∞) ∝
√
Gµ

Γ
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Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)
Analysis done within the LISA cosmology working group
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Figure: A comparison of the LISA sensitivity curve to the predicted
SBGW. LISA will probe strings with tensions higher than Gµ = 10−17

with little dependence on the cosmic string model.

Ωgw(f →∞) ∝ (Gµ)0.16
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Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)
Analysis done within the LISA cosmology working group
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Figure: A comparison of the LISA sensitivity curve to the predicted
SBGW. LISA will probe strings with tensions higher than Gµ = 10−17

with little dependence on the cosmic string model.
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The loop distribution: beyond the Nambu-Goto approximation

References
(Hindmarsh, Stuckey, & Bevis, 2009)

(Vachaspati, 2010)
(Blanco-Pillado, Olum, & Shlaer, 2011)

(Mota & Hindmarsh, 2015)
(Matsunami, Pogosian, Saurabh, & Vachaspati, 2019)

(Auclair, Steer, & Vachaspati, 2019)
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Field-Theory (FT) simulations of individual loops
Formation, evolution and decay

• So far we have studied Nambu-Goto strings, ie.
infinitely thin strings

• Large-scale field-theory simulations find that
cosmic strings decay rapidly into particles
(Hindmarsh et al., 2009)

• High resolution field theory simulation of single
loops tend to show that their lifetime is actually
longer that previously expected (Matsunami et al.,
2019)

• The rate at which strings emitt particles has been
measured in high-resolution numerical simulations

• We propose a first step to bridge the gap between
Nambu-Goto strings and field-theory strings

Figure: Energy of a loop with the initial size of 390 lattice
spacings plotted vs time. (Matsunami et al., 2019)
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Energy budget for a cosmic string loop

We parametrize the energy lost by an average loop with J , remember that for cosmic string loops, E = µ`

D`

Dt
= −ΓGµJ (`)

Where

• J (`) = 1 if GW emission is the only channel for losing energy

• J (`) = 1 + `k/` if kinks are present on the loop

• J (`) = 1 +
√
`c/` if cusps are present on the string

• J (`) = Θ(`− `V) in the case of superconducting strings

`k ∼ βk
w

ΓGµ
∝ (Gµ)−3/2, `c ∼ βc

w

(ΓGµ)2
∝ (Gµ)−5/2, `V =

N
√
µ
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Modeling the loop distribution with a continuity equation (Auclair, Steer, & Vachaspati, 2019)

Non self-intersecting loops are produced from the network of infinite strings and then lose energy

∂

∂t

(
a3 d2N

d`dV

)
+

∂

∂`

(
a3 D`

Dt

d2N
d`dV

)
= a3P(`, t)

which, in terms of our length-dependent energy-loss channel becomes

∂

∂t

(
a3 d2N

d`dV

)
− ΓGµ

∂

∂`

(
a3J (`)

d2N
d`dV

)
= a3P(`, t)

Introducing the new variables

τ ≡ ΓGµt , ξ ≡
∫

d`

J (`)
.

the continuity equation becomes(
∂

∂τ

∣∣∣∣
ξ

− ∂

∂ξ

∣∣∣∣
τ

)(
ΓGµJ a3 d2N

d`dV

)
= a3JP,
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Modeling the loop distribution
Solution for a δ-function loop production function

The shape of the loop production function (LPF) has been studied in numerical simulations but it is still a
matter of debate. Simplest choice coming from the standard one-scale model is to assume

P(`, t) = Ct−5δ

(
`

t
− α

)
which seams to reproduce well (Blanco-Pillado et al., 2011) and can be used as a Green’s function for more
elaborate LPF. The loop formation time t? satisfies the following equation

ΓGµt? + ξ(αt?) = ΓGµt+ ξ(`),

and the loop distribution is given by

t4
d2N
d`dV

= C
1

J (`)

J (αt?)

α+ ΓGµJ (αt?)

(
t?
t

)−4(
a(t?)

a(t)

)3

.

If J(`) = 1 then ξ(`) = ` it reduces to the standard scaling Nambu-Goto loop distribution for a delta-function
loop production function

t4
d2N
d`dV

= C
(α+ ΓGµ)3−3ν

(γ + ΓGµ)4−3ν
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Consequences on the number of loops
Modeling the loop number density with both GW and particle emission
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(a) Influence of kinks, Gµ = 10−17
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(b) Influence of cusps, Gµ = 10−17

Figure: From bottom to top, the curves show snapshots of the loop distribution at redshifts
z = 1013, 1011, 109, 107, 105 , and the black curve is the scaling NG loop distribution
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Impact on the SBGW
Breaking of the high frequency plateau

A consequence of the introduction of `k, `c is that the high frequency plateau is cutoff at

f =

√
2H0

√
Ωradc

`c,kΓGµ
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(a) SBGW : kinks
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(b) SBGW : cusps
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Particle emission bounds
Injected energy by cosmic strings (Mota & Hindmarsh, 2015; Vachaspati, 2010)

• The emitted particles are heavy and in the dark particle physics sector corresponding to the fields that
make up the string

• We assume that there is some interaction of the dark sector with the standard model sector

The energy density injected by cosmic strings per unit of time

ΦH(t) =

∫ αt

0

Pc,k
d2N
d`dV

d`′

in which

Pk = ΓGµ
`k
`

Pc = ΓGµ

√
`c
`

Then the emitted particle radiation will eventually decay, and a significant fraction of the energy feff ∼ 1 will
cascade down into γ-rays.

ωDGRB = feff

∫ t0

tc

ΦH(t)

(1 + z)4
dt
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Contribution of cosmic strings to the Diffuse Gamma-Ray Background

Constraints from Fermi-LAT

ωobs
DGRB ≤ 5.8× 10−7 eV.cm−3
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(a) Contribution from kinks, for small Gµ, ωDGRB ∝ µ9/8 and

µ−2 log µ for large Gµ
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Conclusion
Summary

• Cosmic strings are a general prediction of most symmetry-breaking models

• Scaling means that the network of cosmic strings survives for a very long time

• Gravitational wave astronomy is one of the most promising technique to probe for cosmic strings,
especially with the space-based detector LISA which will be able to probe cosmic strings with tension
Gµ ≥ 10−17

• We have tried to go beyond the Nambu-Goto approximation by taking into account the emission of
particles which seems to dominate in Field-Theory simulations on small scales

• Our analysis show that this phenomenon has little effect on the Stochastic Background

• We have also checked that this emission of particles does not violate bounds for the diffuse Gamma-Ray
Background
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Conclusion
Future developments

• It is important to evaluate more carefully the prevalence of kinks versus cusps on cosmological string loops

• It would also be interesting to study other loop production functions, particularly power-law LPF which
predict a larger number of small loops; hence one might expect a larger gamma ray background from
strings

• We are also applying these tools to the study of vortons together with Danièle Steer, Patrick Peter and
Christophe Ringeval.
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Thank you
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