

Lucien HEURTIER

Heavy Dark-Matter Particles

Based on :

LH and F. Huang. Phys.Rev. D100 (2019) no.4, 043507 [arXiv:1905.05191]
LH, Y. Mambrini and M. Pierre. Phys. Rev. D 99, no. 9, 095014 (2019) [arXiv:1902.04584]
LH, D. Kim, J. C. Park and S. Shin. Phys.Rev. D100 (2019) no.5, 055004 [arXiv:1905.13223]
E. Dudas, L. Heurtier, K. Olive, M. Pierre, and Y. Mambrini. Phys.Rev.D 101 (2020) 11, 115029 [arXiv:2003.02846].

IAP, March 2021

 $\text{Log}_{10}(\text{E})$ [GeV]

 $\text{Log}_{10}(\text{E})$ [GeV]

« Heavy » ?

Very low density

Very feebly interacting

Stability?

Very low density

 \checkmark Very feebly interacting

Stability?

- Very low density
 - **Very** feebly interacting
 - Stability challenging to achieve

OUTLINE

- 1 Heavy Dark Matter and Cosmology [LH & F. Huang. Phys.Rev. D100 (2019) no.4, 043507] and work in progress
- 2 Metastable Heavy Dark Matter E. Dudas, LH, K. Olive, M. Pierre, & Y. Mambrini. Phys.Rev.D 101 (2020) 11, 115029
 - Heavy Dark Matter and UHECR searches

[LH, Y. Mambrini & M. Pierre. Phys. Rev. D 99, no. 9, 095014 (2019)
 LH, D. Kim, J. C. Park & S. Shin. Phys.Rev. D100 (2019) no.5, 055004] and work in progress

DARK UNIVERSE

Standard Model

Why Cosmic Inflation?

What about magnetic monopoles?

Single Field Inflation

Observational constraints?

- Tensor to scalar ratio : $r = 16 \varepsilon$
- Spectral index : $n_s = 1 6 \varepsilon + 2 \eta$

From Inflation to Low energy physics

Inflation

[Buchmüller, Dudas, LH, Wieck, '14] [Buchmüller, Dudas, LH, Westphal, Wieck, Winkler '15] [Argurio, Dries, LH, Mariotti '16], [Linde '16], [Linde, Kallosh '04] [J. Ellis, D. V. Nanopoulos, K. A. Olive, S. Verner '19]...

SUSY breaking ?

String Theory ? [So many ...]

Grand Unification?

[T. Gonzalo, LH, A. Moursy, '17]
[J. Ellis, T. E. Gonzalo, J. Harz, W.-C. Huang, '15]
[J. Ellis, M. A.G. Garcia, N. Nagata, D. V. Nanopoulos, K. A. Olive]

Strong CP problem

[G. Ballesteros, J. Redondo, A. Ringwald, C. Tamarit, '17]

Baryonic Asymetry ? [D. Borah, B. Dev, A. Kumar, '19]

Dark matter production

[D. Hooper, G. Krnjaic, A. J. Long,S. Mcdermott, '18], [LH, '17], ...

Standard Model

[Non exhaustive list ...]

The importance of the inflaton couplings

Inflaton Decay : Reheating

Unitarity bound :

 $m_{DM} \lesssim \mathcal{O}(100) \text{ TeV}$

No reason a priori to suppress the production of DM through inflaton decay...

Such coupling HAS to be there at the loop level and could play an important role... [Kaneta, Mambrini, Olive '19]

Sets initial conditions for a given HDM scenario...

Decoupled Hidden sector [Hooper et al., '16]

Decoupled Hidden sector [Hooper et al., '16]

The Model

dark matter in the dark sector

Natural suppression of the hidden scalar decay width...

sector

$$g_{h}/g_{v} \longrightarrow T_{h}/T_{v} \text{ after inflation} \qquad \phi \longrightarrow \bar{\chi}$$

$$\xi_{\inf} \equiv \left(\frac{T_{h}}{T}\right)_{\inf} = \left(\frac{g_{\inf}^{\star}}{g_{h,\inf}^{\star}}\right)^{1/4} \times \left(\frac{\rho_{h}}{\rho_{v}}\right)^{1/4} \qquad \phi \longrightarrow g_{v} \qquad \text{SM}$$

Inflaton mass vs. inflation parameters

Inflaton mass: curvature of the potential

$$V(\phi) \longrightarrow m_{\phi}^2 = V''(\phi) \Big|_{\phi=0}$$

Inflaton mass vs. inflation parameters

Alpha-attractor : T- model

$$V(\phi) = V_0 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_p}} \right)^2$$

0

$$m_{\phi}^2 = \frac{4V_0}{3\alpha M_p^2}$$

$$V_{\text{inf}}^{\alpha \gg 1}(\phi) \approx \frac{m_{\phi}^2}{2} \phi^2 \quad \text{(Chaotic)}$$
$$V_{\text{inf}}^{\alpha=1}(\phi) \approx V_0 \left(1 - e^{-\sqrt{\frac{2}{3}}\frac{\phi}{M_p}}\right)^2 \quad \text{(Starobinsky)}$$

What's on the inflation side?

What's on the inflation side?

[Liddle, Leach '03]

[Liddle, Leach '03]

Results

Results

Results

$$m_{\chi}/m_{S} = 5 \qquad g_{v}/g_{h} = 5 \qquad m_{\chi}/m_{S} = 20 \qquad g_{v}/g_{h} = 5$$

$$m_{\chi}/m_{S} = 20 \qquad g_{v}/g_{h} = 5$$

$$m_{\chi}/m_{S$$

Part II & III

Metastability and Signatures of EeV scale dark matter in the neutrino sector

Models of (very) heavy dark matter are hard to probe observationally if they don't decay...

$$\Gamma = \frac{g^2}{16 \pi} m \longrightarrow g \leq 10^{-25} \left(\frac{\text{EeV}}{m}\right)^{\frac{1}{2}} \left(\frac{\tau}{10^{17} \text{s}}\right)^{\frac{1}{2}}$$

 $\Gamma \simeq \frac{m^3}{M_P^2}$ with a mass of 1EeV is too short-lived...

[E. Dudas, L. Heurtier, Y. Mambrini, K. A. Olive and M. Pierre, Phys. Rev. D 101 (2020) no.11, 115029]

$$\mathcal{L} \supset \frac{\alpha_s}{2M_P} (\partial_\mu a) \bar{\nu}_s \gamma^\mu \gamma^5 \nu_s$$

$$\mathcal{L} \supset \frac{i}{2} [\bar{\nu}_s \gamma^{\mu} \mathcal{Z}_s \partial_{\mu} \nu_s - (\partial_{\mu} \bar{\nu}_s) \gamma^{\mu} \mathcal{Z}_s^* \nu_s]$$

with $\mathcal{Z}_s = 1 + \frac{\beta_s}{M_P} t + i \frac{\alpha_s}{M_P} \gamma_5 a$

[D. Chowdhury, E. Dudas, M. Dutra and Y. Mambrini]

Majoron models

$$\mathcal{L}_{\phi} = \phi \nu_{s} \nu_{s} + \text{h.c.},$$

$$\phi = \chi e^{\frac{ia}{M_{P}}} \qquad \nu_{s} \to e^{-\frac{ia}{2M_{P}}} \nu_{s}$$

[I. Z. Rothstein, K. S. Babu and D. Seckel]

[E. Dudas, L. Heurtier, Y. Mambrini, K. A. Olive and M. Pierre, Phys. Rev. D 101 (2020) no.11, 115029]

$$\mathcal{L} \supset \frac{\alpha_s}{2M_P} (\partial_\mu a) \bar{\nu}_s \gamma^\mu \gamma^5 \nu_s$$

$$\tau \propto \left(\frac{M_P}{m_\nu}\right)^2 \frac{1}{m}$$

$$\simeq 10^{33} \mathrm{s} \left(\frac{0.05 \mathrm{eV}}{m_{\nu}}\right)^2 \left(\frac{1 \mathrm{GeV}}{m}\right)$$

[E. Dudas, L. Heurtier, Y. Mambrini, K. A. Olive and M. Pierre, Phys. Rev. D 101 (2020) no.11, 115029]

$$\mathcal{L} \supset \frac{\alpha_s}{2M_P} (\partial_\mu a) \bar{\nu}_s \gamma^\mu \gamma^5 \nu_s$$

ANtarctic Impulsive Transient Antenna

Slide from Linda Cremonesi ©

ANITA-I

- ANtarctic Impulsive Transient Antenna
 - NASA ultralong duration balloon experiment
- Seeking radio signals from earth-skimming UHE neutrinos
- To this date, 4 flights

ANITA-Lite	ANITA-I	ANITA-II	ANITA-III	ANITA-IV
RX COLOR				
2003-2004	2006-2007	2008-2009	2014-2015	2016
18 days, 2 antennas	35 days, 32 antennas	30 days, 40 antennas	22 days, 48 antennas	29 days, 48 antennas
Piggy-back on TIGER	Multi-band, Pol-independent trigger	Multi-band, VPol trigger	Full-band HPol + VPol trigger	Full-band, Lin-Pol trigger
Analyzed	Analyzed	Analyzed	Recently analyzed	Analysis Ongoing

Slide from Carsten Rott ©

Events Features

ΑΝΙΤΑ		$\mathbf{AAE061228}$	$\mathbf{AAE} 141220$	
Flight & Event		ANITA-I #3985267	ANITA-III #15717147	
Date & Time (UTC)		2006-12-28 00:33:20	2014-12-20 08:33:22.5	
Equatorial coordinates (J2000)		R.A. $282^{\circ}.14064$, Dec. $+20^{\circ}.33043$	R.A. 50°.78203, Dec. +38°.65498	
Energy $\varepsilon_{\rm cr}$		$0.6 \pm 0.4 {\rm EeV}$	$0.56^{+0.30}_{-0.20}\mathrm{EeV}$	
Zenith angle z'/z		$117.^{\circ}4 / 116.^{\circ}8 \pm 0.^{\circ}3$	$125^{\circ}_{\cdot}0 / 124^{\circ}_{\cdot}5 \pm 0^{\circ}_{\cdot}3$	
Earth chord length ℓ		$5740 \pm 60 \mathrm{km}$	$7210 \pm 55 \mathrm{km}$	
Mean interaction length for $\varepsilon_{\nu} = 1 \text{EeV}$		$290\mathrm{km}$	$265\mathrm{km}$	
$p_{\rm SM}(\varepsilon_{\tau} > 0.1 \text{EeV})$ for $\varepsilon_{\nu} =$	$1\mathrm{EeV}$	4.4×10^{-7}	3.2×10^{-8}	
$p_{\rm SM}(z > z_{\rm obs})$ for $\varepsilon_{\nu} = 1$ Ee	$V, \varepsilon_{\tau} > 0.1 \text{EeV}$	6.7×10^{-5}	3.8×10^{-6}	
$n_{\tau}(1-10 \mathrm{PeV}): n_{\tau}(10-100 \mathrm{FeV})$	PeV) : $n_{\tau}(> 0.1 \text{EeV})$	34:35:1	270 : 120 : 1	

[Fox, Sigurdson, Murase *et al., Nov 18'*]

Possible Interpretations

SM-origin upward-going Extensive \overline{A} ir Showers (EAS) excluded...

Pure SM, downward going

- Downward-going events, interacting with the geomagnetic field [de Vries, Prohira]
- Downward-going events, reflected by sub-layers of the ice sheet [Shoemaker, Kusenko, Munneke, Romero-Wolf, Schroeder, Siegert]

BSM, downward going

- Axionic UHECR reflecting on the ice [Esteban, Lopez-Pavon, Martinez-Soler, Salvado]
- Askaryan emission in the Ice, induced by heavy dark matter [Hooper, Wegsman, Deaconu, Vieregg]

BSM, upward going

- SUSY interpretations [Fox, Sigurdson, Murase *et al.*] [Collins, P. S. Bhupal Dev, and Y. Su]
- Sterile neutrino converting in the Earth [Cherry, Shoemaker][Huang]

DM -> SM scattering, upward going

- Dark Matter decaying into leptons [Cline, Gross, Xue]
- Dark Matter decaying into RH neutrinos [LH, Mambrini, Pierre]

DM -> BSM scattering, upward going

• Inelastic Boosted Dark Matter [LH, Kim, Park, Shin]

Events Features

ΑΝΙΤΑ		AAE061228	AAE 141220	
Flight & Event		ANITA-I #3985267	ANITA-III #15717147	
Date & Time (UTC)		2006-12-28 00:33:20	2014-12-20 08:33:22.5	
Equatorial coordinates (J2000)		R.A. $282^{\circ}.14064$, Dec. $+20^{\circ}.33043$	R.A. 50°.78203, Dec. +38°.65498	
Energy $\varepsilon_{\rm cr}$		$0.6 \pm 0.4 {\rm EeV}$	$0.56^{+0.30}_{-0.20}\mathrm{EeV}$	
Zenith angle z'/z		$117.^{\circ}4 / 116.^{\circ}8 \pm 0.^{\circ}3$	$125.^{\circ}0 / 124.^{\circ}5 \pm 0.^{\circ}3$	
Earth chord length ℓ		$5740 \pm 60 \mathrm{km}$	$7210 \pm 55 \mathrm{km}$	
Mean interaction length for	$\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$	
$p_{\rm SM}(\varepsilon_{\tau} > 0.1 {\rm EeV})$ for $\varepsilon_{\nu} =$	$1\mathrm{EeV}$	4.4×10^{-7}	3.2×10^{-8}	
$p_{\rm SM}(z > z_{\rm obs})$ for $\varepsilon_{\nu} = 1$ Ee	$V, \varepsilon_{\tau} > 0.1 \text{EeV}$	6.7×10^{-5}	3.8×10^{-6}	
$n_{\tau}(1-10 \mathrm{PeV}): n_{\tau}(10-100 \mathrm{FeV})$	$PeV): n_{\tau}(> 0.1 EeV)$	34:35:1	270:120:1	

[Fox, Sigurdson, Murase et al., Nov 18']

lceCube		IceCube-140611	IceCube-140109	IceCube-121205
EHE Northern Track ID		#27	#24	#20
Date & Time (UTC or MJD)		2014-06-11 04:54:24	56666.5	56266.6
Equatorial coordinates (J2000)		R.A. $110^{\circ}.34 \pm 0^{\circ}.22$,	R.A. 293°29,	R.A. 169°61,
		Dec. $+11^{\circ}.42 \pm 0^{\circ}.08$	Dec. $+32^{\circ}.82$	Dec. $+28.04$
Zenith angle z		101°.42	122°.82	118°04
Earth chord length ℓ		$2535\mathrm{km}$	$6910\mathrm{km}$	$5990\mathrm{km}$
As tau: $\varepsilon_{\tau,\text{obs}}$ (median)		$70{ m PeV}$	$13{ m PeV}$	$12\mathrm{PeV}$
Mean interaction	length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$340\mathrm{km}$	$270\mathrm{km}$	$285\mathrm{km}$
$p_{\rm SM}(\varepsilon_{\tau} > \varepsilon_{\tau, \rm obs})$ f	or $\varepsilon_{\nu} = 1 \mathrm{EeV}$	2.2×10^{-4}	3.8×10^{-6}	1.0×10^{-5}
$p_{\rm SM}(z > z_{\rm obs})$ for	$\varepsilon_{\nu} = 1 \mathrm{EeV}, \varepsilon_{\tau} > \varepsilon_{\tau,\mathrm{obs}}$	5.0×10^{-3}	4.5×10^{-5}	1.8×10^{-4}

[Fox, Sigurdson, Murase et al., Nov 18']

Challenges for BSM interpretations

- Understand the total number of events
 - 1. Incoming Flux
 - 2. Probability of scattering
 - 3. Probability that the scattering products escape the Earth
 - 4. Probability that they decay in the low atmosphere
- Understand the angular distribution of the events
 - 1. Integrate over incoming particle directions
 - 2. Integrate over points of impact on the Earth surface
 - 3. Analyse the results emergence angle per emergence angle

$$\begin{aligned} \frac{\mathrm{d}^2 A_{\mathrm{eff}}}{\mathrm{d}E_{\mathrm{exit}} \mathrm{d}\theta_{\mathrm{em}}} (E_{\mathrm{exit}}, \theta_{\mathrm{em}} \mid E_{\mathrm{N}}, \theta_{\mathrm{N}}, \phi_{\mathrm{N}}) &= R_{\mathrm{E}}^2 \int \mathrm{d}\Omega_{\mathrm{E}} \vec{n}_{\mathrm{N}} \cdot \vec{n}_{E} \\ \times \frac{\mathrm{d}P_{\mathrm{exit}}}{\mathrm{d}E_{\mathrm{exit}}} (E_{\mathrm{exit}}, \theta_{\mathrm{em}} \mid E_{\mathrm{N}}, \theta_{\mathrm{N}}, \phi_{\mathrm{N}}, \theta_{\mathrm{E}}, \phi_{\mathrm{E}}) \times \int \frac{\mathrm{d}P_{\mathrm{decay}}}{\mathrm{d}l} (l \mid E_{\mathrm{exit}}) \times P_{\mathrm{det}}(\theta_{\mathrm{sh}} | l, \theta_{\mathrm{N}}, \phi_{\mathrm{N}}, \theta_{\mathrm{E}}, \phi_{\mathrm{E}}) \mathrm{d}l \end{aligned}$$

A right-handed neutrino interpretation

Propagation and conversion into tau's

ANITA and IceCube detection

ANITA/IceCube detection

Energies > 0.5 EeV : Favour an ANITA detection at angles $\sim 30^{\circ}$ Energies < 0.5 EeV : Favour an IceCube detection at angles $\sim 30^{\circ}$

Perfect complementarity between the two collaborations detection !

Conclusion

- Heavy Dark-Matter models induce very feeble number density and interactions DM SM
- HDM models might be observed through the prism of primordial cosmology
- Connecting low energy phenomenology to inflation cosmology might lead to constrain both sectors at once
- Heavy Dark matter can be rendered metastable through the use of derivative couplings
- Decaying heavy dark matter can be observed by UHECR detectors in the near future

Future Directions

- The use of **the Earth as a Beam Dump target** can reveal to be successful for the search of any kind of heavy new physics..
- Taking into account the energy loss during propagation might help to provide complementary signals at low energy
- Search for heavy resonances in the propagation of UHECR through the Earth with GRAND, POEMMA, etc.
- Cosmological scenarios involving heavy DM can be constrained further through a **thorough study of the reheating phase** (effective inflaton mass, parametric resonances, EoS parameter before and during the reheating..)

Thank you very much !

Back Up Slides

[Dev, Mazumdar, Qutub 13'], [LH 17']

 $m_{\phi} \sim 10^{13} \text{GeV} \rightarrow \text{Annihilation cross section feeble} \rightarrow \text{No possible thermal scenario}$

[Dev, Mazumdar, Qutub 13'], [Heurtier 17']

Highly decoupled sectors?

Highly decoupled sectors?

The Model

dark matter in the dark sector

Natural suppression of the hidden scalar decay width...

sector

$$g_{h}/g_{v} \longrightarrow T_{h}/T_{v} \text{ after inflation} \qquad \phi \longrightarrow \bar{\chi}$$

$$\xi_{\inf} \equiv \left(\frac{T_{h}}{T}\right)_{\inf} = \left(\frac{g_{\inf}^{\star}}{g_{h,\inf}^{\star}}\right)^{1/4} \times \left(\frac{\rho_{h}}{\rho_{v}}\right)^{1/4} \qquad \phi \longrightarrow g_{v} \qquad \text{SM}$$

Relic Density

Relic Density

Vacuum mass versus inflation parameters

• Quadratic / quartic models

$$V(\varphi) = \frac{\lambda}{4} \left(\phi^2 - v^2\right)^2$$

[Linde '07] [LH, Moursy '15]

Vacuum mass versus inflation parameters

α-attractors (E-model)

$$V(\phi) = V_0 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_{Pl}}}\right)^2$$

[Carrasco, Kallosh, Linde '15]

$$m_{\phi}^2 = \left. \frac{\partial^2 V}{\partial \phi^2} \right|_{\phi=0} = \frac{4V_0}{3\alpha M_{Pl}^2} = \frac{m^2}{\alpha}$$

 $m\sim 3\cdot 10^{13}~GeV$

Vacuum mass versus inflation parameters

Natural inflation

Smoking-gun signatures ?

Dark matter features :

- 10 PeV EeV dark matter
- Very feeble interaction with the standard model

▶ No Direct Detection constraints

- Significant annihilation into dark scalars
- Dark scalar lifetime < 0.01s

Indirect Detection <u>from DM annihilation</u>? Same problem: Low DM number density, low flux of decay products, extremely hard to detect.

Indirect Detection <u>from DM decay</u>? Possible through ultra-high-energy cosmic ray searches [LH, Y. Mambrini, M. Pierre '19][D. Hooper, S. Wegsman, C. Deaconu, A. Vieregg '19]...

... See second part of the talk!

What's on the inflation side?

$$\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_s^c & \bar{\nu}_R^c \end{pmatrix} \begin{pmatrix} 0 & m_D^s & m_D^R \\ m_D^s & m_s & 0 \\ m_D^R & 0 & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_s^c \\ \nu_R^c \end{pmatrix} + \text{h.c.} , \qquad m_s < m_D^R \ll M_R$$

$$\nu_1 = \cos\theta \ (\nu_s + \nu_s^c) + \sin\theta \ (\nu_L + \nu_L^c)$$
$$\nu_2 = \cos\theta \ (\nu_L + \nu_L^c) - \sin\theta \ (\nu_s + \nu_s^c)$$
$$\nu_3 \sim \nu_R \ ,$$

$$\begin{aligned} \mathcal{L} &= \alpha \frac{\partial_{\mu} a}{M_P} \left(\bar{\nu}_1 \gamma^{\mu} \gamma_5 \nu_1 \right. \\ &- \left. \theta (\bar{\nu}_2 \gamma^{\mu} \gamma_5 \nu_1 + \bar{\nu}_1 \gamma^{\mu} \gamma_5 \nu_2) + \mathcal{O}(\theta^2) \right) \end{aligned}$$

$$\Gamma_{a \to \nu_1 \nu_2 h} = \frac{\alpha^2 \theta^2 m_a^3}{192 \pi^3 v^2 M_P^2} (m_1 + m_2)^2$$

$$\tau_a \gtrsim 5.5 \times 10^{28} \mathrm{s} \, \left(\frac{10^{-2}}{\alpha}\right)^2 \left(\frac{10^{-5}}{\theta}\right)^2 \left(\frac{10^9 \,\mathrm{GeV}}{m_a}\right)^3 \qquad \text{for } m_1 \ll m_2 \lesssim 0.05 \,\mathrm{eV}$$

[ANITA collaboration, 1811.07261]

Full development of an EAS depends on the altitude

Angular opening of the shower ~ 1.5°

A right-handed neutrino interpretation

$m_R < 10 \text{ eV} \text{ or } m_R \sim 0.1 \text{ GeV}$

A right-handed neutrino interpretation

$$\lambda \simeq \frac{c\gamma}{\Gamma_{N_R \to 3\nu}} \simeq 40 \,\mathrm{kpc} \left(\frac{10^{-2}}{\theta_R}\right)^2 \left(\frac{22 \,\mathrm{MeV}}{m_R}\right)^6 \left(\frac{m_{\mathrm{DM}}}{20 \,\mathrm{EeV}}\right)$$

 $m_{DM} = 1 \times 10^3 \text{ EeV}$

Approaches the inflaton mass...
Differential Exit Probability

Total Exit Probability

Diff. Exit Probability

Access to the energy distribution per emergence angle of the predicted events

How to get a better angular distribution?

A translucent Earth makes it better!

On-shell scenario

Off-shell scenario

