Black hole perturbations in modified gravity

David Langlois, Karim Noui, Hugo Roussille
May 10, 2021
$G \mathbb{R} \in \mathbb{C} O$ seminar - Institut d'Astrophysique de Paris

A Université de Paris

Introduction

- Modified gravity theories: predictions different from GR
- Important test: quasinormal modes of black holes
- Up to now, theoretical computations are rare
- Present a systematic algorithm to extract physical information and perform numerical analysis

Outline

1. Modified gravity: DHOST theories

- Necessity for modified gravity
- Importance of black holes

2. Quasinormal modes in GR

- Perturbation setup
- Schrödinger equations

3. Quasinormal modes in modified gravity

- Similarities and differences
- QNMs from the first order system
- Numerical results

Modified gravity: DHOST theories

Motivation for beyond-GR theories

Testing deviations

- Design new tests of GR
- Know where to look in large amounts of data

Issues of GR

- Big Bang singularity
- Black hole interior singularity
- Dark energy
\Rightarrow Important to look for extensions of GR
\Rightarrow Recent and near-future experiments will give much insight

Various theories of modified gravity

Lovelock's theorem for gravity

- Fourth dimensional spacetime
- Only field is the metric
$\Rightarrow G R$ is the only possible theory
- Second order derivatives in equations

General procedure to construct a modified gravity theory:
Break one of
Make sure the
Take experimental
Lovelock's $\rightarrow \quad$ theory is not $\quad \rightarrow \quad$ constraints into
hypotheses pathological account

Degenerate Higher-Order Scalar-Tensor theories

DHOST: add a scalar field and higher derivatives ${ }^{1}$

DHOST action

Ingredients: metric $g_{\mu \nu}$, scalar field ϕ of kinetic energy $X=\phi_{\mu} \phi^{\mu}$ with $\phi_{\mu}=\nabla_{\mu} \phi$.

$$
\begin{aligned}
& S\left[g_{\mu \nu}, \phi\right]=\int \mathrm{d}^{4} x \sqrt{-g}\left(F(X) R+P(X)+Q(X) \square X+A_{1}(X) \phi_{\mu \nu} \phi^{\mu \nu}+A_{2}(X)(\square \phi)^{2}\right. \\
&\left.+A_{3}(X) \phi^{\mu} \phi_{\mu \nu} \phi^{\nu} \square \phi+A_{4}(X) \phi^{\mu} \phi_{\mu \nu} \phi^{\nu \rho} \phi_{\rho}+A_{5}(X)\left(\phi^{\mu} \phi_{\mu \nu} \phi_{\nu}\right)^{2}\right)
\end{aligned}
$$

Degeneracy and stability: A_{2}, A_{4} and A_{5} are not free functions

$$
\Rightarrow \text { Most general scalar-tensor theory }
$$

[^0]
Horndeski theory

Simplify the theory:

DHOST theory

- Higher derivatives
- 5 free functions

$$
\tilde{g}_{\mu \nu}=A(X) g_{\mu \nu}+B(X) \phi_{\mu} \phi_{\nu}
$$

Horndeski theory

- Second-order derivatives only
- 3 free functions

$$
S\left[g_{\mu \nu}, \phi\right]=\int \mathrm{d}^{4} x\left(F(X) R+P(X)+Q(X) \square X+2 F^{\prime}(X)\left(\phi_{\mu \nu} \phi^{\mu \nu}-(\square \phi)^{2}\right)\right)
$$

$$
\Rightarrow \text { In the following, consider Horndeski }
$$

In vaccuum both theories are equivalent but the solutions may differ ${ }^{2}$.

[^1]
Tests of modified gravity

Where to look for traces of modified gravity?

Black holes

- New solutions
- Different dynamics

Large scale structures

- Different growth rate
- Screenings

Cosmology

- Primordial GWs
- CMB
\qquad
smaller
- Each theory is tuned for a specific energy scale
- We focus on modifications of gravity in the black hole regime

Quasinormal modes and the ringdown

Ringdown of a merger: excited BH emits GW at precise frequencies, the quasinormal modes

Figure 1: Ringdown phase of a binary black hole merger (L. London 2017)

Measuring quasinormal modes

- Discrete set (similar to plucked string)
- Complex frequencies: energy loss due to emission towards infinity
- Depend a lot of the theory \rightarrow very good test

Figure 2: Principle of ringdown fit ${ }^{3}$ and application to GW150914 ${ }^{4}$.

[^2]
New black holes in DHOST: stealth solution

Metric sector: mimic GR

$$
\mathrm{d} s^{2}=-(1-\mu / r) \mathrm{d} t^{2}+(1-\mu / r)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}
$$

Scalar sector

$$
\begin{aligned}
& \phi=q t+\psi(r) \\
& X=-q^{2} \Rightarrow \psi^{\prime}(r)=q \frac{\sqrt{r \mu}}{r-\mu}
\end{aligned}
$$

- Metric sector: similar to Schwarzschild \Rightarrow existing background tests still valid
- Scalar sector: time-dependant field and constant kinetic term
- Parametrization on F, P and Q for existence:

$$
\begin{array}{lll}
F(X)=1, & F^{\prime}(X)=\alpha, & F^{\prime \prime}(X)=\beta \\
P(X)=0, & P^{\prime}(X)=0, & P^{\prime \prime}(X)=\gamma \\
Q(X)=0, & Q^{\prime}(X)=0, & Q^{\prime \prime}(X)=\delta
\end{array}
$$

New black holes in DHOST: BCL solution ${ }^{5}$

Parameters of Horndeski:

$$
F(X)=f_{0}+f_{1} \sqrt{X} \quad P(X)=-p_{1} X, \quad Q(X)=0
$$

Metric sector: RN with imaginary charge

$$
\begin{aligned}
& \mathrm{ds}{ }^{2}=-A(r) \mathrm{d} t^{2}+\frac{1}{A(r)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2} \\
& A(r)=1-\frac{r_{m}}{r}-\xi \frac{r_{m}^{2}}{r^{2}}, \quad \xi=\frac{f_{1}^{2}}{2 f_{0} p_{1} r_{m}^{2}}
\end{aligned}
$$

Scalar sector

$$
\begin{aligned}
& \phi=\psi(r), \quad \psi^{\prime}(r)= \pm \frac{f_{1}}{p_{1} r^{2} \sqrt{A(r)}} \\
& X(r)=\frac{f_{1}^{2}}{p_{1}^{2} r^{4}}
\end{aligned}
$$

[^3]
Quasinormal modes in GR

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action

$$
S\left[g_{\mu \nu}\right]=\int \mathrm{d}^{4} x \sqrt{-g} R
$$

2. Static spherically symmetric background

$$
\bar{g}_{\mu \nu}=\operatorname{diag}\left(-A(r), 1 / A(r), r^{2}, r^{2} \sin ^{2} \theta\right), \quad A(r)=1-r_{s} / r
$$

3. Perturb the metric: $g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu}$ and linearise Einstein's equations \Rightarrow obtain 10 equations
4. Decompose the components of $h_{\mu \nu}$ over spherical harmonics
5. Separate by parity: polar (even) and axial (odd) modes
6. Gauge fixing via $h_{\mu \nu} \longrightarrow h_{\mu \nu}+\nabla_{\mu} \xi_{\nu}+\nabla_{\nu} \xi_{\mu}$:

- Polar modes: 7 equations for K, H_{0}, H_{1}, H_{2}
- Axial modes: 3 equations for h_{0}, h_{1}

7. Fourier transform: $f(t, r)=\exp (-i \omega t) f(r)$

Reducing the number of equations

Two systems with more equations than variables \rightarrow overconstrained?

Axial modes

- 2 first-order equations
- 1 second-order equation

Polar modes

- 4 first-order equations
- 2 second-order equations
- 1 algebraic equation

Interestingly, each system is equivalent to a 2-dimensional system of the form${ }^{6}$

$$
\frac{\mathrm{d} X}{\mathrm{~d} r}=M(r) X
$$

[^4]
Final system of equations

Axial modes

$$
\begin{array}{ll}
X_{\text {axial }}={ }^{t}\left(\begin{array}{ll}
h_{0} & h_{1} / \omega
\end{array}\right) \\
M_{\text {axial }} & =\left(\begin{array}{cc}
\frac{2}{r} & 2 i \lambda \frac{r-r_{s}}{r^{3}}-i \omega^{2} \\
-\frac{r^{2}}{\left(r-r_{s}\right)^{2}} & -\frac{r_{s}}{r\left(r-r_{s}\right)}
\end{array}\right)
\end{array} \left\lvert\, \begin{array}{ll}
X_{\text {polar }}={ }^{t}\left(\begin{array}{ll}
K & H_{1} / \omega
\end{array}\right) \\
\quad M_{\text {polar }}=\frac{1}{3 r_{s}+2 \lambda r}\left(\begin{array}{ll}
\frac{a_{11}(r)+b_{11}(r) \omega^{2}}{r\left(r-r_{s}\right.} & \frac{a_{12}(r)+b_{12}(r) \omega^{2}}{r^{2}} \\
\frac{a_{21}(r)+b_{21}(r) \omega^{2}}{2\left(r-r_{s}\right)^{2}} & \frac{a_{22}(r)+b_{22}(r) \omega^{2}}{r\left(r-r_{s}\right)}
\end{array}\right) \\
\quad \text { (set } 2(\lambda+1)=\ell(\ell+1))
\end{array}\right.
$$

Polar modes

\Rightarrow goal to achieve: simplify these complicated differential systems

Effect of a change of variables

Changing the functions in X is not a change of basis for M !

Change of variables

$$
\begin{gathered}
\frac{\mathrm{d} X}{\mathrm{~d} r}=M(r) X, \quad X=P(r) \tilde{X} \\
\frac{\mathrm{~d} \tilde{X}}{\mathrm{~d} r}=\tilde{M}(r) \tilde{X}, \quad \tilde{M}=P^{-1} M P-P^{-1} \frac{\mathrm{~d} P}{\mathrm{~d} r}
\end{gathered}
$$

Main idea: find a change of variables that will put the equation into a better form

Usual change of variables: propagation equation

Canonical form for \tilde{M} :

$$
\tilde{M}=\left(\begin{array}{cc}
0 & 1 \\
V(r)-\frac{\omega^{2}}{c^{2}} & 0
\end{array}\right)
$$

Physical interpretation

$$
\left\{\begin{array}{l}
\tilde{X}_{0}^{\prime}=\tilde{X}_{1}, \\
\tilde{X}_{1}^{\prime}=\left(V(r)-\omega^{2} / c^{2}\right) \tilde{X}_{0}
\end{array} \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \tilde{X}_{0}}{\mathrm{~d} r_{*}^{2}}+\left(\frac{\omega^{2}}{c^{2}}-V(r)\right) \tilde{X}_{0}=0, \quad \frac{\mathrm{~d} r}{\mathrm{~d} r_{*}}=A(r)\right.
$$

Schrödinger equation with potential V
$r_{*}:$ "tortoise coordinate", $r=r_{s} \longrightarrow r_{*}=-\infty$ and $r=+\infty \longrightarrow r_{*}=+\infty$

Interpretation of the equations

Axial case:

$$
P_{\text {axial }}=\left(\begin{array}{cc}
1-r_{s} / r & r \\
i r^{2} /\left(r-r_{s}\right) & 0
\end{array}\right), \quad c=1
$$

At the horizon and infinity:

$$
\begin{aligned}
& X_{0}(t, r) \propto e^{-i \omega\left(t \pm r_{*}\right)} \\
\Rightarrow & \text { Propagation of waves }
\end{aligned}
$$

Physical interpretation

- Free propagation at $c=1$ near the horizon and infinity
- Scattering by the potential V
- At infinity: recover gravitational waves in Minkowski

Computation of the modes

Quasinormal modes

- Waves ingoing at the horizon: $e^{-i \omega\left(t+r_{*}\right)}$
- Waves outgoing at infinity: $e^{-i \omega\left(t-r_{*}\right)}$

- 2 boundary conditions $+2^{\text {nd }}$ order system \longrightarrow conditions on ω
- "Eigenvalue problem": find values of parameter such that solutions exist
- Very different from plucked string: wave propagation at each boundary!

Quasinormal modes in modified gravity

Summary: computation of QNMs in GR

Linearized
Einstein's \rightarrow choice \rightarrow Background \rightarrow First-order

eds system \rightarrow equations \rightarrow| Computa- |
| :---: |
| dion |

[^5]
New challenges in modified gravity

New theories

Scalar-tensor: new scalar degree of freedom that couples to the polar mode

New backgrounds

Stealth solution: time-dependant scalar field, lose staticity

Schrödinger equation

In general, very hard to solve:

$$
\left(\begin{array}{cc}
0 & 1 \\
V(r)-\frac{\omega^{2}}{c^{2}} & 0
\end{array}\right)=P^{-1} M P-P^{-1} \frac{\mathrm{~d} P}{\mathrm{~d} r}
$$

\Rightarrow need for a systematic approach that does not rely on specific simplifications

Example: polar BCL perturbations

$$
\begin{aligned}
& A(r)=1-\frac{r_{m}}{r}-\xi \frac{r_{m}^{2}}{r^{2}}, \quad \xi=\frac{f_{1}^{2}}{2 f_{0} p_{1} r_{m}^{2}}, \quad \phi^{\prime}(r)= \pm \frac{f_{1}}{p_{1} r^{2} \sqrt{A(r)}} \\
& M(r)=\left(\begin{array}{cccc}
-\frac{1}{r}+\frac{U}{2 r^{3} A} & \frac{U}{r^{4}} & \frac{i(1+\lambda)}{\omega r^{2}} & \frac{V}{r^{3}} \\
\frac{\omega^{2} r^{2}}{A^{2}}-\frac{\lambda}{A}-\frac{r_{m}}{2 r A}+\frac{r_{m}^{2} S}{4 r^{4} A^{2}} & -\frac{2}{r}-\frac{U V}{2 r^{5} A} & -\frac{i \omega r}{A}+\frac{2(1+\lambda) U}{2 r^{3} 3 A} & -\frac{\lambda}{A}-\frac{3 U}{2 r^{3} A}-\frac{\xi^{2} r_{m}^{4}}{2 r^{4} A} \\
-\frac{i \omega V}{r^{2} A} & \frac{i \omega U}{r^{3} A} & -\frac{U}{r^{3} A} & -\frac{i \omega V}{r^{3} A} \\
-\frac{1}{r}+\frac{U}{2 r^{3} A} & \frac{2}{r^{2}}-\frac{U^{2} A}{2 r^{6} A} & -\frac{i \omega}{A}+\frac{i(1+\lambda)}{\omega r^{2}} & \frac{1}{r}-\frac{U}{2 r^{3} A}-\frac{U V}{2 r^{5} A}
\end{array}\right) \\
& U(r)=r_{m}\left(r+\xi r_{m}\right), \quad V(r)=r^{2}+\xi r_{m}^{2}, \quad S(r)=r^{2}+2 \xi r\left(2 r_{m}-r\right)+2 \xi^{2} r_{m}^{2} .
\end{aligned}
$$

First-order system and boundary conditions

Main idea

Skip step (5): get boundary conditions and perform numerical computations from the first-order system

Steps to perform

- Find asymptotic behaviour at the horizon and infinity
- Identify ingoing and outgoing modes
- Use a numerical method that does not require Schrödinger equations

Naively:

$$
\frac{\mathrm{d} X}{\mathrm{~d} r}=M X, \quad M(r)=M_{p} r^{p}+O\left(r^{p-1}\right) \quad \Rightarrow \quad X \sim \exp \left(M_{p} \frac{r^{p+1}}{p+1}\right) X_{c}
$$

Failure of naive approach

Axial Schwarzschild

$$
\begin{aligned}
& M(r)=\left(\begin{array}{cc}
0 & -i \omega^{2} \\
-i & 0
\end{array}\right)+O\left(\frac{1}{r}\right) \\
& X \sim\left(\begin{array}{cc}
e^{i \omega r} & 0 \\
0 & e^{-i \omega r}
\end{array}\right) X_{c}
\end{aligned}
$$

Polar Schwarzschild

$$
\begin{aligned}
& M(r)=\left(\begin{array}{cc}
0 & 0 \\
\frac{i \omega^{2}}{\lambda} & 0
\end{array}\right) r^{2}+O(r) \\
& X \sim\left(\begin{array}{cc}
1 & 0 \\
\frac{i \omega^{2}}{\lambda} \frac{r^{3}}{3} & 1
\end{array}\right) X_{c}
\end{aligned}
$$

Problem

- We do not recover the $e^{ \pm i \omega r_{*}}$ behaviour all the time!
- This is because of a nilpotent leading order in the polar case
- A more advanced mathematical treatment is needed

Mathematical results

Solution: behaviour studied in ${ }^{7}$, mathematical algorithm from ${ }^{8}$

Mathematical algorithm

Main idea: diagonalize M order by order using

$$
\tilde{M}=P^{-1} M P-P^{-1} \frac{\mathrm{~d} P}{\mathrm{~d} r}
$$

\Rightarrow important result: diagonalization is always possible!

General result:

$$
\begin{aligned}
M & =M_{p} r^{p}+M_{p-1} r^{p-1}+\ldots \\
\tilde{M} & =D_{q} r^{q}+D_{q-1} r^{q-1}+\ldots \\
X & \sim e^{D(r)} r^{D_{-1}} F(r) X_{c}
\end{aligned}
$$

[^6]
Example for the BCL solution: polar perturbations

Horizon
Infinity

- We decoupled both modes but only locally
- The gravitational mode propagates at $c=1$ at infinity and c_{0} at the horizon
- Always one ingoing and one outgoing gravitational mode
- The scalar mode does not propagate

"Recipe" for the computation of quasinormal modes

(1)

Linearized
Einstein's \rightarrow choice \rightarrow Background \rightarrow eqs

(5)

Numerical
\rightarrow Asymptotical \rightarrow computabehaviour

- Generic algorithm that should work for any modified gravity theory
- Go around the technical difficulties of steps (1) and (3)
- Caveat: we do not get the full decoupled equations for the modes \Rightarrow impossible to get a potential
- Asymptotical behaviour is enough to obtain boundary conditions for numerical resolution

Numerical method

$$
\text { Decomposition onto Chebyshev polynomials } T_{n}: f=\sum_{i=0}^{N} f_{i} T_{i}
$$

ODE

$$
\begin{gathered}
X={ }^{t}\left(\begin{array}{lll}
X_{0} & \ldots & X_{n}
\end{array}\right) \\
\frac{\mathrm{d} X}{\mathrm{~d} r}=M(r, \omega) X
\end{gathered}
$$

+ boundary conditions

Numerical system

$$
\begin{aligned}
& X={ }^{t}\left(\begin{array}{lll}
X_{0 i} & \ldots & X_{n i}
\end{array}\right) \\
& D_{i j} X_{j}=M_{i j}(\omega) X_{j} \\
& \text { + boundary conditions }
\end{aligned}
$$

- Linear algebra problem: generalized eigenvalue problem
- Procedure: find ω for $N=N_{0}$, then $N=N_{1}>N_{0}$, keep the common values

BCL axial modes

Figure 3: Axial QNMs found for the BCL solution with $\xi=0.5, r_{m}=1, \lambda=2$.

BCL polar modes

- Impose gravitational mode b.c. at horizon and infinity
- Obtain modes even though the full system is not decoupled!

Figure 4: Polar gravitational QNMs found for the BCL solution with $\xi=10^{-4}, r_{m}=1, \lambda=2$.

Isospectrality

Figure 5: Tracking of the fundamental mode for axial and polar gravitational modes as ξ varies.

Conclusion

- Computing quasinormal modes can be very difficult in modified theories of gravity
- We propose a new technique: use the first-order system instead of looking for Schrödinger-like equations
- A mathematical algorithm enables us to decouple the modes asymptotically, which allows us to find their physical behaviour and obtain boundary conditions
- We can use these boundary conditions to numerically compute the quasinormal modes frequencies
- The method is theory-agnostic: it can be applied to any theory of gravity and any background

Thank you for your attention!

[^0]: ${ }^{1}$ Langlois, D. and Noui, K. arXiv: 1510.06930.

[^1]: ${ }^{2}$ Achour, J. B., Langlois, D., and Noui, K. arXiv: 1602.08398.

[^2]: ${ }^{3}$ Kokkotas, K. D. and Schmidt, B. G. 1999.
 ${ }^{4}$ Ghosh, A., Brito, R., and Buonanno, A. arXiv: 2104.01906.

[^3]: ${ }^{5}$ Babichev, E., Charmousis, C., and Lehébel, A. arXiv: 1702.01938.

[^4]: ${ }^{6}$ Regge, T. and Wheeler, J. A. 1957; Zerilli, F. J. 1970.

[^5]: (1) Many different theories

 Major difficulties:
 (3) Many different backgrounds
 (5) Highly non-trivial change of variables!

[^6]: ${ }^{7}$ Wasow, W. 1965.
 ${ }^{8}$ Balser, W. 1999.

