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Introduction

• Modified gravity theories: predictions different from GR
• Important test: quasinormal modes of black holes
• Up to now, theoretical computations are rare
• Present a systematic algorithm to extract physical information and perform
numerical analysis
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Modified gravity: DHOST theories



Necessity for modified gravity Importance of black holes

Motivation for beyond-GR theories

Testing deviations
• Design new tests of GR
• Know where to look in large
amounts of data

Issues of GR
• Big Bang singularity
• Black hole interior singularity
• Dark energy

⇒ Important to look for extensions of GR
⇒ Recent and near-future experiments will give much insight



Necessity for modified gravity Importance of black holes

Various theories of modified gravity

Lovelock’s theorem for gravity
• Fourth dimensional spacetime
• Only field is the metric
• Second order derivatives in equations

⇒ GR is the only possible theory

General procedure to construct a modified gravity theory:

Break one of
Lovelock’s
hypotheses

→
Make sure the
theory is not
pathological

→
Take experimental
constraints into

account



Necessity for modified gravity Importance of black holes

Degenerate Higher-Order Scalar-Tensor theories

DHOST: add a scalar field and higher derivatives1

DHOST action
Ingredients: metric 𝑔𝜇𝜈 , scalar field 𝜙 of kinetic energy 𝑋 = 𝜙𝜇𝜙𝜇 with 𝜙𝜇 = ∇𝜇𝜙.

𝑆[𝑔𝜇𝜈, 𝜙] = ∫ d4𝑥 √−𝑔 (𝐹(𝑋)𝑅 + 𝑃(𝑋) + 𝑄(𝑋)□𝑋 + 𝐴1(𝑋)𝜙𝜇𝜈𝜙𝜇𝜈 + 𝐴2(𝑋)(□𝜙)2

+𝐴3(𝑋)𝜙𝜇𝜙𝜇𝜈𝜙𝜈□𝜙 + 𝐴4(𝑋)𝜙𝜇𝜙𝜇𝜈𝜙𝜈𝜌𝜙𝜌 + 𝐴5(𝑋)(𝜙𝜇𝜙𝜇𝜈𝜙𝜈)2)

Degeneracy and stability: 𝐴2, 𝐴4 and 𝐴5 are not free functions

⇒ Most general scalar-tensor theory
1 Langlois, D. and Noui, K. arXiv: 1510.06930.



Necessity for modified gravity Importance of black holes

Horndeski theory

Simplify the theory:

DHOST theory
• Higher derivatives
• 5 free functions

̃𝑔𝜇𝜈 = 𝐴(𝑋)𝑔𝜇𝜈 + 𝐵(𝑋)𝜙𝜇𝜙𝜈
Horndeski theory
• Second-order
derivatives only

• 3 free functions

𝑆[𝑔𝜇𝜈, 𝜙] = ∫ d4𝑥 (𝐹(𝑋)𝑅 + 𝑃(𝑋) + 𝑄(𝑋)□𝑋 + 2𝐹′(𝑋) (𝜙𝜇𝜈𝜙𝜇𝜈 − (□𝜙)2))

⇒ In the following, consider Horndeski
In vaccuum both theories are equivalent but the solutions may differ2.
2 Achour, J. B., Langlois, D., and Noui, K. arXiv: 1602.08398.



Necessity for modified gravity Importance of black holes

Tests of modified gravity

Where to look for traces of modified gravity?

Black holes
• New solutions
• Different dynamics

Large scale structures
• Different growth
rate

• Screenings

Cosmology
• Primordial GWs
• CMB

smaller larger

• Each theory is tuned for a specific energy scale
• We focus on modifications of gravity in the black hole regime



Necessity for modified gravity Importance of black holes

Quasinormal modes and the ringdown

Ringdown of a merger: excited BH emits GW at precise frequencies, the
quasinormal modes

Figure 1: Ringdown phase of a binary black hole merger (L. London 2017)



Necessity for modified gravity Importance of black holes

Measuring quasinormal modes

• Discrete set (similar to plucked string)
• Complex frequencies: energy loss due to emission towards infinity
• Depend a lot of the theory → very good test
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Figure 2: Principle of ringdown fit3 and application to GW1509144.

3 Kokkotas, K. D. and Schmidt, B. G. 1999.
4 Ghosh, A., Brito, R., and Buonanno, A. arXiv: 2104.01906.



Necessity for modified gravity Importance of black holes

New black holes in DHOST: stealth solution

Metric sector: mimic GR

d𝑠2 = −(1−𝜇/𝑟) d𝑡2 +(1−𝜇/𝑟)−1 d𝑟2 +𝑟2 dΩ2

Scalar sector

𝜙 = 𝑞𝑡 + 𝜓(𝑟)

𝑋 = −𝑞2 ⇒ 𝜓′(𝑟) = 𝑞
√𝑟𝜇
𝑟 − 𝜇

• Metric sector: similar to Schwarzschild ⇒ existing background tests still valid
• Scalar sector: time-dependant field and constant kinetic term
• Parametrization on 𝐹, 𝑃 and 𝑄 for existence:

𝐹(𝑋) = 1 , 𝐹′(𝑋) = 𝛼 , 𝐹″(𝑋) = 𝛽
𝑃(𝑋) = 0 , 𝑃′(𝑋) = 0 , 𝑃″(𝑋) = 𝛾
𝑄(𝑋) = 0 , 𝑄′(𝑋) = 0 , 𝑄″(𝑋) = 𝛿



Necessity for modified gravity Importance of black holes

New black holes in DHOST: BCL solution5

Parameters of Horndeski:

𝐹(𝑋) = 𝑓0 + 𝑓1√𝑋 𝑃(𝑋) = −𝑝1𝑋 , 𝑄(𝑋) = 0

Metric sector: RN with imaginary charge

d𝑠2 = −𝐴(𝑟) d𝑡2 + 1
𝐴(𝑟) d𝑟2 + 𝑟2 dΩ2

𝐴(𝑟) = 1 − 𝑟𝑚
𝑟 − 𝜉 𝑟2

𝑚
𝑟2 , 𝜉 =

𝑓 2
1

2𝑓0𝑝1𝑟2𝑚

Scalar sector

𝜙 = 𝜓(𝑟) , 𝜓′(𝑟) = ± 𝑓1
𝑝1𝑟2√𝐴(𝑟)

𝑋(𝑟) =
𝑓 2
1

𝑝2
1𝑟4

5 Babichev, E., Charmousis, C., and Lehébel, A. arXiv: 1702.01938.



Quasinormal modes in GR



Perturbation setup Schrödinger equations

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action

𝑆[𝑔𝜇𝜈] = ∫ d4𝑥 √−𝑔 𝑅

2. Static spherically symmetric background

̄𝑔𝜇𝜈 = diag(−𝐴(𝑟), 1/𝐴(𝑟), 𝑟2, 𝑟2 sin2 𝜃) , 𝐴(𝑟) = 1 − 𝑟𝑠/𝑟

3. Perturb the metric: 𝑔𝜇𝜈 = ̄𝑔𝜇𝜈 + ℎ𝜇𝜈 and linearise Einstein’s equations
⇒ obtain 10 equations

4. Decompose the components of ℎ𝜇𝜈 over spherical harmonics
5. Separate by parity: polar (even) and axial (odd) modes
6. Gauge fixing via ℎ𝜇𝜈 ⟶ ℎ𝜇𝜈 + ∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇:

• Polar modes: 7 equations for 𝐾, 𝐻0, 𝐻1, 𝐻2
• Axial modes: 3 equations for ℎ0, ℎ1

7. Fourier transform: 𝑓 (𝑡, 𝑟) = exp(−𝑖𝜔𝑡)𝑓 (𝑟)



Perturbation setup Schrödinger equations

Reducing the number of equations

Two systems with more equations than variables → overconstrained?

Axial modes
• 2 first-order equations
• 1 second-order equation

Polar modes
• 4 first-order equations
• 2 second-order equations
• 1 algebraic equation

Interestingly, each system is equivalent to a 2-dimensional system of the form6

d𝑋
d𝑟 = 𝑀(𝑟)𝑋

6 Regge, T. and Wheeler, J. A. 1957; Zerilli, F. J. 1970.



Perturbation setup Schrödinger equations

Final system of equations

Axial modes

𝑋axial = 𝑡 (ℎ0 ℎ1/𝜔)

𝑀axial = ⎛⎜⎜
⎝

2
𝑟 2𝑖𝜆 𝑟−𝑟𝑠

𝑟3 − 𝑖𝜔2

− 𝑟2

(𝑟−𝑟𝑠)2 − 𝑟𝑠
𝑟(𝑟−𝑟𝑠)

⎞⎟⎟
⎠

Polar modes

𝑋polar = 𝑡 (𝐾 𝐻1/𝜔)

𝑀polar = 1
3𝑟𝑠 + 2𝜆𝑟

⎛⎜⎜⎜
⎝

𝑎11(𝑟)+𝑏11(𝑟)𝜔2

𝑟(𝑟−𝑟𝑠)
𝑎12(𝑟)+𝑏12(𝑟)𝜔2

𝑟2
𝑎21(𝑟)+𝑏21(𝑟)𝜔2

2(𝑟−𝑟𝑠)2
𝑎22(𝑟)+𝑏22(𝑟)𝜔2

𝑟(𝑟−𝑟𝑠)

⎞⎟⎟⎟
⎠

(set 2(𝜆 + 1) = ℓ(ℓ + 1))

⇒ goal to achieve: simplify these complicated differential systems



Perturbation setup Schrödinger equations

Effect of a change of variables

Changing the functions in 𝑋 is not a change of basis for 𝑀!

Change of variables
d𝑋
d𝑟 = 𝑀(𝑟)𝑋 , 𝑋 = 𝑃(𝑟)𝑋̃

d𝑋̃
d𝑟 = 𝑀̃(𝑟)𝑋̃ , 𝑀̃ = 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃

d𝑟

Main idea: find a change of variables that will put the equation into a better form



Perturbation setup Schrödinger equations

Usual change of variables: propagation equation

Canonical form for 𝑀̃:

𝑀̃ = ⎛⎜
⎝

0 1
𝑉(𝑟) − 𝜔2

𝑐2 0
⎞⎟
⎠

Physical interpretation

⎧{
⎨{⎩

𝑋̃′
0 = 𝑋̃1 ,

𝑋̃′
1 = (𝑉(𝑟) − 𝜔2/𝑐2)𝑋̃0

⇒ d2𝑋̃0
d𝑟2∗

+ (𝜔2

𝑐2 − 𝑉(𝑟)) 𝑋̃0 = 0 , d𝑟
d𝑟∗

= 𝐴(𝑟)

Schrödinger equation with potential 𝑉

𝑟∗: “tortoise coordinate”, 𝑟 = 𝑟𝑠 ⟶ 𝑟∗ = −∞ and 𝑟 = +∞ ⟶ 𝑟∗ = +∞



Perturbation setup Schrödinger equations

Interpretation of the equations

Axial case:

𝑃axial = ⎛⎜
⎝

1 − 𝑟𝑠/𝑟 𝑟
𝑖𝑟2/(𝑟 − 𝑟𝑠) 0

⎞⎟
⎠

, 𝑐 = 1

At the horizon and infinity:

𝑋0(𝑡, 𝑟) ∝ 𝑒−𝑖𝜔(𝑡±𝑟∗)

⇒ Propagation of waves
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Physical interpretation
• Free propagation at 𝑐 = 1 near the horizon and infinity
• Scattering by the potential 𝑉
• At infinity: recover gravitational waves in Minkowski



Perturbation setup Schrödinger equations

Computation of the modes

Quasinormal modes

• Waves ingoing at the horizon:
𝑒−𝑖𝜔(𝑡+𝑟∗)

• Waves outgoing at infinity: 𝑒−𝑖𝜔(𝑡−𝑟∗)
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• 2 boundary conditions + 2nd order system ⟶ conditions on 𝜔
• “Eigenvalue problem”: find values of parameter such that solutions exist
• Very different from plucked string: wave propagation at each boundary!



Quasinormal modes in modified
gravity



Similarities and differences QNMs from the first order system Numerical results

Summary: computation of QNMs in GR

1 2 3 4 5 6

Linearized
Einstein’s
eqs

→
Gauge
choice → Background →

First-order
system →

Schrödinger
equations →

Numerical
computa-
tion

Major difficulties:

1 Many different theories
3 Many different backgrounds
5 Highly non-trivial change of variables!



Similarities and differences QNMs from the first order system Numerical results

New challenges in modified gravity

New theories
Scalar-tensor: new scalar degree of
freedom that couples to the polar mode

New backgrounds
Stealth solution: time-dependant scalar
field, lose staticity

Schrödinger equation
In general, very hard to solve:

⎛⎜
⎝

0 1
𝑉(𝑟) − 𝜔2

𝑐2 0
⎞⎟
⎠

= 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃
d𝑟

⇒ need for a systematic approach that does not rely on specific simplifications



Similarities and differences QNMs from the first order system Numerical results

Example: polar BCL perturbations

𝐴(𝑟) = 1 − 𝑟𝑚
𝑟 − 𝜉 𝑟2

𝑚
𝑟2 , 𝜉 =

𝑓 2
1

2𝑓0𝑝1𝑟2𝑚
, 𝜙′(𝑟) = ± 𝑓1

𝑝1𝑟2√𝐴(𝑟)

𝑀(𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
𝑟 + 𝑈

2𝑟3𝐴
𝑈
𝑟4

𝑖(1+𝜆)
𝜔𝑟2

𝑉
𝑟3

𝜔2𝑟2

𝐴2 − 𝜆
𝐴 − 𝑟𝑚

2𝑟𝐴 + 𝑟2
𝑚𝑆

4𝑟4𝐴2 −2
𝑟 − 𝑈𝑉

2𝑟5𝐴 − 𝑖𝜔𝑟
𝐴 + 𝑖(1+𝜆)𝑈

2𝑟3𝜔𝐴 − 𝜆
𝐴 − 3𝑈

2𝑟3𝐴 − 𝜉2𝑟4
𝑚

2𝑟4𝐴
− 𝑖𝜔𝑉

𝑟2𝐴
2𝑖𝜔

𝑟 − 𝑖𝜔𝑈
𝑟3𝐴 − 𝑈

𝑟3𝐴 − 𝑖𝜔𝑉
𝑟2𝐴

−1
𝑟 + 𝑈

2𝑟3𝐴
2
𝑟2 − 𝑈2

2𝑟6𝐴 − 𝑖𝜔
𝐴 + 𝑖(1+𝜆)

𝜔𝑟2
1
𝑟 − 𝑈

2𝑟3𝐴 − 𝑈𝑉
2𝑟5𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑈(𝑟) = 𝑟𝑚(𝑟 + 𝜉𝑟𝑚) , 𝑉(𝑟) = 𝑟2 + 𝜉𝑟2
𝑚 , 𝑆(𝑟) = 𝑟2 + 2𝜉𝑟(2𝑟𝑚 − 𝑟) + 2𝜉2𝑟2

𝑚 .



Similarities and differences QNMs from the first order system Numerical results

First-order system and boundary conditions

Main idea
Skip step 5 : get boundary conditions and perform numerical computations

from the first-order system

Steps to perform
• Find asymptotic behaviour at the horizon and infinity
• Identify ingoing and outgoing modes
• Use a numerical method that does not require Schrödinger equations

Naively:

d𝑋
d𝑟 = 𝑀𝑋 , 𝑀(𝑟) = 𝑀𝑝𝑟𝑝 + 𝒪(𝑟𝑝−1) ⇒ 𝑋 ∼ exp⎛⎜

⎝
𝑀𝑝

𝑟𝑝+1

𝑝 + 1
⎞⎟
⎠

𝑋𝑐



Similarities and differences QNMs from the first order system Numerical results

Failure of naive approach

Axial Schwarzschild

𝑀(𝑟) = ⎛⎜
⎝

0 −𝑖𝜔2

−𝑖 0
⎞⎟
⎠

+ 𝒪 (1
𝑟 )

𝑋 ∼ ⎛⎜
⎝

𝑒𝑖𝜔𝑟 0
0 𝑒−𝑖𝜔𝑟

⎞⎟
⎠

𝑋𝑐

Polar Schwarzschild

𝑀(𝑟) = ⎛⎜
⎝

0 0
𝑖𝜔2

𝜆 0
⎞⎟
⎠

𝑟2 + 𝒪(𝑟)

𝑋 ∼ ⎛⎜
⎝

1 0
𝑖𝜔2

𝜆
𝑟3

3 1
⎞⎟
⎠

𝑋𝑐

Problem
• We do not recover the 𝑒±𝑖𝜔𝑟∗ behaviour all the time!
• This is because of a nilpotent leading order in the polar case
• A more advanced mathematical treatment is needed



Similarities and differences QNMs from the first order system Numerical results

Mathematical results

Solution: behaviour studied in7, mathematical algorithm from8

Mathematical algorithm
Main idea: diagonalize 𝑀 order by order using

𝑀̃ = 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃
d𝑟

⇒ important result: diagonalization is always possible!

General result:

𝑀 = 𝑀𝑝𝑟𝑝 + 𝑀𝑝−1𝑟𝑝−1 + …
𝑀̃ = 𝐷𝑞𝑟𝑞 + 𝐷𝑞−1𝑟𝑞−1 + …
𝑋 ∼ 𝑒𝐷(𝑟)𝑟𝐷−1𝐹(𝑟)𝑋𝑐

7 Wasow, W. 1965.
8 Balser, W. 1999.



Similarities and differences QNMs from the first order system Numerical results

Example for the BCL solution: polar perturbations

Horizon

𝑀̃ ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑖𝜔/𝑐0
𝑖𝜔/𝑐0

1/2 1
1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Infinity

𝑀̃ ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑖𝜔
𝑖𝜔

−√2𝜔
√2𝜔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Gravitational
part

Scalar
partWhat can we deduce from this?

• We decoupled both modes but only locally
• The gravitational mode propagates at 𝑐 = 1 at infinity and 𝑐0 at the horizon
• Always one ingoing and one outgoing gravitational mode
• The scalar mode does not propagate



Similarities and differences QNMs from the first order system Numerical results

“Recipe” for the computation of quasinormal modes

1 2 3 4 5 6

Linearized
Einstein’s
eqs

→
Gauge
choice → Background →

First-order
system → Asymptotical

behaviour
→

Numerical
computa-
tion

• Generic algorithm that should work for any modified gravity theory
• Go around the technical difficulties of steps 1 and 3
• Caveat: we do not get the full decoupled equations for the modes ⇒
impossible to get a potential

• Asymptotical behaviour is enough to obtain boundary conditions for
numerical resolution



Similarities and differences QNMs from the first order system Numerical results

Numerical method

Decomposition onto Chebyshev polynomials 𝑇𝑛: 𝑓 =
𝑁

∑
𝑖=0

𝑓𝑖𝑇𝑖

ODE

𝑋 = 𝑡(𝑋0 … 𝑋𝑛)

d𝑋
d𝑟 = 𝑀(𝑟, 𝜔)𝑋

+ boundary conditions

Numerical system

𝑋 = 𝑡(𝑋0𝑖 … 𝑋𝑛𝑖)

𝐷𝑖𝑗𝑋𝑗 = 𝑀𝑖𝑗(𝜔)𝑋𝑗

+ boundary conditions

• Linear algebra problem: generalized eigenvalue problem
• Procedure: find 𝜔 for 𝑁 = 𝑁0, then 𝑁 = 𝑁1 > 𝑁0, keep the common values



Similarities and differences QNMs from the first order system Numerical results

BCL axial modes
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Figure 3: Axial QNMs found for the BCL solution with 𝜉 = 0.5, 𝑟𝑚 = 1, 𝜆 = 2.



Similarities and differences QNMs from the first order system Numerical results

BCL polar modes

• Impose gravitational mode b.c. at horizon and infinity
• Obtain modes even though the full system is not decoupled!
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Figure 4: Polar gravitational QNMs found for the BCL solution with 𝜉 = 10−4, 𝑟𝑚 = 1, 𝜆 = 2.



Similarities and differences QNMs from the first order system Numerical results

Isospectrality
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Polar perturbations

Axial perturbations

Figure 5: Tracking of the fundamental mode for axial and polar gravitational modes as 𝜉
varies.



Conclusion

• Computing quasinormal modes can be very difficult in modified theories of
gravity

• We propose a new technique: use the first-order system instead of looking
for Schrödinger-like equations

• A mathematical algorithm enables us to decouple the modes asymptotically,
which allows us to find their physical behaviour and obtain boundary
conditions

• We can use these boundary conditions to numerically compute the
quasinormal modes frequencies

• The method is theory-agnostic: it can be applied to any theory of gravity and
any background



Thank you for your attention!
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