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Overview

• Shifting the Perspective: From The Bulk to the Boundary 

• State-of-the-art Cosmological Bootstrap 

• The Cosmological Optical Theorem (COT) and Cutting Rules

• The Manifest Locality Test (MLT) 

• Bootstraping sample correlators in the EFT of single field inflation

• Concluding Remarks
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Shifting The Perspective: From the Bulk to the Boundary 
• In the past couple of decades, we have seen huge progress in the development of on-shell 

methods in the Scattering Amplitude Program. Cheung 2017, Benincasa 2013 

• The idea is to reconstruct the actual observable, namely the S-matrix, from the principles 
of Lorentz invariance, Locality and Unitarity. 

• These methods are especially useful in dealing with massless spinning particles, as the 
redundancies of gauge symmetries and diffeomorphisms can be abandoned altogether.

• some amazing upshots Benincasa-Cachazo 2007:
- YM=unique (low energy) interacting theory of massless spin-1 particles 
- GR= unique (low energy) interacting theory of a massless spin-2 particles 
- SUGRA= Unique (low every) interacting theory of a massless spin-3/2 and a massless spin-

2 particle McGady-Rodina 2014
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• The Chief observable in Cosmology: late time correlation functions (equivalently the 
Wave Function of The Universe) 

7Leading Gaussian Piece Perturbative Contributions from Interactions 
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• Correlators (for physical momenta) can be obtained by integration over the fields 
space weighted by the probability 
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This constant will be fixed by the normalisation condition on the wavefunction of the universe

so that
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The importance of the wavefunction comes from its use in calculating correlation functions,
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Z
d�̄

Z
d� ⇤[�, ⌘0] [�̄, ⌘0]h�, ⌘0|O(�̂(⌘0), ⇡̂(⌘0))|�̄, ⌘0i.

(A.34)

To address the possible dependence of O on ⇡̂ we introduce the identity, as an integral over ⇡,
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(A.35)

If we choose to define our operator O with all �̂ on the left and all ⇡̂ on the right (this is not

strictly necessary but simplifies the calculation) then we find
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(A.36)

Due to the exponential behaviour it is possible to rewrite the ⇡ dependence in O(�,⇡) in terms

of � derivatives, integration by parts then moves these derivatives to the wavefunction so that

performing the ⇡ integral gives a delta function that makes the � integral trivial and we have
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The expectation values of most interest are those involving products of the field �̂ at ⌘0 for which

we have
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To expedite the calculation of these correlation functions it is convenient to express the wave-

function in the form
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where the  0
n have been defined to be symmetric in their arguments. From this we have, to

leading order,
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Bulk Formalism Disadvantages: 

• Redundancies: Field Redef, Gauge Symmetries
• Nested time integrals(Complicated even at 

tree level in contrast with flat space)

K(k, ⌘) =
�+(k, ⌘)

�+(k, ⌘0)
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The Greens function is
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Having defined these terms, we can expand iS[�cl(�̄)] to linear order �� (and hence second order

in Lint). Performing any ⌘ integrals will then allow us to calculate the coe�cients  0
n. The

evaluation of S in this way can equivalently be defined diagrammatically where the function

K(k, ⌘) is called the bulk-to-boundary propagator and G(k, ⌘, ⌘0) is the bulk-to-bulk propagator

because any lines connecting the vertex at ⌘ to a boundary contribute K(k, ⌘) whilst internal

lines, which connect vertices at ⌘ and ⌘0 together, contribute a factor of G(k, ⌘, ⌘0).

We also note an important nuance in the evaluation of the action to second order. Whilst the

quadratic action will, by definition, receive no correction at first order in �� there is a second

order correction that arises due to the introduction of the interaction term

iS[�cl(�̄)] = iS2[�cl(�̄)] + iSint[�cl(�̄)] + iS2[��]. (A.65)

Expanding this final term gives
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Where the second equality follows due to S2 being quadratic in the fields and the final equality

results from integrating by parts and the definition of O in A.46. We can then use our equations

of motion to expand this as
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This is precisely equal to minus half the quadratic order term that we find from the expansion

of the interaction term,
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Therefore, in our diagrammatic computations we can account for this additional term by intro-

ducing a factor of one half for exchange diagrams.
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The Greens function is
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Has that ever been useful? 
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Boundary 
Principles? 



Sadra Jazayeri (IAP) 11

Simplicity vs Complexity
non-perturbative derivation of tensor non-gaussianity
from dS conformal symmetries  Maldacena-Pimentel 2011 

Boundary Bulk 

Conformal symmetry of dS on the boundary 
restricts the 3pt into only two possible 
shapes,

Infinitely many operators contribute to the 
graviton cubic couplings 
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Sadra Jazayeri (IAP) 12

non-perturbative derivation of soft theorems in 
single field inflation (Model Independent) 
Maldacena 2002, Creminelli-Zaldarriaga 2004, Creminelli-Norena-Simonovic 
2012, Hinterbichler-Hui-Khoury 2013

h⇣(~kL) ⇣(~kS) ⇣(~kS)i0 = P (kL)
1

k3S

@

@k3S

�
k3S P (kS)

�

<latexit sha1_base64="GoG/At2S3oOJ7U2JbuOkPc+tyqM=">AAACfnicbVFNb9QwEHXCV1m+FjhyMayALZQlaZHoBamCCwcOi8q2lTZLNPFOdq04TmRPKi1RfgZ/jBu/hQtOGiH6MZKl5zfzZuw3SamkpSD47fnXrt+4eWvr9uDO3Xv3HwwfPjqyRWUEzkShCnOSgEUlNc5IksKT0iDkicLjJPvU5o9P0VhZ6G+0KXGRw0rLVAogR8XDn5ECvVLIox9IMI5OUdRZE3/ZjnbOM4dXMabTvvwwHWetZJkaEHXY1Fl8+H2v6e9RCYYkqOYf4n1eYUrjDkc7bYu2o1ytaTsejoJJ0AW/DMIejFgf03j4K1oWospRk1Bg7TwMSlrU7TihsBlElcUSRAYrnDuoIUe7qDv7Gv7cMUueFsYdTbxj/1fUkFu7yRNXmQOt7cVcS16Vm1eU7i9qqcuKUIuzQWmlOBW83QVfSoOC1MYBEEa6t3KxBucZuY0NnAnhxS9fBke7k3Bvsvv13ejgY2/HFnvCnrExC9l7dsA+symbMcH+eE+9V95rn/kv/Df+27NS3+s1j9m58Pf/AjO3wT4=</latexit>

Boundary Bulk 

Symmetries generated by adiabatic modes 
non-linearly realized by 

For each single field model one has to repeat 
Maldacena’s computation for the Bispectra 

<latexit sha1_base64="O4W3678ANFv/24+YhjcqS772SCE=">AAAB7HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKphbaUDbbSbt0swm7E6GG/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TJJpDj5PZKLbITMghQIfBUpopxpYHEp4CEc3U//hEbQRibrHcQpBzAZKRIIztJLffQJkvWrNrbsz0GXiFaRGCjR71a9uP+FZDAq5ZMZ0PDfFIGcaBZcwqXQzAynjIzaAjqWKxWCCfHbshJ5YpU+jRNtSSGfq74mcxcaM49B2xgyHZtGbiv95nQyjqyAXKs0QFJ8vijJJMaHTz2lfaOAox5YwroW9lfIh04yjzadiQ/AWX14mrbO6d1F3785rjesijjI5IsfklHjkkjTILWkSn3AiyDN5JW+Ocl6cd+dj3lpyiplD8gfO5w/p0I7A</latexit>

⇣
<latexit sha1_base64="sSon4TGQtQXm7yOHU7NmUs27JUI=">AAACLHicbVDLSgMxFM34tr6qLt0Ei6AIZUYUXYpuXCpYFTql3EnvaDCTGZI70jr0g9z4K4K4UMSt32H6EJ8XQg7n3HOTe6JMSUu+/+KNjI6NT0xOTZdmZufmF8qLS2c2zY3AmkhVai4isKikxhpJUniRGYQkUngeXR/29PMbNFam+pQ6GTYSuNQylgLIUc3yYXiLBCGlnPfRekjYpigu2t2NzVC5QS34vPmXVg01RAoGnma54lf9fvG/IBiCChvWcbP8GLZSkSeoSSiwth74GTUKMCSFwm4pzC1mIK7hEusOakjQNor+sl2+5pgWj1PjjibeZ787Ckis7SSR60yAruxvrUf+p9VzivcahdRZTqjF4KE4V9xl00uOt6RBQarjAAgj3V+5uAIDgly+JRdC8Hvlv+BsqxrsVP2T7cr+wTCOKbbCVtk6C9gu22dH7JjVmGB37IE9sxfv3nvyXr23QeuIN/Qssx/lvX8A2N+olw==</latexit>

⇣ ! ⇣(x) + �+ �x.r⇣
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Tree level four-point function of gravitons 

Boundary Bulk 

? No Explicit computation 
to this date

?
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The Cosmological Bootstrap

• The back bones of the bootstrap approach: 
• Analytical Properties of the Correlators (after analytical continuations) 
• Polology of the analytically continued n-point functions 

External and Internal Energies



Special cases of three and four point functions
(for the most part, I will focus on tree level diagrams of (massless or cc) scalars on a 

fixed dS background with Bunch-Davis vacuum)

15

Exchange Diagram Contact Diagram



<latexit sha1_base64="NrqJN/MZFmxkM8XScdz3HJRdjJQ=">AAACSnicbVBLS8NAEN7Ud31VPXoJFqGCLUlR9CKIXjwqWhW6tUw2m3Zx83B3IpSQ3+fFkzd/hBcPinhxWyP4+mDgm29mmJnPS6TQ6DiPVmlsfGJyanqmPDs3v7BYWVo+13GqGG+xWMbq0gPNpYh4CwVKfpkoDqEn+YV3fTisX9xypUUcneEg4Z0QepEIBAM0UrcCp3tURGhTfaMwq/dyKnmAtTr1AwUsc/OsmddoAgoFyC4NU3oLKumLjatm/eiqWWQmodIs9YFufklbVIleHze6larTcEaw/xK3IFVS4LhbeaB+zNKQR8gkaN12nQQ72fAEJnlepqnmCbBr6PG2oRGEXHeykRW5vW4U3w5iZcK8NVK/T2QQaj0IPdMZAvb179pQ/K/WTjHY7WQiSlLkEftcFKTSxtge+mr7QnGGcmAIMCXMrTbrg/EQjftlY4L7++W/5LzZcLcbzslWdf+gsGOarJI1UiMu2SH75IgckxZh5I48kRfyat1bz9ab9f7ZWrKKmRXyA6XxD6rzs0M=</latexit>
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• Example: phi4 theory of  a conformally coupled field in dS

Time

<latexit sha1_base64="dUD0wGCvAc/q4842rV+TqQ3iRNc="></latexit>
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⌘60 (
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a=1 ka)(k1 + k2 + k3 + s)(k4 + k5 + k6 + s)
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• Example: phi4 theory of  a conformally coupled field in dS

<latexit sha1_base64="dUD0wGCvAc/q4842rV+TqQ3iRNc="></latexit>
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⌘60 (
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a=1 ka)(k1 + k2 + k3 + s)(k4 + k5 + k6 + s)

Time

<latexit sha1_base64="NfvMFNaViAyVLbthLSP+fBG7XyI=">AAACDXicbVDLSsNAFJ3UV62vqEs3wSpUxJLE50aounFZwT6gTcNkOmmHTCZhZiKU0B9w46+4caGIW/fu/BunbRbaeuDC4Zx7ufceL6ZESNP81nJz8wuLS/nlwsrq2vqGvrlVF1HCEa6hiEa86UGBKWG4JomkuBlzDEOP4oYX3Iz8xgPmgkTsXg5i7ISwx4hPEJRKcvW9K/fsst31OURpr2MP01LgWoeBa6s6PujYR0KJrl40y+YYxiyxMlIEGaqu/tXuRigJMZOIQiFalhlLJ4VcEkTxsNBOBI4hCmAPtxRlMMTCScffDI19pXQNP+KqmDTG6u+JFIZCDEJPdYZQ9sW0NxL/81qJ9C+clLA4kZihySI/oYaMjFE0RpdwjCQdKAIRJ+pWA/WhSkaqAAsqBGv65VlSt8vWadm8OylWrrM48mAH7IISsMA5qIBbUAU1gMAjeAav4E170l60d+1j0prTsplt8Afa5w9IlpnI</latexit>
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kT ! 0
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• Example: phi4 theory of  a conformally coupled field in dS
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Time
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 ̃4 =
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EL ! 0



Sadra Jazayeri (IAP) 19

Type of the 
Pole/Singularity

Diagram 
Type

Behavior around the Pole 

Total energy Pole Contact
Exchange
(interaction 

inserted at infinite 
past)

Partial Energy Poles

(s-channel) 

Exchange
(one interaction 

inserted at infinite 
past)

Collinear Singularity 

Non-Bunch 
Davis Vacuum

kT = k1 + k2 + ...+ kn ! 0
<latexit sha1_base64="XHi/aj8AHub80HngejASzTenyhY=">AAACAXicbVDLSsNAFL2pr1pfUTeCm2ARhEJIqqAboejGZYW+oA1hMp20QyaTMDMRSqkbf8WNC0Xc+hfu/BunbRbaemCYwzn3MnNOkDIqleN8G4WV1bX1jeJmaWt7Z3fP3D9oySQTmDRxwhLRCZAkjHLSVFQx0kkFQXHASDuIbqd++4EISRPeUKOUeDEacBpSjJSWfPMo8hvXke9WIr9asW1b37ynEsvxzbJjOzNYy8TNSRly1H3zq9dPcBYTrjBDUnZdJ1XeGAlFMSOTUi+TJEU4QgPS1ZSjmEhvPEswsU610rfCROjDlTVTf2+MUSzlKA70ZIzUUC56U/E/r5up8MobU55minA8fyjMmKUjTuuw+lQQrNhIE4QF1X+18BAJhJUuraRLcBcjL5NW1XbP7er9Rbl2k9dRhGM4gTNw4RJqcAd1aAKGR3iGV3gznowX4934mI8WjHznEP7A+PwBJDGUww==</latexit>

EL = k1 + k2 + s

ER = k3 + k4 + s
<latexit sha1_base64="X7GIsAYM9M7hlZZY1pxsEcq1r2g=">AAACFHicbVBNS8NAEN3Urxq/oh69LBZFKJSkLehFKErBg4cqthaaEDbbbbtkswm7G6GU/ggv/hUvHhTx6sGb/8Zt2oO2Phh4vDfDzLwgYVQq2/42ckvLK6tr+XVzY3Nre8fa3WvJOBWYNHHMYtEOkCSMctJUVDHSTgRBUcDIfRBeTvz7ByIkjfmdGibEi1Cf0x7FSGnJt4p1/xoen4e+Uwz9clG6LnR5zNMoIMKs+7eZV9FetSh9q2CX7AxwkTgzUgAzNHzry+3GOI0IV5ghKTuOnShvhISimJGx6aaSJAiHqE86mnIUEemNsqfG8EgrXdiLhS6uYKb+nhihSMphFOjOCKmBnPcm4n9eJ1W9M29EeZIqwvF0US9lUMVwkhDsUkGwYkNNEBZU3wrxAAmElc7R1CE48y8vkla55FRK5ZtqoXYxiyMPDsAhOAEOOAU1cAUaoAkweATP4BW8GU/Gi/FufExbc8ZsZh/8gfH5A6Vbm3E=</latexit>

Here the order of the pole p must be positive (see (2.26) for p = 0) and is related to the
mass dimensions D↵ of the interactions responsible for the correlator by the expression

p = 1 +
X

↵

(D↵ � 4) . (1.5)

• Rule 4: For the bispectrum of three identical fields, the trimmed bispectrum must be
symmetric under permutations if the polarization factor is. Any symmetric polynomial
can be written in a unique way in terms of sums and products of Elementary Symmetric
Polynomials (ESP). Hence

BXXX =
Poly�(kT , e2, e3)

Poly6+↵tot+�(kT , e2, e3)
, (1.6)

where

e1 ⌘

3X

a=1

ka = kT , e2 ⌘

3X

a<b

kakb , e3 ⌘ k1k2k3 . (1.7)

• Rule 5: Locality and the choice of the Bunch-Davies vacuum restrict the denominator of
the trimmed bispectrum to take the following form

BXY Z =
Poly3m+p�6�↵tot

(k1, k2, k3)

k
p
T e

m
3

. (1.8)

where p is determined by (1.5) and in general m � 3. For the symmetry breaking pattern
of the E↵ective Field Theory (EFT) of inflation [29, 30], one has m = 3. We argue that
a necessary condition for locality is simply

lim
q!0

Bn(q,k1, . . . ,kn)

P (q)
< 1 , (1.9)

where Bn is an n-point correlator and P (q) is the power spectrum of the soft field.

• Rule 6: In single-clock cosmologies, correlators of curvature perturbations and gravitons
are defined by the soft theorems they must obey. Explicit expressions for soft scalars and
soft gravitons are given in (2.61) and (2.64), respectively.

1.2 Summary of the results

Using these rules we were able to obtain the following results

• The h���i and h�⇣⇣i bispectra in canonical slow-roll inflation follow straightforwardly
from the Bootstrap Rules above (quadratic order in derivatives).

• We re-derived the h⇣⇣⇣i bispectrum in canonical single-field inflation, discussing how its
associated amplitude breaks boosts at O(✏). In two cases, we were able to fix all but a
part of one free coe�cient in the bootstrap Ansatz: (i) at finite ✏ and to leading order in
slow roll and (ii) in the limit ✏ ! 0 and to next-to-leading order (NLO) in slow roll. In
the more general non-canonical model these are indeed free parameters.

• We derived the h⇣⇣⇣i bispectrum to any order in derivatives in the EFT of inflation, (4.44).
As an example, we discuss explicitly the case of up to cubic order in derivatives, (4.49).

• We re-derived the h⇣��i bispectrum in canonical slow-roll inflation. To this end we made
use of an ad-hoc model of the flat-space amplitude.

– 4 –

Maldacena-Pimentel 2011, Raju 2012, 
Pajer 2020, Goodhew-SJ-Pajer 2020
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Baumann-Duaso Pueyo,-Joyce-Lee-Pimentel 2020, 
Pajer 2020, Goodhew-SJ-Pajer 2020
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 n(k1, ..,kn) = (k1...kn)
An(1, ..., n)
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There are almost always subleading 
total and partial energy poles

We need more inputs!
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Other Boundary Inputs?

de Sitter Symmetries SO(4,1)

Boostless Bootstrap

Arkani-Hamed, Maldacena 2014
Arkani-Hamed, Baumann, Lee, Pimentel 2018 

Baumann, Duaso Puyeo, Joyce, Lee, Pimentel 2019
Baumann-Duaso Pueyo,-Joyce-Lee-Pimentel 2020

Pajer, 2020
SJ, Pajer, Stefanyszyn 2021

Sleight, Taronna 2021, 2020, 2019, 2018 

AdS to dS/Mellin Space 

Cosmological Polytopes

Benincasa, L. McLeod, Vergu 2020
Benincasa 2019

Arkani-Hamed, Benincasa 2017, 2018 

dS Correlators from
Flat Space Correlators

Baumann, Chen, Joyce, Lee, 
Pimentel 2021

<latexit sha1_base64="d0cDCZqGn6fa5QSQS3P/C2+nA3w=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBRSmJKLos6kJ0U8E+oA1hMp20QycPZiZKif0UNy4UceuXuPNvnLRZaOuBezmccy9z53gxZ1JZ1rdRWFpeWV0rrpc2Nre2d8zybktGiSC0SSIeiY6HJeUspE3FFKedWFAceJy2vdFl5rcfqJAsCu/VOKZOgAch8xnBSkuuWW64rIpusnZVRbcuQ65ZsWrWFGiR2DmpQI6Ga371+hFJAhoqwrGUXduKlZNioRjhdFLqJZLGmIzwgHY1DXFApZNOT5+gQ630kR8JXaFCU/X3RooDKceBpycDrIZy3svE/7xuovxzJ2VhnCgaktlDfsKRilCWA+ozQYniY00wEUzfisgQC0yUTqukQ7Dnv7xIWsc1+7Rm3Z1U6hd5HEXYhwM4AhvOoA7X0IAmEHiEZ3iFN+PJeDHejY/ZaMHId/bgD4zPH/jFkd4=</latexit>

Pi, Ji, D,Ki
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Recursive Bootstrap

All Contact Terms
For Manifestly Local Theories

Massless external Fields: 
Rational Ansatz for contact terms 

Manifest 
Locality

Unitarity
+Manifest 
LocalitySingle Exchange Diagrams 

Up to Contact Terms

More complicated exchange
Diagrams 



• Our Setup: probe scalar field in de Sitter space. The setup is 
similar to the one in the EFT of single field inflation in the 
decoupling limit Cheung et al 2008 (except that here we do not impose 
non-linearly realized boost symmetries while we assume exact scale 
invariance).
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The Cosmological Optical Theorem (COT)
• In flat space, perturbative unitarity is encoded in the S-matrix optical theorem which formally 

reads, 

• In Cosmology, a similar optical theorem follows from, 
o Reality of the couplings 

o The Hermitian Analyticity of the Bulk-to-Boundary Propagator

o The Factorization Property of the Bulk-to-Bulk Propagator 

24

and (2.27) are intimately related to the wavefunction coe�cients  n(k1, . . . ,kn) which similarly

only incorporates positive frequencies (inside the bulk-to-boundary propagators) at the contact

level. To see this, recall that the wavefunction coe�cients are given by

 
0
n(k1, . . . ,kn) = �irngn

Z
⌘0

�1(1�i✏)

d⌘ a(⌘)4�
P

sa Fn


ka · kb

a2(⌘)

� nY

a=1

@
sa
⌘ K↵a(ka, ⌘) . (2.28)

It will prove useful to have an alternative form for  n by absorbing the i✏ part of the contour

integral into the argument of the bulk-to-boundary propagators, and expressing the argument of

 n in terms of the norm of momenta ka and the angles between every pair of them, i.e.

 
0
n(k1, . . . , kn, k̂a · k̂b) = �irngn

Z
⌘0

�1
d⌘ a(⌘)4�

P
sa Fn


ka · kb

a2(⌘)

� nY

a=1

@
sa
⌘ K↵a(ka � i✏, ⌘) , (2.29)

where k̂a ⌘ ka/ka. Therefore, the relationship between the matrix element in (2.26) and  n is

h{k,↵}n|

Z
⌘0

�1(1�i✏)

d⌘Hint(⌘) |0i = �
i

rn
 
0(k1, . . . , kn, k̂a · k̂b)

nY

a=1

�
+(ka, ⌘0) . (2.30)

As (2.27) is not the complex conjugate of (2.26), we need two additional results to relate (2.27)

to  n:

The bulk-to-boundary propagator in de Sitter obeys the following property:

K
⇤
�(z, ⌘) = K�(�z

⇤
, ⌘) , Im(z) < 0 . (2.31)

Proof. For a scalar field with an arbitrary mass (2.2), using (2.4) and (2.18) we find

K�(z, ⌘) =
(�⌘)3/2H(2)

⌫ (�c�z⌘)

(�⌘0)3/2H
(2)

⌫ (�c�z⌘0)
. (2.32)

By its definition, ⌫ =
q

9

4
�

m2
�

H2 is either real or pure imaginary, i.e. ⌫⇤ = ±⌫. We also

use the principal value for the Hankel function H
(2)(x) which has a branch cut along the

negative real axis, x 2 [�1, 0).

Using the integral representation of the Hankel function of the second kind over the lower

half complex plane [36], one obtains,

H
(2)

⌫ (x) = �
exp

�
i

2
⌫⇡

�

i⇡

Z
+1

�1
dt exp(�ix cosh t� ⌫t) , Im(x) < 0 , (2.33)

and therefore

H
(2)⇤
⌫ (x) = � exp(�i⇡⌫)H(2)

⌫ (�x
⇤) , ⌫ 2 R , (2.34)

H
(2)⇤
⌫ (x) = �H

(2)

⌫ (�x
⇤) , i⌫ 2 R ,

for Im(x) < 0, hence (2.31).

12

Kφ(k, η) =
φ+(k, η)

φ+(k, η0)
= (1− ikη) exp(+ikη)

ImG(s, ⌘) = 2P (s, ⌘0) ImK(s, ⌘) ⇥ ImK(s, ⌘0) .
<latexit sha1_base64="3PrczWrLCCCepkiiCg+iQtienSE="></latexit>
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• For contact diagrams COT takes the following form,  

For scale invariant correlators of massless fields this is trivially satisfied 
(when there are IR-infinities e.g. with log branch cuts, it relates the coefficient of 
the logarithm to the imaginary part of the wfc)
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• For both massless and conformally-coupled fields with IR-finite contact interactions,  n(ka, k̂a·

k̂b) is analytic in the whole complex plane of energies (up to poles), namely for ka 2 C,
and the analytical continuation to ka < 0 is straightforward in these cases. For other

massive fields or when IR-divergent interactions are present, there is a natural analytical

continuation of  n(ka, k̂a · k̂b) to the lower-half n-hyperplane of complex energies (defined

via Cn�
⌘ {ka, Im(ka) < 0}), which is given by

 
0
n(ka, k̂a · k̂b) =

� irngn

Z
⌘0

�1
d⌘ a(⌘)4�

P
sa Fn


ka · kb

a2(⌘)

� nY

a=1

d
sa

d⌘sa
K↵a(ka, ⌘) , Im(ka) < 0 . (2.35)

This continuation is particularly useful when we approach the negative real energies from

below, i.e.  n(�|ka|� i✏, k̂a · k̂b) with ✏ > 0. For Im(ka) < 0, the integral on the right-hand

side of (2.35) is convergent thanks to the asymptotic behaviour of K(k, ⌘), namely

lim
⌘!�1

Ka(k, ⌘) / e
+iRe(k)⌘

e
�Im(k)⌘

. (2.36)

Therefore,  n(ka) can diverge only when ka 2 R� (notice that, by definition, (2.29) is

regular at ka 2 R+). This can happen in two cases: (i) when IR divergences are present,

leading to a branch cut at kT < 0, and/or (ii) when at least one external field (e.g. with

momentum ka) is massive, for which the associated mode function has a branch cut at

ka < 0.

By virtue of these two properties, for ka 2 R+, we can express the second matrix element in

(2.25) in terms of  n as

h{k,↵}n|

Z
⌘0

�1(1�i✏)

d⌘H
†
int
(⌘) |0i =

i

rn

h
 
0
n(�ka � i✏, k̂a · k̂b)

i⇤ nY

a=1

�
+(ka, ⌘0) , (2.37)

where  n(�ka � i✏, k̂a · k̂b) is now defined by the analytical continuation in (2.35). Notice that

for conformally coupled and massless scalars (with IR-finite interactions) the �i✏ in argument of

 n(�ka � i✏) is unnecessary, as the limit is smooth.

So finally, we can write (2.25) for a contact diagram as

 
0
n(ka, k̂a · k̂b) +

h
 
0
n(�ka � i✏, k̂a · k̂b)

i⇤
= 0 , ka 2 R+

. (2.38)

Equipped with the analytical continuation to ka 2 Cn�, we can easily generalize this optical

theorem to

 
0
n(ka, k̂a · k̂b) +

h
 
0
n(�k

⇤
a, k̂a · k̂b)

i⇤
= 0 , ka 2 Cn�

. (2.39)

Notice that it is only the energies ka that are analytically continued, while the angles k̂a · k̂b are

left unchanged. This form of the optical theorem is the cosmological wavefunction equivalent of

13
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Z
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• For single exchange diagrams COT appears as cutting rules for wfc’s,     
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See H Goodhew-SJ-G Lee-E Pajer 2021 for various
extensions to (i) other accelerating backgrounds 
(ii) Higher order diagrams
(iii)external spinning fields   

Figure 2: A diagrammatic representation of the optical theorem for exchange diagrams from a bulk

perspective. The straight lines represent � propagators while the wiggly lines are � propagators.

Before relating the above matrix elements to  �

4
, let us first directly compute the right-hand

side of (2.56), after stripping o↵ the momentum conserving delta function,
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In the last equality, the time integral representation is written in terms of the cubic wavefunction

coe�cient  0���
A,B

,. These are simply the contribution of each cubic interaction in (2.55) to the

cubic part of the wavefunction (2.8). Due to the conservation of spatial momenta,  0���
A,B

is only a

function of the norms, ka, of the momenta. Furthermore, above we had to employ the analytical

continuations of  A,B to negative energies in the � field10. The final piece of our puzzle will be a

relationship between the sum hk1, ..., |�UgAgB |0i+hk1, ..., |�U
†
gAgB |0i and the quartic wavefunction

coe�cient  �

4
. Hereafter we use  s

4
to refer to the s-channel contribution to  �

4
. Let us also denote

10We could have also used, for example, �[ ���
A (�k1,�k2, s)]

⇤ instead of  0���
A (k1, k2,�s) using the optical

theorem for contact terms.
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• Similar results hold for arbitrary tree diagrams (dubbed “cutting rules”) 

• The COT extends to loop diagrams and it involves diagrams with multiple cuts
E Pajer, S Melville 2021

• It  applies to arbitrary accelerating backgrounds as long as there is a Bunch-
Davis initial condition Goohew-Lee-SJ-Pajer 2021



Leading and Subleading Partial Energy Poles from the COT 
• Around 𝐸! = 0 , the singular behaviour of 𝜓" is dictated by the RHS of the COT as the second 

terms is analytic there, 

• The analytic part above is not totally arbitrary: it should cancel the collinear singularities in 𝑅#
• The Laurent expansion around 𝐸! = 0 should be consistent with the one around 𝐸$ = 0
• Terms that are regular in partial energies cannot be constrained by COT

28

 4(ka, s)  4(�ka, s)  3(k1, k2, s)  3(k1, k2,�s)

(partial energy pole)EL = 0 X 7 X 7

(collinear pole)EL = 2s 7 X 7 X
(total energy pole)EL + ER = 2s X X 7 7

Table 1: Singularities of the elements apearing in the 4-point exchange COT. The same applies

to ER singularities as well with the substitution  3(k1, k2, s) !  3(k3, k4, s).

What about the analytical part of the expansion? It might appear that it is not constrained by

unitarity at all, precluding us from bootstraping the full 4-point function. This is, however, a

rushed judgment as we have not yet used the full knowledge of the allowed poles. Recall that

 4 must be regular in the collinear limit, i.e. ER = 2s (or EL = 2s), i↵ we keep EL (or ER)

finite. However, the coe�cients of its Laurent expansion will generically inherit such spurious

poles from RHS which requires the non-singular part of  4 to come to the rescue and cancel

these bad singularities.

Let us see how this happens in a concrete example. Consider the 4-point function of a massless

scalar in flat space arising from the cubic interaction �3. It is given by

 4 =
1

EL ER (EL + ER � 2s)
=

1

EL

1

ER(ER � 2s)
+

X

n�1

(�1)En�1

L

ER (ER � 2s)n+1
. (5.10)

We see that by expanding the total energy pole around EL = 0 one generates an infinite number

of terms analytic in EL that are singular at the collinear limit, and yet the full 4-point is free of the

latter singularity. There is still one more property that the Laurent expansion should satisfy: it

should reproduce a similar expansion around ER = 0. Ensuring the cancellation of spurious poles

and the correct Laurent expansion around each partial energy pole turns out to be very restrictive.

It is very natural to then seek an integrated approach in order to satisfy these properties all at

once. The most pedestrian way forward is to insert the most generic Ansatz for  4, namely

 4 =
Poly2+4m(EL, ER, k1k2, k3k4, s)

Em

L
Em

R
(EL + ER � 2s)2m�1

, (5.11)

into the COT and fix the free coe�cients appearing in the polynomial in the numerator as much

as possible (here the degree of the total energy pole is fixed by the power counting argument

of [24], and Polyl is a polynomial of energy dimension l). The downside of this approach is the

proliferation of parameters needed to write down such an Ansatz as we increase the degree of

the singularity of the vertices. We instead take a di↵erent approach and bootstrap  4 using

the miracles of Cauchy’s integral theorem. The trick is to shift the arguments of  4 by a single

complex variable z and subsequently arrive at a shifted four-point function  ̃4(z) such that:

(a)  ̃4(z = 0) =  4,

10As compared with (2.25), here we used the contact COT to write  ⇤
3(�EL + 2s, k1k2, s) = � 3(EL �

2s, k1k2,�s), as in [27].
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this section. The allowed singularities are at

EL = k1 + k2 + s = 0 , ER = k3 + k4 + s = 0 , kT = k1 + k2 + k3 + k4 = 0 . (5.1)

To make the following expressions algebraically simpler, we make the following change of variables

in the arguments of the 4-point function and its 3-point subdiagrams:

 4 : (k1, k2, k3, k4, s) ! (EL, ER, k1k2, k3k4, s) , (5.2)

 L

3 : (k1, k2, s) ! (EL, k1k2, s) , (5.3)

 R

3 : (k3, k4, s) ! (ER, k3k4, s) . (5.4)

Notice that with this new set of variables, the total energy is not an independent quantity but is

given by kT = EL +ER � 2s. It is straightforward to verify that  4 and  3 retain their rational

format upon performing this change of variables. Now, near the EL = 0 pole,  4 admits the

Laurent series

 4 =
X

0<nm

Rn(ER, k1 k2, k3 k4, s)

En

L

+ O(E0

L) , (5.5)

where m is an integer that encodes the degree of the leading pole. Notice that we always sym-

metrise between the left and right vertices and so the same expansion holds near the ER = 0 pole,

upon permuting EL with ER and k1k2 with k3k4. We want to prove that unitarity fully fixes

the coe�cients of this expansion except for the last analytical part. Writing the Cosmological

Optical Theorem with the new kinematical variables we have10

 4(EL, ER, k1k2, k3k4, s) +  4(�EL + 2s,�ER + 2s, k1k2, k3k4, s) = RHS (5.6)

where for future convenience we have denoted by RHS the right-hand side of this COT

RHS = P (s) ( 3(EL, k1k2, s) �  3(EL � 2s, k1k2,�s)) (5.7)

⇥ ( 3(ER, k3k4, s) �  3(ER � 2s, k3k4,�s)) .

The key observation is that the second term on the left-hand side of this expression is analytic

around EL = 0, and so can be dropped in the limits EL ! 0 or ER ! 0. This implies that

the right-hand side side of the COT determines all of the leading and sub-leading partial energy

poles Rn of  4. This is more information than what is provided by the factorization results

recently employed in [21], which only fix the leading singularity. For reference, we summarise

the singularities of the components of the COT in Table 5.1. We present the singularities that

involve EL but those for ER are again the same with appropriate change of arguments in  3. The

COT identifies the integer m with the degree of the total energy pole in the 3-point function i.e.

lim
EL!0

 3 /
1

Em

L

, m = dimension of the vertex � 3 . (5.8)

Moreover, the COT gives the coe�cients Rn in terms of the partial derivatives of its right-hand

side with respect to the partial energy EL as

Rn(ER, k1k2, k3k4, s) =
1

(m � n)!

@m�n

@Em�n

L

[Em

L RHS(EL, ER, k1k2, k3k4, s)]EL=0
. (5.9)
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The Manifest Locality Test (MLT)
• We have already implemented a weak version of Locality within our polology: a diagram should 

have no pole other than the total energy and subdiagram poles. e.g. negative powers of external 
energies cannot appear in 𝜓#

• But this is not enough. Consider the following non-local interaction,

Nevertheless, the resulting cubic contact term will still be regular at 𝑘% = 0, 
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• Such secretly non-local contact terms can be excluded by looking at the singularities 
of the exchange diagram formed by gluing two copies of them,

• The absence of spurious pole in 𝑠 = 0 for the 4pt function demands the following, 

• This is not satisfied by the previous example 

30



• A few remarks about the MLT: 
1) It can be straightforwardly generalized to any diagram,

2) Same result can be obtained without looking at COT by directly looking at the bulk 
expression for 𝜓# and that, 

so when the vertices are manifestly local, the MLT will follow. 

3) It was crucial to keep the external and internal energies fixed when sending 𝑘% → 0 , 
therefore MLT is defined only for the analytically continued 𝜓#
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functions) must satisfy for the theory to be manifestly local, namely involve only local

interactions of the dynamical fields4:

@

@kc

 n(k1, ..., kn; {p}; {k})
���
kc=0

= 0 , 8c = 1, . . . , n , (1.1)

where ka with a = 1, . . . , n are the n eternal momenta with “energies” ka = |ka|, {p} denotes

possible internal energies if  n arises due to an exchange process and {k} denotes possible

contractions of momenta and polarisation vectors. Here the derivative is taken with all other

variables kept fixed. This condition is satisfied, for example, for interactions to any order in

derivatives of any number of (massless) inflatons. However, this condition may be violated

in the presence of massless spinning particles, where the solution of the gauge constraints

may induce non-manifestly local interactions involving inverse Laplacians, as it is the case

for general relativity [30]. We name this constraint the Manifestly Local Test (MLT). In

Section 3.3 we discuss analogous conditions for fields of arbitrary masses. For conformally

coupled scalars the condition is much weaker than for their massless counterparts.

• We show in Section 4 that the MLT is a surprisingly powerful computational tool to derive

wavefunction coe�cients within the recently proposed boostless bootstrap approach [29]. As

the name suggests, this approach makes no assumption about invariance under de Sitter

boosts and can therefore be applied to most models in the literature. Using a set of

Bootstrap Rules that enforce the correct singularities, symmetries and the Bunch-Davies

vacuum, one can easily derive a simple bootstrap Ansatz for general bispectra. Without any

reference to soft theorems (which conversely were invoked in [29]), we show here that the

Manifestly Local Test determines precisely the scalar bispectra generated by the E↵ective

Field of Inflation to all orders in derivatives and excludes those gravitational interactions

that are not manifestly local (and also slow-roll suppressed). We prove that the number of

possible manifestly local scalar bispectra matches the number of independent cubic scalar

amplitudes plus one. The additional bispectrum corresponds to the only allowed manifestly

local field redefinition.

• In Section 5 we derive for the first time partial-energy recursion relations as a tool to boot-

strap exchange diagrams from lower-point vertices and show this explicitly for exchange

4-point wavefunction coe�cients. To this end, we perform complex shifts of the partial

energies of a given diagram, which are the sums of the energies flowing into any given sub-

diagram, and are the only allowed singularities at tree-level together with the total energy.

The residues of all the poles in the complex shift are fully fixed by the Cosmological Op-

tical Theorem [32] and its perturbative manifestation in the recently derived Cosmological

Cutting Rules [36, 37]. This is in contrast to the factorization limits discussed for exam-

ple in [26], which fix only the leading order singularities. For example, for the exchange

scalar 4-point wavefunction coe�cient  4 (related to the trispectrum) our bootstrap result

4This in particular excludes gravitation interactions during inflation since interactions with inverse Laplacians,

which violate manifest locality, do appear after integrating out the non-dynamical fields (the lapse and the shift in

the ADM formalism) [30].

4

k3k2k1 k4 k5 k6

Sp1 p2

9

Figure 2: Triple exchange 6-point diagram for scalars cut into the product of two 4-point exchange

diagrams.

where in the physical domain of momenta we have

S = |S| = |

m�1X

a=1

ka| = |

m+n�2X

b=m

kb| . (2.27)

These expressions can be simplified for massless and conformally coupled fields, in the absence

of IR-divergences. In such cases there is no branch-cut, and so we can freely assume that all

the energies are real: �k⇤
a = �ka (in general the negative real axis is always approached from

the lower-half complex plane). In this paper it will be important to go beyond single exchange

diagrams and, as will be elaborated on in [36], the single-cut rules carry over to such cases. In

Section 5.3 we will need the Cosmological Optical Theorem (COT) that relates a triple exchange 6-

point function of a massless field to the product of its constituent 4-point exchange sub-diagrams,

see Figure 2. The resulting COT reads

 6(k1, . . . k6; p1, S, p2) +  ⇤
6(�k1, · · · � k6;�p1, S,�p2) =

P (S) [ 4(k1, . . . , k3, S; p1) +  ⇤
4(�k1, . . . ,�k3, S;�p1)]

[ 4(k4, . . . , k6, S; p2) +  ⇤
4(�k4, . . . ,�k6, S;�p2)] . (2.28)

In contrast to (2.26), here we have considered real energies and have used scale invariance to flip

the sign of the internal energy that is being cut, rather than the other energies. For simplicity,

we have also dropped possible dependence on inner products. We refer the reader to [32, 36] for

more details.

3 A Manifestly Local Test (MLT) for n-point functions

In this section we introduce a manifestly local test (MLT) that must be satisfied by n-point

functions arising from manifestly local theories. We remind the reader that manifestly local in-

teractions do not contain any inverse Laplacians (see [29] for a recent discussion in the context of

cosmology and for additional necessary conditions for locality). For example, �02@2� is a mani-

festly local interaction, whereas �02@�2� is not. As we shall see, the MLT is a necessary condition

12

by dividing the final term up into a ✓(⌘�⌘0) part and a ✓(⌘0
�⌘) part. Note that here we include

the � subscript to indicate that this discussion applies to massless mode functions. For any finite

time ⌘ we have

lim
S!0

K�(⌘, S) = 1 +
1

2
(c�S⌘)

2 +
i

3
(c�S⌘)

3 + O(S5), (3.2)

lim
S!0

ImK�(⌘, S) =
1

3
(c�S⌘)

3 + O(S5), (3.3)

and so any potential S = 0 singularities due to the power spectrum are cancelled by the factors of

ImK�(⌘, S) and ImK�(⌘0, S). Note that the final term in (2.17), which enforces the vanishing of

G on the boundary, is crucial since it is this term that ensures that each term in (3.1) contains a

factor of Im(K). One may worry about the behaviour of the bulk integrals at ⌘ = �1. However,

this limit could only a↵ect our argument if there were exponential factors containing eiS⌘ which

would yield additional inverse powers of S. However, no such exponents occur: all exponents

contain a sum of energies which is finite in the limit S ! 0 as long as the other energies are

kept fixed. We therefore conclude that in manifestly local theories, exchange diagrams are not

singular as an internal energy is taken to zero8.

Let’s now consider the consequences of this result for the n-point functions that can contribute

to an exchange diagram. Consider the COT given in (2.26) which is valid for a single-cut. The

left-hand side of this equation is regular as S ! 0, as we have just argued, and so the right-hand

side must be too. Given that P (S) ⇠ 1/S3, this tells us that the product
⇥
 n(k1, ..., kn�1, S; {p}; {k}) +  ⇤

n(�k⇤
1, ...,�k⇤

n�1, S;�{p};�{k})
⇤

⇥
⇥
 m(kn+1, ..., kn+m�1, S; {p}; {k}) +  ⇤

m(�k⇤
n+1, ...,�k⇤

n+m�1, S;�{p};�{k})
⇤
, (3.4)

must cancel this 1/S3 contribution from the power spectrum. Now, given that (2.26) holds for

all diagrams individually, we can take m = n and consider an exchange diagram with the same

sub-diagram on each side of the cut. For IR-finite  n that satisfy the contact COT, we can keep

the ka real and then

 n(k1, ..., kn�1, S; {p}; {k}) +  ⇤
n(�k⇤

1, ...,�k⇤
n�1, S;�{p};�{k})

= n(k1, ..., kn�1, S; {p}; {k}) �  n(k1, ..., kn�1,�S; {p}; {k}), (3.5)

by scale invariance. This is odd in S, and so must its Taylor expansion around S = 0. Given

that the square of this quantity has to cancel the S�3 pole in the power spectrum, and that at

tree-level there are only integer powers of momenta, we must require

@

@S
 n(k1, ..., kn�1, S; {p}; {k})

���
S=0

= 0 , (3.6)

to ensure that the right-hand side of the COT is regular at S = 0. To emphasise that the energy

S is now external, after the cut, we write this constraint as

@

@kc

 n(k1, ..., kn; {p}; {k})
���
kc=0

= 0 , (�+ = 3, e.g. massless scalar or graviton) , (3.7)

8We thank Austin Joyce for discussions about the absence of such singularities.

14



Bootstraping Contact Diagrams using the MLT

• Unitarity (COT) is trivially satisfied thanks to scale invariance.
• Step I: 3pt should be a rational function of three external energies and be symmetric under the 

permutation of the external legs (aka Bose symmetry). There should be no pole other than the 
total energy (Bunch Davis vacuum). p is an integer that characterizes the highest degree of the 
pole. 
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Notation and conventions We work with the mostly positive metric signature (� + ++).

The 3d Fourier transformation is defined as

f(x) =

Z
d3
k

(2⇡)3
f(k) exp(ik · x) ⌘

Z

k
f(k) exp(ik · x) , (1.8)

f(k) =

Z
d3
xf(x) exp(�ik · x) ⌘

Z

x
f(x) exp(�ik · x) . (1.9)

We use bold letters to refer to vectors, e.g. x for spatial co-ordinates and k for spatial momenta,

and we write the magnitude of a vector as k ⌘ |k|. We will sometimes refer to these objects

as “energies”. We will use i, j, k, . . . = 1, 2, 3 to label the components of SO(3) vectors, and

a, b, c = 1, . . . , n to label the n external fields. For wavefunction coe�cients and cosmological

correlators we use  n and Bn respectively:

 n(k1, . . . ,kn) ⌘  0
n(k1, . . . ,kn)(2⇡)

3�3(
X

ka) , (1.10)

hO(k1) . . .O(kn)i ⌘ hO(k1) . . .O(kn)i
0(2⇡)3�3(

X
ka)

⌘ Bn(k1, ...,kn) (2⇡)
3�3

⇣X
ka

⌘
, (1.11)

and we will drop the primes on  n when no confusion arises. We will also use a prime to denote a

derivative with respect to the conformal time e.g. �0 = @⌘�. When computing exchange 4-point

functions we use the following variables

s ⌘ |k1 + k2| , t ⌘ |k1 + k3| , u ⌘ |k1 + k4| , s2 + t2 + u2 =
4X

a=1

k2

a . (1.12)

We define the “total energy” kT of an n-point function as

k(n)

T
⌘

nX

a=1

ka . (1.13)

We will often drop the superscript “(n)” in kT when it is clear from the context. We define the

s-channel “partial energies” in a 4-point exchange diagram as

EL = k1 + k2 + s , ER = k3 + k4 + s . (1.14)

We denote the n external momenta of a tree-level Feynman diagram by ka (a = 1, .., n) while

referring to its I internal lines by pb (b = 1, ..., I), apart from for 4-point exchanges where we use

the more familiar notation in (1.12). We will often use S as the energy of an internal line that

is “cut”. The internal momenta are fixed with the knowledge of ka’s due to the conservation

of spatial momentum at each vertex. The symbols ak and a†
k refer to annihilation and creation

operators, respectively. The flat space amplitude will be written as

S � 1 ⌘ i An(p
µ

1
, . . . pµ

n) (2⇡)
4 �4

⇣X
pµ

a

⌘
, (1.15)

with all the four-momenta defined to be ingoing. We write symmetric polynomials in terms of

elementary symmetric polynomials (ESP). For symmetric polynomials in three variables, k1, k2

and k3, the elementary symmetric polynomials are

k(3)

T
= e1 = k1 + k2 + k3, e2 = k1k2 + k1k3 + k2k3, e3 = k1k2k3. (1.16)

6

loss of generality we apply the manifestly local test (MLT) to k3 only, and require

@

@k3

 (p)

3
(k1, k2, k3)

���
k3=0

= 0 , (4.1)

where the superscript (p) denotes the degree of the leading kT pole which is equal to the largest

number of derivatives in the EFT expansion [29] (unless this vanishes by symmetry, as e.g. in

DBI [48]). We have dropped the ��� subscript since it will be clear throughout this section that

we are considering a scalar self-interaction. We will now use the MLT to bootstrap all 3-point

functions for any p.

The Boostless Bootstrap Rules of [29] enforce the following properties:

• Homogeneity, isotropy and scale invariance (but no assumption about dS boosts): this

enforces

 n =
X

contractions

h
✏h1(k1)✏

h2(k2)✏
h3(k3)k

↵1
1
k

↵2
2
k

↵3
3

i
 ̃n (4.2)

=
X

contractions

(polarization factor) ⇥ (trimmed wavefunction coe�cient) . (4.3)

Note that for scalars the trimmed wavefunction  ̃n coincides with  n.

• �+ = 3 de Sitter mode functions, e.g. massless scalars and gravitons: this enforces that

the trimmed wavefunction  ̃n is a rational function with overall momentum scaling k3.

• The amplitude limit: this enforces the residue of the highest kT -pole to be fixed in terms

of a corresponding amplitude [13,46] (see [32] for a derivation and an explicit formula).

• Bose symmetry: this enforces invariance under permutations of the momenta of identical

fields.

• Locality and the Bunch-Davies vacuum: this enforces that the only allowed singularity for

contact diagrams is in the total energy, 1/kp

T
with p = 1 �

P
A
(�A � 4) where the sum is

over all vertices (only one for a 3-point function) and �A is their mass dimension (three

plus the number of derivatives for cubic bosonic interactions). This is necessary but not

su�cient for locality.

These Bootstrap Rules allows us to write a relatively simple bootstrap Ansatz. In particular, the

cubic wavefunction coe�cient of three scalars must take the form

 (p)

3
(k1, k2, k3) =

1

kp

T

b p+3
3 cX

n=0

b p+3�3n
2 cX

m=0

Cmnk
3+p�2m�3n

T
em

2 en

3 , (4.4)

where e2 and e3 are the elementary symmetric polynomials in Section 1.1, b. . . c is the floor

function, and Cmn are constant coe�cients that are real by unitarity [32] and correspond to linear

combinations of coupling constants in the bulk. The total number Nansatz of free coe�cients in the
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• Step II. Apply the MLT: 

• For p=3 (Ntotal=7-4=3)  

• One can prove that to arbitrary order in derivatives (arbitrary p) the solutions to MLT 
can be attributed to a cubic contact term (proof for arbitrary contact terms?)

one power of e3. Indeed, a tree-level 3-point amplitude for a single scalar in a boost-breaking

theory is a symmetric polynomial in the energies of the external particles [50]. A complete basis

is provided by the two symmetric polynomials e2 and e3 since for scattering amplitudes energy

is conserved: kT = 0. A general amplitude for a manifestly local theory therefore takes the

schematic form A3 ⇠ e↵

2
e�

3
where ↵+ � = p. For massless fields we have [32]

lim
kT !0

Re( 3) ⇠ e3

Re(ipA3)

kp

T

, (4.13)

and so at least one power of e3 should appear on the leading kT pole of the 3-point function, as

ensured by the MLT. For even p, scale invariance guarantees that the leading kT pole contains

at least one factor of e3 and so the corresponding amplitude is guaranteed to be manifestly local.

However, there is a sub-leading kT pole of degree p � 1 whose residue is independent of e3. If

the coe�cient of this term was unconstrained then one could cancel the leading kT pole such

that this sub-leading pole became leading which would in turn yield an amplitude that could

not come from a manifestly local theory. The MLT deals with this and indeed for even p, (4.12)

fixes the coe�cient of the kT pole of degree p � 1 in terms of the coe�cient of the leading kT

pole. The remaining constraints, for both odd and even p, are similar in nature and constrain

the coe�cients of the e3 independent terms. Let’s now look at some examples to illustrate the

power of the MLT.

p = 0 To begin with, consider the bootstrap Ansatz for p = 0

 (0)

3
= C00k

3

T + C10kT e2 + C01e3 + log(�⌘kT )
h
C̃00k

3

T + C̃10e2kT + C̃01e3

i
, (4.14)

where we allowed for a log(�kT ⌘), representing the liming case p ! 0. The contraints from the

MLT give

C10 = �3C00 � C̃00, C̃10 = �3C̃00, C01 = 3C00 + 4C̃00, C̃01 = 3C̃00 , (4.15)

and hence at this order there are only two allowed shapes

 (0)

3
= C00(k

3

T � 3kT e2 + 3e3) + C̃00

⇥
4e3 � e2kT + (3e3 � 3e2kT + k3

T ) log(�kT ⌘)
⇤

(4.16)

= C̃00

⇥
4e3 � e2kT + (3e3 � 3e2kT + k3

T ) log(�kT ⌘/µ)
⇤
. (4.17)

A few comments are in order. The first term, which is proportional to C00, is the well-known

“local” non-gaussianity [51] that arises by taking the free theory for �(x) and performing the

local field redefinition �(x) ! �(x) + �2(x) to leading order. This does not alter the S-matrix

and indeed this term is finite on the total energy pole, kT ! 0. Note that this is the unique

field redefinition that generates a manifestly local, and scale invariant 3-point function from the

free theory. The reason is that for any field redefinition ��, scale invariance requires us to

have as many derivatives as inverse derivatives, but manifest locality forbids any inverse spatial

Laplacians, and so the only possibility is a zero-derivative polynomial redefinition. For future

reference we define

 local

3 = k3

T � 3kT e2 + 3e3. (4.18)
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This is the 3-point function of the DBI limit of the EFT of inflation [28, 48, 54]. As explained

in [48], despite the EFT of inflation operators having three-derivatives, the leading kT pole for

the DBI limit is degree 2 due to its vanishing amplitude in the flat-space limit, which in turn is

due to the non-linearly realised ISO(1, 4) symmetry in that limit.

p = 3 Now consider p = 3. The MLT yields the following set of constraints

C30 = 0, C20 = C11, C10 = �3C00, C01 = 3C00 � 2C11, (4.24)

and then the new 3-point functions with non-vanishing k�3

T
poles are

 (3)

3
= �

C11

4
 EFT2

3 + (C02 + 3C11) 
EFT1

3 + lower kT -singularity, (4.25)

where

 EFT1

3 =
e2
3

k3

T

, (4.26)

 EFT2

3 =
1

k3

T

(k6

T � 3k4

T e2 + 11k3

T e3 � 4k2

T e
2

2 � 4kT e2e3 + 12e2

3), (4.27)

are respectively the 3-point functions arising from the two boost-breaking self-interactions in the

EFT of inflation, namely �03 (EFT1) and �0(r�)2 (EFT2) [28]. Note that  DBI
3

= 12 EFT1
3

�

 EFT2
3

, which is the unique combination for which the leading kT pole is degree 2 rather than 3.

p = 4 As a final example consider p = 4. The MLT constraints are

C21 = 3C30, C10 = �3C00, C01 = 3C00 � 2C20, C20 = C11 + 3C30, (4.28)

and after imposing these constraints we can write

 (4)

3
= C30 

��
002

3
+ lower kT -singularity, (4.29)

where we have defined

 ��
002

3
=

1

k4

T

(�3k2

T e2e3 + kT e
3

2 + 3e2

2e3). (4.30)

This is the wavefunction coe�cient arising from a ��002 operator in the bulk. There are indeed

other four-derivative operators one can write down at cubic order in �, but they are all de-

generate with ��002, up to the presence of lower derivative operators, after integration by parts

and use of the scalar’s equation of motion. This is made completely manifest in our bootstrap

approach since the MLT only allows for a single wavefunction coe�cient with a leading 1/k4

T
pole.

We have therefore seen that the Bootstrap Rules combined with the Manifestly Local Test (MLT)

provide a conceptually transparent and computationally very e�cient way to derive bispectra.

Not only does the MLT ensure that the leading kT poles yield manifestly local amplitudes, it

also fixes the full shapes of manifestly local 3-point functions. For example, the highly non-
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Bootstraping Exchange Diagrams 
via Partial Energy Recursion Relations 

Here is the corresponding well posed mathematical question: 
For a given cubic vertex what four-point functions satisfy both the 
COT+MLT, and the same time have the right pole structure?

34

the best one can do is to solve COT+MLT up to an arbitrary quartic 
contact term (very sensible from an EFT standpoint) 

Exchange Diagram



• One-Variable Shift of energies
We choose the energy shift such that the residues of those poles are dictated by unitarity.
One convenient choice is the partial energy shift 
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 4(ka, s)  4(�ka, s)  3(k1, k2, s)  3(k1, k2,�s)

(partial energy pole)EL = 0 X 7 X 7

(collinear pole)EL = 2s 7 X 7 X
(total energy pole)EL + ER = 2s X X 7 7

Table 1: Singularities of the elements apearing in the 4-point exchange COT. The same applies

to ER singularities as well with the substitution  3(k1, k2, s) !  3(k3, k4, s).

singularities. Let us see how this happens in a concrete example. Consider the 4-point function

of a massless scalar in flat space arising from the cubic interaction �3. It is given by

 4 =
1

EL ER (EL + ER � 2s)
=

1

EL

1

ER(ER � 2s)
+

X

n�1

(�1)En�1

L

ER (ER � 2s)n+1
. (5.10)

We see that by expanding the total energy pole around EL = 0 one generates an infinite number

of terms analytic in EL that are singular at the collinear limit, and yet the full 4-point is free of the

latter singularity. There is still one more property that the Laurent expansion should satisfy: it

should reproduce a similar expansion around ER = 0. Ensuring the cancellation of spurious poles

and the correct Laurent expansion around each partial energy pole turns out to be very restrictive.

It is very natural to then seek an integrated approach in order to satisfy these properties all at

once. The most pedestrian way forward is to insert the most generic Ansatz for  4, namely

 4 =
Poly2+4m(EL, ER, k1k2, k3k4, s)

Em

L
Em

R
(EL + ER � 2s)2m�1

, (5.11)

into the COT and fix the free coe�cients appearing in the polynomial in the numerator as much

as possible (here the degree of the total energy pole is fixed by the power counting argument

of [29], and Polyl is a polynomial of energy dimension l). The downside of this approach is the

proliferation of parameters needed to write down such an Ansatz as we increase the degree of

the singularity of the vertices. We instead take a di↵erent approach and bootstrap  4 using

the miracles of Cauchy’s integral theorem. The trick is to shift the arguments of  4 by a single

complex variable z and subsequently arrive at a shifted four-point function  ̃4(z) such that:

(a)  ̃4(z = 0) =  4,

(b)  ̃4(z) is an analytic function of z except for isolated poles,

(c) the residues of  ̃4(z)/z at z 6= 0 are fixed by the Cosmological Optical Theorem.

A shift that satisfies all of these requirements is the following partial energy shift

 4(EL, ER, k1k2, k3k4, s) !  ̃4(z) =  4(EL + z, ER � z, k1k2, k3k4, s) . (5.12)

Let us verify that (a)� (c) are satisfied. Condition (a) is trivial since the shift vanishes at z = 0.

Condition (b) is satisfied since  ̃4(z) inherits the analytical properties of  4. Indeed, it is an

analytic function in the complex plane of z except for two isolated poles located at

singularities of  ̃4(z) : z = �EL and z = ER . (5.13)
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The singular part of the Laurent expansion of  ̃4 around these poles is dictated by the right-hand

side ⌅ of the COT i.e.

 ̃4(z) =
X

0<nm

An(ER, EL, k1k2, k3k4, s)

(z + EL)n
+ O(z + EL) , (5.14)

An =
1

(m � n)!

⇥
@m�n

z (z + EL)
m ⌅(EL + z, ER � z, k1k2, k3k4, s)

⇤
z=�EL

. (5.15)

Notice that, in principle, the coe�cients An can be expressed in terms of Rn. As a corollary to

(a) and (b), we can use the residue theorem to write,

 4(EL, ER, k1k2, k3k4, s) =
1

2⇡i

I

C0

dz
 ̃4(z)

z
, (5.16)

where C0 is a contour that rotates around the origin (see Figure 3). We adopt the clockwise

direction for contour integration throughout. So condition (c) is also satisfied since the Laurent

expansion of  ̃4 around z = �EL and z = ER directly follows from that of  4 at EL = 0 and

ER = 0 respectively which are in turn fixed by the COT in terms of lower-point vertices, as we

explained above. Using that Laurent expansion, we can straightforwardly compute the residues

of  ̃4/z at these locations. They are given by

1

2⇡i

I

CL

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#
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, (5.17)

1
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CR

dz
 ̃4(z)
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= Res
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 ̃4(z)

z

#

z=ER
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X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.18)

Notice that our partial energy shift was carefully chosen such that the total energy is independent

of z:

kT (z) = (EL � z) + (ER + z) � 2s = kT . (5.19)

Any shift that does not have this property will introduce additional singularities at zT (defined

via kT (zT ) = 0). The residues of  ̃4/z at such poles cannot be fixed by the COT since the total

energy poles precisely cancel on each side of the equation, see e.g. Table 1.

We now make use of the analyticity of  ̃4(z) in order to deform the C0 contour and arrive at

 4(EL, ER, k1k2, k3k4, s) = �Res

"
 ̃4(z)

z

#

z=�EL

� Res

"
 ̃4(z)

z

#

z=ER

+B (5.20)

=  Res +B , (5.21)

where B is a boundary contribution at infinity i.e.

B =
1

2⇡i

I

C1

dz
 ̃4(z)

z
, (5.22)
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• (partial energy recursion relations). 

We use the Cauchy theorem to relate 𝜓! 𝑧 at origin (=𝜓!(𝐸", … )) to the residues of 
its associated poles and a boundary term at infinity
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Up to a quartic contact term



Concluding Remarks and Future Directions

• We introduced a set of tools for bootstrapping the correlators of massless 
fields in Cosmology, namely the COT, the MLT. 
• The MLT decides whether a correlators can originate from a manifestly local 

operator in the Lagrangian, while the COT is satisfied by correlators that arise 
from unitary theories. 
• Using the MLT contact diagrams can be bootstrapped, while the combination 

of the COT and the MLT gives us the power to bootstrap more complicated 
Tree-diagrams.
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• Some fruitful generalizations ahead of us, 

o For spinning fields, it is essential to replace the MLT with a more relaxed version 
of locality that can accommodate obviously legitimate theories such as gauge 
theories and GR in dS. Also our partial energy shifts should be modified  beyond 
its current single channel format. By doing so, hopefully we can answer questions 
like what are the consistent 4pt of gravitons in dS. 

o It would be nice to extend our methods to situations where branch cuts are 
present. In particular correlators with massive fields or Logarithmic IR-
singularities. 

o COT remains a perturbative statement unlike the optical theorem in flat space. 
What is the non-perturbative version of it probably stated for the full 
wavefunction of the universe?  
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• As a result,

• For IR-finite contact terms among massless particles, COT implies

• Very non-trivial implications for IR-divergent contact terms (with 
branch cuts). E.g.       theory in dS

41

• For both massless and conformally-coupled fields with IR-finite contact interactions,  n(ka, k̂a·

k̂b) is analytic in the whole complex plane of energies (up to poles), namely for ka 2 C,
and the analytical continuation to ka < 0 is straightforward in these cases. For other

massive fields or when IR-divergent interactions are present, there is a natural analytical

continuation of  n(ka, k̂a · k̂b) to the lower-half n-hyperplane of complex energies (defined

via Cn�
⌘ {ka, Im(ka) < 0}), which is given by

 
0
n(ka, k̂a · k̂b) =

� irngn

Z
⌘0

�1
d⌘ a(⌘)4�

P
sa Fn


ka · kb

a2(⌘)

� nY

a=1

d
sa

d⌘sa
K↵a(ka, ⌘) , Im(ka) < 0 . (2.35)

This continuation is particularly useful when we approach the negative real energies from

below, i.e.  n(�|ka|� i✏, k̂a · k̂b) with ✏ > 0. For Im(ka) < 0, the integral on the right-hand

side of (2.35) is convergent thanks to the asymptotic behaviour of K(k, ⌘), namely

lim
⌘!�1

Ka(k, ⌘) / e
+iRe(k)⌘

e
�Im(k)⌘

. (2.36)

Therefore,  n(ka) can diverge only when ka 2 R� (notice that, by definition, (2.29) is

regular at ka 2 R+). This can happen in two cases: (i) when IR divergences are present,

leading to a branch cut at kT < 0, and/or (ii) when at least one external field (e.g. with

momentum ka) is massive, for which the associated mode function has a branch cut at

ka < 0.

By virtue of these two properties, for ka 2 R+, we can express the second matrix element in

(2.25) in terms of  n as

h{k,↵}n|

Z
⌘0

�1(1�i✏)

d⌘H
†
int
(⌘) |0i =

i

rn

h
 
0
n(�ka � i✏, k̂a · k̂b)

i⇤ nY

a=1

�
+(ka, ⌘0) , (2.37)

where  n(�ka � i✏, k̂a · k̂b) is now defined by the analytical continuation in (2.35). Notice that

for conformally coupled and massless scalars (with IR-finite interactions) the �i✏ in argument of

 n(�ka � i✏) is unnecessary, as the limit is smooth.

So finally, we can write (2.25) for a contact diagram as

 
0
n(ka, k̂a · k̂b) +

h
 
0
n(�ka � i✏, k̂a · k̂b)

i⇤
= 0 , ka 2 R+

. (2.38)

Equipped with the analytical continuation to ka 2 Cn�, we can easily generalize this optical

theorem to

 
0
n(ka, k̂a · k̂b) +

h
 
0
n(�k

⇤
a, k̂a · k̂b)

i⇤
= 0 , ka 2 Cn�

. (2.39)

Notice that it is only the energies ka that are analytically continued, while the angles k̂a · k̂b are

left unchanged. This form of the optical theorem is the cosmological wavefunction equivalent of

13

..... .....

Figure 1: Diagrammatic form of the bulk perspective on the optical theorem for contact terms.

The direction of the arrow indicates the sign of the frequency inserted in the corresponding bulk-

to-boundary propagator. It is positive when the arrow is towards the boundary and negative

otherwise.

Hermitian analyticity of the amplitude in flat space [12]. Indeed, one could simply rescale  n in

such a way that it obeys the same property as amplitudes, namely

 n(ka) ⌘ i 
0
n(ika, k̂a · k̂b) )  ⇤

n(z
⇤
i ) =  n(zi) . (2.40)

As for the discontinuity of amplitudes across the positive real axis, we can extract from (2.39) an

expression for the discontinuity of  0
n across the negative imaginary axis. Evaluating the general

expression

2Re 0
n(ka, k̂a · k̂b) =  

0
n(ka, k̂a · k̂b) +

h
 
0
n(ka, k̂a · k̂b)

i⇤
(2.41)

=  
0
n(ka, k̂a · k̂b)�  

0
n(�k

⇤
a, k̂a · k̂b) (2.42)

at ka = ✏ � i�a with �a and ✏ positive and real, and leaving the angle dependence implicit, we

find in the limit ✏! 0

2 lim
✏!0

Re 0
n(✏� i�a) = lim

✏!0

⇥
 
0
n(✏� i�a)�  

0
n(�✏� i�a)

⇤
(2.43)

= Disc
⇥
 
0
n(�i�a)

⇤
. (2.44)

At least for finite momenta ka = �i�a 6= 0 in the complex lower-half plane, the wavefunction

coe�cients  n should not have discontinuities because the integrals that defined them are con-

vergent. This tells us that  n must be purely imaginary on the negative imaginary axis. It would

be interesting to understand what happens at the origin, �a = 0, and in particular determine if

a delta function can be hiding there. We leave this for future work.

Let us now explore the consequences of the Cosmological Optical Theorem (COT) for IR-finite

interactions, leaving the non-trivial IR-divergent terms to Section 3. By virtue of scale invariance,

 n must be a homogeneous function of the momenta of degree three minus the scaling dimensions

�↵ of the fields under consideration8,

�↵ =
3

2
+

r
9

4
�

m
2
↵

H2
2 R , (2.45)

8Notice that what we call � is sometimes called �+ in the literature, while �� = 3��.

14

where for simplicity we have assumed that all the scalars are light, ma < 3H/2. Therefore, the

wavefunction coe�cient  n can always be written as

 
0↵1...↵n
n (ka, k̂a · k̂b) = k

3(1�n)+
P

a �↵a
T

fn

✓
ka

kT
, k̂a · k̂b

◆
. (2.46)

When
P
a

�↵a is irrational, following (2.29), one should use the principal value of ln kT (with a

branch cut at [�1, 0]), which is analytical over Cn�. Using,

ln(�kT � i✏) = �i⇡ + ln(kT ) , (2.47)

and (2.38) we arrive at,

f
⇤
n = exp

 
i⇡(3n�

X

a

�↵a)

!
fn . (2.48)

In particular, for all massless fields, �↵ = 3, the COT implies

Im( 0�
n ) = 0 (massless field) , (2.49)

whereas, for conformally-coupled fields, �↵ = 2, we have

Im( 0'
n ) = 0 , n = even , (2.50)

Re( 0'
n ) = 0 , n = odd .

These examples already indicate that to express the perturbative unitarity at the contact level

it is natural to work with the wavefunction coe�cients,  n, as opposed to the correlators. Up to

linear order in the coupling, i.e. for contact interactions, the two quantities are related by

Bn = �2

"
nY

a=1

1

2Re 0
2
(ka)

#
Re 0

n , (2.51)

where dilations impose the following scalings with momentum

Bn(�ka) =
B(ka)

��3+
P

a �↵a
. (2.52)

For integer scaling dimensions �, such as for massless and conformally couples scalars,  n has

only isolated poles but no branch cuts, i.e. it is “analytical”. Then there is no ambiguity in

evaluating the correlator at negative energies ka ! �ka. As a result, by taking the real part of

(2.46) and using (2.51) and (2.52) we find

Bn(ka, k̂a · k̂b)
h
1 + (�1)3(1�n)+

P
a ��a

i
= 0 , (for Bn analytic) . (2.53)

This equation tells us that any correlator Bn involving an odd number of conformally coupled

fields (� = 2) and an arbitrary number of massless fields (� = 3) must vanish. We will check

this fact explicitly in Section 3.1.
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0�
3

=
g

H4

h
(�2 + 2� + i⇡)e31 + (4� 6� � 3i⇡)e2e1 (3.7)

+ (2 + 6� + 3i⇡)e3 + 2
�
e
3

1 � 3e2e1 + 3e3
�
log (�e1⌘0) +

2i

⌘0
(e21 � 2e2) +

2i

⌘
3

0

i
,

where e1,2,3 are the elementary symmetric polynomials,

e1 = k1 + k2 + k3 , e2 = k1k2 + k1k3 + k2k3 , e3 = k1k2k3 . (3.8)

The last two terms on the second line of (3.7) satisfy (2.38) by itself. More interestingly, the

optical theorem ties the logarithmic part log(�e1⌘0), which has a branch cut at e1 2 R�, to the

IR-finite imaginary part of  3 via (2.47). In more detail,

[ 0�
3
(�e1 � i✏, e2 + i✏,�e3 � i✏)]⇤ � �2

�
e
3

1 � 3e2e1 + 3e3
�
(log (�e1⌘0) + i⇡) . (3.9)

The imaginary part of the right-hand side above is precisely twice the IR-finite imaginary part of

 3, in full agreement with (2.38). Notice that this delicate relationship between the branch cut

and the finite imaginary parts of  3 cannot be observed at the level of correlators, as B3 only

incorporates the real part of  3.

3.3 Exchange diagrams

Flat Space

The derivation of (2.38) and (2.65) can be adapted to flat spacetime (i.e. a(⌘) = 1), and the final

results remain the same, primarily because (2.31) applies to flat space as well13. This motivates

the study of a flat space example prior to the cosmological ones.

Let’s consider a massless scalar in flat space with the cubic coupling g�
3, for which we have

 
0�
3
(k1, k2, k3) =

6g

k
(3)

T

, (3.10)

 
0s
4 =

�36g2

k
(4)

T
(k1 + k2 + s)(k3 + k4 + s)

,

P (k) =
1

2k
,

where the total energy k
(n)

T
was defined in (1.12). One interesting feature of the COT is that

each term on the left-hand side of (2.65) displays a total energy singularity (k(4)
T

! 0), as was

demonstrated in [24], however, the right-hand side only incorporates the singularities contained

in  3 (and its analytical continuation). Those singularities are located at k1 + k2 ± s = 0 and

k3 + k4 ± s = 0. Therefore, the total energy singularities of the left-hand side of the COT should

cancel out, i.e.

 
0s
4 (k1, . . . , k4, s) +  

0s
4 (�k1, . . . ,�k4, s) 6� k

(4)

T
pole . (3.11)

From the example above, one can explicitly see that this is exactly the case and that (2.65) holds.

13This might seem to suggest that the COT is background independent, but that is not true. On a generic

FLRW background, there is no simple relation between K
⇤(k, ⌘) and K(k, ⌘).
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�↵a is irrational, following (2.29), one should use the principal value of ln kT (with a

branch cut at [�1, 0]), which is analytical over Cn�. Using,
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In particular, for all massless fields, �↵ = 3, the COT implies

Im( 0�
n ) = 0 (massless field) , (2.49)

whereas, for conformally-coupled fields, �↵ = 2, we have

Im( 0'
n ) = 0 , n = even , (2.50)

Re( 0'
n ) = 0 , n = odd .

These examples already indicate that to express the perturbative unitarity at the contact level

it is natural to work with the wavefunction coe�cients,  n, as opposed to the correlators. Up to

linear order in the coupling, i.e. for contact interactions, the two quantities are related by

Bn = �2
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where dilations impose the following scalings with momentum

Bn(�ka) =
B(ka)
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. (2.52)

For integer scaling dimensions �, such as for massless and conformally couples scalars,  n has

only isolated poles but no branch cuts, i.e. it is “analytical”. Then there is no ambiguity in

evaluating the correlator at negative energies ka ! �ka. As a result, by taking the real part of

(2.46) and using (2.51) and (2.52) we find

Bn(ka, k̂a · k̂b)
h
1 + (�1)3(1�n)+

P
a ��a

i
= 0 , (for Bn analytic) . (2.53)

This equation tells us that any correlator Bn involving an odd number of conformally coupled

fields (� = 2) and an arbitrary number of massless fields (� = 3) must vanish. We will check

this fact explicitly in Section 3.1.

15

 �
n = k3T f(

kn
kT

, k̂a.k̂b) )
<latexit sha1_base64="MKT22q+UmG3fl+Pn4P+WG0yGEOE="></latexit>

is given by,

 
0�
3

=
g

H4

h
(�2 + 2� + i⇡)e31 + (4� 6� � 3i⇡)e2e1 (3.7)

+ (2 + 6� + 3i⇡)e3 + 2
�
e
3

1 � 3e2e1 + 3e3
�
log (�e1⌘0) +

2i

⌘0
(e21 � 2e2) +

2i

⌘
3

0

i
,

where e1,2,3 are the elementary symmetric polynomials,

e1 = k1 + k2 + k3 , e2 = k1k2 + k1k3 + k2k3 , e3 = k1k2k3 . (3.8)

The last two terms on the second line of (3.7) satisfy (2.38) by itself. More interestingly, the
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[ 0�
3
(�e1 � i✏, e2 + i✏,�e3 � i✏)]⇤ � �2

�
e
3

1 � 3e2e1 + 3e3
�
(log (�e1⌘0) + i⇡) . (3.9)

The imaginary part of the right-hand side above is precisely twice the IR-finite imaginary part of

 3, in full agreement with (2.38). Notice that this delicate relationship between the branch cut

and the finite imaginary parts of  3 cannot be observed at the level of correlators, as B3 only

incorporates the real part of  3.

3.3 Exchange diagrams

Flat Space

The derivation of (2.38) and (2.65) can be adapted to flat spacetime (i.e. a(⌘) = 1), and the final

results remain the same, primarily because (2.31) applies to flat space as well13. This motivates

the study of a flat space example prior to the cosmological ones.

Let’s consider a massless scalar in flat space with the cubic coupling g�
3, for which we have
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was defined in (1.12). One interesting feature of the COT is that

each term on the left-hand side of (2.65) displays a total energy singularity (k(4)
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! 0), as was

demonstrated in [24], however, the right-hand side only incorporates the singularities contained

in  3 (and its analytical continuation). Those singularities are located at k1 + k2 ± s = 0 and

k3 + k4 ± s = 0. Therefore, the total energy singularities of the left-hand side of the COT should

cancel out, i.e.
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• Application: Factorization on the pole from COT

42

the O(gAgB) contribution to  s

4
with  AB

4
. Using (2.61), we find,

D
k1,�; . . . ;k4,�

����UgAgB

���0
E0

= �

 
4Y

a=1

�
+(ka, ⌘0)

!

⇥

h
 
AB

4 (ka, s, k̂a.k̂b)�
⇣
 
0���
A

(k1, k2, s) 
0���
B

(k3, k4, s) + (A $ B)
⌘
P�(s)

i

+ (t, u channels) , (2.63)

D
k1,�; . . . ;k4,�

����U†
gAgB

���0
E0

= �

 
4Y

a=1

�
+(ka, ⌘0)

!

⇥

h⇣
 
AB

4 (�ka, s, k̂a · k̂b)
⌘⇤

�

⇣
 
0���
A

(k1, k2,�s) 0���
B

(k3, k4,�s) + (A $ B)
⌘
P�(s)

i

+ (t, u channels) .

Notice also that for scalars, e.g. in the s-channel, the only possible inner products ka·kb appearing

in  s

4
are k1 · k2 and k3 · k4. These two can be written in terms of s and ka’s, therefore we can

drop ka · kb in the argument of  s

4
. The final Cosmological Optical Theorem takes the following

form,

 
0AB

4 (k1, k2, k3, k4, s) + [ 0AB

4 (�k1,�k2,�k3,�k4, s)]
⇤ = P�(s) (2.64)

⇥

h
 
0���
A

(k1, k2, s)�  
0���
A

(k1, k2,�s)
i h
 
0���
B

(k3, k4, s)�  
0���
B

(k3, k4,�s)
i
+ (A $ B) .

A similar equation holds even if the two vertices A and B were identical, but then one should

drop the last term, i.e. A $ B. Therefore, by adding the O(g2
A
) and O(g2

B
) contributions to  s

4
,

and after defining the total three-point function as  ���

3
=  

0���
A

+  
0���
B

, we arrive at

 
0s
4 (k1, k2, k3, k4, s) + [ 0s

4 (�k1,�k2,�k3,�k4, s)]
⇤ = (2.65)

P�(s)
h
 
0���
3

(k1, k2, s)�  
0���
3

(k1, k2,�s)
i h
 
0���
3

(k3, k4, s)�  
0���
3

(k3, k4,�s)
i
.

A few remarks about this result:

An analogous relation holds for the other two channels, t and u, therefore, by summing

over all channels we can write,

 
0
4(k1, k2, k3, k4, s, t, u) + [ 0

4(�k1,�k2,�k3,�k4, s, t, u)]
⇤ = (2.66)

P�(s)
h
 
0���
3

(k1, k2, s)�  
0���
3

(k1, k2,�s)
i h
 
0���
3

(k3, k4, s)�  
0���
3

(k3, k4,�s)
i

+ P�(t)
h
 
0���
3

(k1, k3, t)�  
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3

(k1, k3,�t)
i h
 
0���
3

(k2, k4, t)�  
0���
3

(k2, k4,�t)
i

+ P�(u)
h
 
0���
3

(k1, k4, u)�  
0���
3

(k1, k4,�u)
i h
 
0���
3

(k2, k3, u)�  
0���
3

(k2, k3,�u)
i
.

Although we have worked under the assumption that the intermediate field in the 4 point

exchange diagram is distinct from the external fields, and that it carries no derivatives, one

can indeed show that (2.65) remains the same, regardless (see Appendix C for a discussion).
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EL = k1 + k2 + s ! 0
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Three particle Amplitude

1

Ep
L,R

A3(k1, k2, s)⇥  ̃3(k3, k4, s)
<latexit sha1_base64="ohprUH5XfvOQTvHxq9FZrrYlg0E="></latexit>

lim
EL,R!0

 4(k1, .., k4, s) =
<latexit sha1_base64="e+oiw0QmvkwFvjLbBwmZbyStTYw=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoIYSkFnQjFEVw4aKKrYWmhMl00g6dTMLMRCih3+DGX3HjQhG3rtz5N04fC209MHA4517unBMkjErlON9Gbml5ZXUtv17Y2Nza3jF395oyTgUmDRyzWLQCJAmjnDQUVYy0EkFQFDByHwwuxv79AxGSxvxODRPSiVCP05BipLTkm2WP0cjPLv3s2rodeSqGzgh6iaR+tTTwXcu2rYFftWT5zDeLju1MABeJOyNFMEPdN7+8bozTiHCFGZKy7TqJ6mRIKIoZGRW8VJIE4QHqkbamHEVEdrJJpBE80koXhrHQjys4UX9vZCiSchgFejJCqi/nvbH4n9dOVXjayShPUkU4nh4KUwZ18nE/sEsFwYoNNUFYUP1XiPtIIKx0iwVdgjsfeZE0K7Z7bFduqsXa+ayOPDgAh6AEXHACauAK1EEDYPAInsEreDOejBfj3fiYjuaM2c4++APj8wd4spto</latexit>



• No matter how much effort we put in, the best we can do is to solve these equations 
up to, 

• The first equation tells us that
Ø𝜓! can only have a total energy pole (no partial energy is allowed)
Ø it can depend only on even powers of s , therefore,

• As such, the corresponding MLT turns out to be the MLT for contact terms (not 
exchange diagrams), 

• In other words, the best one can do is to solve COT+MLT up to an arbitrary quartic 
contact term (very sensible from an EFT standpoint). 
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• The residue sector 𝜓#$% is entirely fixed by the RHS of the COT,

• 𝜓#$% constituents the partial energy singularities of 𝜓! , while the boundary term can 
only have total energy poles simply because  

The singular part of the Laurent expansion of  ̃4 around these poles is dictated by the right-hand

side ⌅ of the COT i.e.

 ̃4(z) =
X

0<nm

An(ER, EL, k1k2, k3k4, s)

(z + EL)n
+ O(z + EL) , (5.14)

An =
1

(m � n)!

⇥
@m�n

z (z + EL)
m ⌅(EL + z, ER � z, k1k2, k3k4, s)

⇤
z=�EL

. (5.15)

Notice that, in principle, the coe�cients An can be expressed in terms of Rn. As a corollary to

(a) and (b), we can use the residue theorem to write,

 4(EL, ER, k1k2, k3k4, s) =
1

2⇡i

I

C0

dz
 ̃4(z)

z
, (5.16)

where C0 is a contour that rotates around the origin (see Figure 3). We adopt the clockwise

direction for contour integration throughout. So condition (c) is also satisfied since the Laurent

expansion of  ̃4 around z = �EL and z = ER directly follows from that of  4 at EL = 0 and

ER = 0 respectively which are in turn fixed by the COT in terms of lower-point vertices, as we

explained above. Using that Laurent expansion, we can straightforwardly compute the residues

of  ̃4/z at these locations. They are given by

1

2⇡i

I

CL

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=�EL

= �

X

0<nm

An(EL, ER, k1k2, k3k4, s)

En

L

, (5.17)

1

2⇡i

I

CR

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=ER

= �

X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.18)

Notice that our partial energy shift was carefully chosen such that the total energy is independent

of z:

kT (z) = (EL � z) + (ER + z) � 2s = kT . (5.19)

Any shift that does not have this property will introduce additional singularities at zT (defined

via kT (zT ) = 0). The residues of  ̃4/z at such poles cannot be fixed by the COT since the total

energy poles precisely cancel on each side of the equation, see e.g. Table 1.

We now make use of the analyticity of  ̃4(z) in order to deform the C0 contour and arrive at

 4(EL, ER, k1k2, k3k4, s) = �Res

"
 ̃4(z)

z

#

z=�EL

� Res

"
 ̃4(z)

z

#

z=ER

+B (5.20)

=  Res +B , (5.21)

where B is a boundary contribution at infinity i.e.

B =
1

2⇡i

I

C1

dz
 ̃4(z)

z
, (5.22)
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Figure 3: The countour integrals adopted for relating the value of  ̃(z) at origin to its residues

and an associated boundary term at infinity.

and

 Res =
X

0<nm

An(EL, ER, k1k2, k3k4, s)

En

L

+
X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.23)

Notice that we could perform the integral in Cauchy’s theorem in full generality, for any inter-

action at once. Using the above formula, the calculation of  Res is reduced to the elementary

process of taking derivatives of linear combinations of lower-point functions, as dictated by (5.15).

As compared to the Feynman rules for representing  n as integrals in time in the bulk of de Sitter,

(5.23) provides an alternative and equivalent representation of (the singular part of) the wave-

function coe�cients, where time has completely disappeared.

As we illustrate in a number of examples below, the boundary term is generically non-vanishing

and cannot be fixed by the COT alone because both shifted terms on the left-hand side of the

COT diverge as z goes to infinity. However, we know the following facts:

• B cannot have any partial energy poles13 and the Laurent expansion of  4(EL+z, ER�z, ...)

around z = 1 is analytic in EL and ER. This follows from noticing that for any finite

constant c we have B(ER, EL) = B(ER + c, EL � c), and so it cannot have isolated EL or

ER poles.

13This is very similar to BCFW for amplitudes where with a particular momentum shift, the boundary term can

in principle have a pole as one out of the three Mandelstam variables is taken to zero. This is because for a given

shift there is always a sum of two momenta that is independent of the deformation parameter.
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To illustrate the last two steps, consider the trispectrum with two copies of 
vertices

45

while the number of amplitudes is given by

Namplitudes(p+ 1) =

p+1
2X

q=0

I(p+ 1 � 2q) =

p+1
2X

q=0

I(p+ 4 � 2q). (B.9)

So for odd p we again see that the number of new 3-point functions as we increase from p to

p + 1 derivatives (B.8) is equal to the number of new amplitudes (B.9). To compute the final

Ntotal(p) � Namplitudes(p) we therefore only need to compare the number of 3-point functions to

the number of amplitudes for p = 0. There are two 3-point functions:  local
3

and  log

3
for p = 0,

while there is only a single p = 0 amplitude which is simply a constant [50]. We therefore conclude

that

Ntotal(p) = Namplitudes(p) + 1. (B.10)

C Expressions for  Res

In this appendix we collect some of the longer expressions for  Res. For an exchange diagram

due to two copies of the ��02 vertex, we have

 ��02
Res = � g2

64E2
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T � 2E2

LERk7
T + 2ERk1k2k7
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For the exchange diagram for two copies of the EFT2 vertex, �0(r�)2, we have
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For this example, COT demands the following piece in the boundary term, 

Also 𝜓#$% does not satisfy the MLT, and we need a second contribution to B, 

The remaining boundary term is equivalent to the following contact term (by direct 
bulk computation) 
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Following Step I of Section 5.1, we use (6.44) to compute the right-hand side of the COT, and

then extract the non-zero residues

A3 = �
4g2
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from which it follows that
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One can check that this expression satisfies the COT for any B and so we do not need to add an

s3 term. This expression also satisfies the Manifestly Local Test (MLT) with B = 0 thanks to the

overall factor of (k1k2k3k4)2 that ensures that the first derivative with respect to any ka vanishes

at ka = 0. We therefore set B = 0. Let’s now compare this result to the bulk result which we

compute in Appendix A. We find that, after summing over channels, the two expressions are not

equivalent, but the di↵erence can be accounted for by the local operator15

�L
EFT1
int = �

g2
1

4!
�04. (6.49)

Finally, consider the 4-point function due to two copies of the EFT2 vertex. The relevant 3-point

function is

 EFT2
3 = �

g2

2k3

T

(k6

T � 3k4

T e2 + 11k3

T e3 � 4k2

T e
2

2 � 4kT e2e3 + 12e2

3). (6.50)

Due to the complexity of this 3-point function, the residues An take complicated forms and the

resulting  EFT2

Res
is a long expression, which we provide in Appendix C. With this expression in

hand we can then move to Steps II and III to constrain the boundary term. In contrast to the

�03 self-interaction, here the COT and MLT require a non-zero boundary term. Taking  EFT2

Res

and plugging it into the COT, with (6.50) used to compute the right-hand side, we find that

↵EFT2
0 =

25

2
g2

2. (6.51)

Furthermore, the sum of these two components, from Step I and Step II, does not satisfy the

MLT. Indeed we are required to also add

BEFT2
MLT = �

12g2
2
(k2

1
k2

2
+ k2

3
k2

4
)s2

k3

T

+
4g2

2
s4

kT

� 5g2

2kT s
2. (6.52)

15Note that all the scale factors drop out in this interation: there are four positive powers of a(⌘) from the

measure, and four negative powers due to the four derivatives.
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Our final 4-point function is therefore

 EFT2
4 =  EFT2

Res +
25

4
g2

2s
3 +BEFT2

MLT . (6.53)

Let’s now compare our result to the one arising from the bulk calculation, after we have summed

over channels. Again the two expressions do not agree, but the di↵erence can be accounted for

by the following linear combination of local operators (we remind the reader that we are working

in units with H = 1)

1

g2
2

�L
EFT2
int = �

5

2
�04 + 2�02(r�)2 + 9a(⌘)��03

� 17a2(⌘)�2�02 +
17

2
a2(⌘)�2[�02

� (r�)2] , (6.54)

where again the final two terms arise from the field redefintion �(x) ! �(x) + 17

6
g2
2
�3(x). The

details of this expression are not so important, the main point is that in all examples we have

studied our bootstrap result recovers the bulk calculation up to a boundary term that is a contact

diagram from local operators.

7 Summary and future directions

In this paper, we have introduced two new bootstrap tools for e�ciently computing wavefunction

coe�cients/cosmological correlators. First, in Section 3, we introduced a Manifestly Local Test

(MLT) that must be passed by wavefunction coe�cients arising from manifestly local interac-

tions of fields with de Sitter mode functions. Our test, given in (3.6) for the mode functions of a

massless scalar or graviton, applies to contact and exchange n-point functions alike. We extended

the MLT to massive fields too, with particular attention paid to conformally coupled scalars, and

expect our results to provide a useful tool in the context of cosmological collider physics [1, 47].

We have shown in Section 4 that when combined with a DS: sub-set of the Bootstrap Rules

of [29], the MLT allows us to bootstrap all 3-point functions for a self-interacting massless scalar,

improving over the results of [29], and for minimal couplings between a graviton and a massless

or conformally coupled scalar. In the latter two cases, we provided an on-shell proof that the

leading interactions in the EFT expansion have two-derivatives and correspond to the familiar

minimal couplings between scalars and gravitons.

In Section 5 we then turned to bootstrapping exchange diagrams and introduced partial energy

recursion relations, which allow for e�cient computation of 4-point exchange diagrams given a

pair of 3-point sub-diagrams. When used in conjunction with the Cosmological Optical Theorem

(COT) [32] (see also upcoming work [36,37]), these recursion relations fix the residues of all lead-

ing and sub-leading partial energy poles and therefore fix the 4-point exchange diagram up to the

presence of a boundary term with only total energy poles. The boundary term is then fixed by

the MLT and the COT up to contact contributions from quartic interactions, which can always

be chosen at will. For a number of examples, including scalar 4-point functions due to graviton

exchange and the cubic self-interactions in the EFT of inflation [28], we have shown that the

resulting 4-point function is equivalent to the one derived from bulk computations, up to contact

contributions. We emphasise that throughout our analysis we did not assume invariance under
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• Step 0: Change of Kinematics 
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5 Bootstrapping 4-point functions using partial energy shifts

In the previous sections we exploited the Manifestly Local Test (MLT) to bootstrap contact di-

agrams for various 3-point interactions. This begs the question: how do we bootstrap exchange

diagrams from their constituent contact subdiagrams? In this section we introduce a systematic

way for computing 4-point exchange diagrams from their constituent 3-point functions, and we

expect our formalism to generalise to higher-point functions too. We present a three-step pro-

cedure. In the Step I we leverage the analyticity of 4-point functions by use of the Cauchy’s

integral theorem, which relates the desired 4-point function to the residues and boundary term

associated with a meromorphic function  ̃4(z) of a single complex variable z. The function  ̃4(z)

is obtained by an appropriate shift by z of the partial energies in the arguments of  4, as we

discuss in the next section. All the residues of  ̃4(z)/z on its z poles, both leading and subleading,

are completely fixed by the Cosmological Optical Theorem (COT). The sum over the residues

will generically not satisfy the COT by itself and so in Step II a suitable boundary term will

be added to ensure that our bootstrapped 4-point function arises from unitary time evolution.

Finally, in Step III we use the 6-point MLT to fix the remaining parts of the boundary term.

After going through these three steps, the 4-point function satisfies both the COT and the MLT.

However, we still have the liberty to add any function of the kinematics that itself satisfies (i) the

COT in (5.30) and (ii) the MLT in (3.6). We expect that when combined with a generalisation

of the bootstrap rules of [29], these conditions give us an on-shell definition of contact 4-point

functions. In Section 6, we work through a number of examples where we explicitly find the

local quartic operators that account for the di↵erence between our bootstrap procedure and bulk

computations.

5.1 Step I: partial energy recursion relations

Locality implies that wavefunction coe�cients can only diverge when: (i) the sum of energies

entering a subdiagram vanishes, these are partial energy poles, or (ii) when the sum of all external

energies vanishes which is the total energy pole. Unitarity, in the form of the cosmological single-

cut rules [32], relates the (leading and subleading) singular behaviour near each of the partial

energy singularities to the sub-diagrams that emerge after cutting an appropriate internal line.

For concreteness, consider an s-channel 4-point diagram of a single massless field, represented by

 4(k1, k2, k3, k4, s). The allowed singularities are at

EL = k1 + k2 + s = 0 , ER = k3 + k4 + s = 0 , kT = k1 + k2 + k3 + k4 = 0 . (5.1)

To make the following expressions algebraically simpler, we make the following change of variables

in the arguments of the 4-point function and its 3-point subdiagrams:

 4 : (k1, k2, k3, k4, s) ! (EL, ER, k1k2, k3k4, s) , (5.2)

 L

3 : (k1, k2, s) ! (EL, k1k2, s) , (5.3)

 R

3 : (k3, k4, s) ! (ER, k3k4, s) . (5.4)

Notice that with this new set of variables, the total energy is not an independent quantity but is

given by kT = EL +ER � 2s. It is straightforward to verify that  4 and  3 retain their rational

27

format upon performing this change of variables. Now, near the EL = 0 pole,  4 admits the

Laurent series

 4 =
X

0<nm

Rn(ER, k1 k2, k3 k4, s)

En

L

+ O(E0

L) , (5.5)

where m is an integer that encodes the degree of the leading pole. Notice that we always sym-

metrise between the left and right vertices and so the same expansion holds near the ER = 0 pole,

upon permuting EL with ER and k1k2 with k3k4. We want to prove that unitarity fully fixes

the coe�cients of this expansion except for the last analytical part. Writing the Cosmological

Optical Theorem with the new kinematical variables we have12

 4(EL, ER, k1k2, k3k4, s) +  4(�EL + 2s,�ER + 2s, k1k2, k3k4, s) = ⌅ (5.6)

where for future convenience we have denoted by ⌅ the right-hand side of this COT

⌅ = P (s) ( 3(EL, k1k2, s) �  3(EL � 2s, k1k2,�s)) (5.7)

⇥ ( 3(ER, k3k4, s) �  3(ER � 2s, k3k4,�s)) .

The key observation is that the second term on the left-hand side of this expression is analytic

around EL = 0, and so can be dropped in the limits EL ! 0 or ER ! 0. This implies that

the right-hand side side of the COT determines all of the leading and sub-leading partial energy

poles Rn of  4. This is more information than what is provided by the factorization results

recently employed in [26], which only fix the leading singularity. For reference, we summarise

the singularities of the components of the COT in Table 5.1. We present the singularities that

involve EL but those for ER are again the same with appropriate change of arguments in  3. The

COT identifies the integer m with the degree of the total energy pole in the 3-point function i.e.

lim
EL!0

 3 /
1

Em

L

, m = dimension of the vertex � 3 . (5.8)

Moreover, the COT gives the coe�cients Rn in terms of the partial derivatives of its right-hand

side with respect to the partial energy EL as

Rn(ER, k1k2, k3k4, s) =
1

(m � n)!

@m�n

@Em�n

L

[Em

L ⌅(EL, ER, k1k2, k3k4, s)]EL=0
. (5.9)

What about the analytical part of the expansion? It might appear that it is not constrained by

unitarity at all, precluding us from bootstraping the full 4-point function. This is, however, a

rushed judgment as we have not yet used the full knowledge of the allowed poles. Recall that  4

must be regular in the collinear limit, i.e. ER = 2s (or EL = 2s), i↵ we keep EL (or ER) finite.

However, the coe�cients of its Laurent expansion will generically inherit such spurious poles

from ⌅ which requires the non-singular part of  4 to come to the rescue and cancel these bad

12As compared with (2.25), here we used the contact COT to write  ⇤
3(�EL + 2s, k1k2, s) = � 3(EL �

2s, k1k2,�s), as in [32].
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• Step 1: One-Variable Shift of energies (inspired from BCFW but with crucial differences).

We choose the energy shift such that the residues of those poles are dictated by unitarity.

One convenient choice is the partial energy shift 

Notica that the total energy pole is not shifted (which is not fixed by the RHS of the COT)  
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 4(ka, s)  4(�ka, s)  3(k1, k2, s)  3(k1, k2,�s)

(partial energy pole)EL = 0 X 7 X 7

(collinear pole)EL = 2s 7 X 7 X
(total energy pole)EL + ER = 2s X X 7 7

Table 1: Singularities of the elements apearing in the 4-point exchange COT. The same applies

to ER singularities as well with the substitution  3(k1, k2, s) !  3(k3, k4, s).

singularities. Let us see how this happens in a concrete example. Consider the 4-point function

of a massless scalar in flat space arising from the cubic interaction �3. It is given by

 4 =
1

EL ER (EL + ER � 2s)
=

1

EL

1

ER(ER � 2s)
+

X

n�1

(�1)En�1

L

ER (ER � 2s)n+1
. (5.10)

We see that by expanding the total energy pole around EL = 0 one generates an infinite number

of terms analytic in EL that are singular at the collinear limit, and yet the full 4-point is free of the

latter singularity. There is still one more property that the Laurent expansion should satisfy: it

should reproduce a similar expansion around ER = 0. Ensuring the cancellation of spurious poles

and the correct Laurent expansion around each partial energy pole turns out to be very restrictive.

It is very natural to then seek an integrated approach in order to satisfy these properties all at

once. The most pedestrian way forward is to insert the most generic Ansatz for  4, namely

 4 =
Poly2+4m(EL, ER, k1k2, k3k4, s)

Em

L
Em

R
(EL + ER � 2s)2m�1

, (5.11)

into the COT and fix the free coe�cients appearing in the polynomial in the numerator as much

as possible (here the degree of the total energy pole is fixed by the power counting argument

of [29], and Polyl is a polynomial of energy dimension l). The downside of this approach is the

proliferation of parameters needed to write down such an Ansatz as we increase the degree of

the singularity of the vertices. We instead take a di↵erent approach and bootstrap  4 using

the miracles of Cauchy’s integral theorem. The trick is to shift the arguments of  4 by a single

complex variable z and subsequently arrive at a shifted four-point function  ̃4(z) such that:

(a)  ̃4(z = 0) =  4,

(b)  ̃4(z) is an analytic function of z except for isolated poles,

(c) the residues of  ̃4(z)/z at z 6= 0 are fixed by the Cosmological Optical Theorem.

A shift that satisfies all of these requirements is the following partial energy shift

 4(EL, ER, k1k2, k3k4, s) !  ̃4(z) =  4(EL + z, ER � z, k1k2, k3k4, s) . (5.12)

Let us verify that (a)� (c) are satisfied. Condition (a) is trivial since the shift vanishes at z = 0.

Condition (b) is satisfied since  ̃4(z) inherits the analytical properties of  4. Indeed, it is an

analytic function in the complex plane of z except for two isolated poles located at

singularities of  ̃4(z) : z = �EL and z = ER . (5.13)
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, (5.11)

into the COT and fix the free coe�cients appearing in the polynomial in the numerator as much

as possible (here the degree of the total energy pole is fixed by the power counting argument

of [29], and Polyl is a polynomial of energy dimension l). The downside of this approach is the

proliferation of parameters needed to write down such an Ansatz as we increase the degree of

the singularity of the vertices. We instead take a di↵erent approach and bootstrap  4 using

the miracles of Cauchy’s integral theorem. The trick is to shift the arguments of  4 by a single

complex variable z and subsequently arrive at a shifted four-point function  ̃4(z) such that:

(a)  ̃4(z = 0) =  4,

(b)  ̃4(z) is an analytic function of z except for isolated poles,

(c) the residues of  ̃4(z)/z at z 6= 0 are fixed by the Cosmological Optical Theorem.

A shift that satisfies all of these requirements is the following partial energy shift

 4(EL, ER, k1k2, k3k4, s) !  ̃4(z) =  4(EL + z, ER � z, k1k2, k3k4, s) . (5.12)
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The singular part of the Laurent expansion of  ̃4 around these poles is dictated by the right-hand

side ⌅ of the COT i.e.

 ̃4(z) =
X

0<nm

An(ER, EL, k1k2, k3k4, s)

(z + EL)n
+ O(z + EL) , (5.14)

An =
1

(m � n)!

⇥
@m�n

z (z + EL)
m ⌅(EL + z, ER � z, k1k2, k3k4, s)

⇤
z=�EL

. (5.15)

Notice that, in principle, the coe�cients An can be expressed in terms of Rn. As a corollary to

(a) and (b), we can use the residue theorem to write,

 4(EL, ER, k1k2, k3k4, s) =
1

2⇡i

I

C0

dz
 ̃4(z)

z
, (5.16)

where C0 is a contour that rotates around the origin (see Figure 3). We adopt the clockwise

direction for contour integration throughout. So condition (c) is also satisfied since the Laurent

expansion of  ̃4 around z = �EL and z = ER directly follows from that of  4 at EL = 0 and

ER = 0 respectively which are in turn fixed by the COT in terms of lower-point vertices, as we

explained above. Using that Laurent expansion, we can straightforwardly compute the residues

of  ̃4/z at these locations. They are given by

1

2⇡i

I

CL

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=�EL

= �

X

0<nm

An(EL, ER, k1k2, k3k4, s)

En

L

, (5.17)

1

2⇡i

I

CR

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=ER

= �

X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.18)

Notice that our partial energy shift was carefully chosen such that the total energy is independent

of z:

kT (z) = (EL � z) + (ER + z) � 2s = kT . (5.19)

Any shift that does not have this property will introduce additional singularities at zT (defined

via kT (zT ) = 0). The residues of  ̃4/z at such poles cannot be fixed by the COT since the total

energy poles precisely cancel on each side of the equation, see e.g. Table 1.

We now make use of the analyticity of  ̃4(z) in order to deform the C0 contour and arrive at

 4(EL, ER, k1k2, k3k4, s) = �Res

"
 ̃4(z)

z

#

z=�EL

� Res

"
 ̃4(z)

z

#

z=ER

+B (5.20)

=  Res +B , (5.21)

where B is a boundary contribution at infinity i.e.

B =
1

2⇡i

I

C1

dz
 ̃4(z)

z
, (5.22)
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• Step 2 (partial energy recursion relations). 

We use the Cauchy theorem to relate 𝜓! 𝑧 at origin (=𝜓!(𝐸", … )) to the residues of 
its associated poles and a boundary term at infinity
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The singular part of the Laurent expansion of  ̃4 around these poles is dictated by the right-hand
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. (5.15)

Notice that, in principle, the coe�cients An can be expressed in terms of Rn. As a corollary to

(a) and (b), we can use the residue theorem to write,

 4(EL, ER, k1k2, k3k4, s) =
1

2⇡i

I

C0

dz
 ̃4(z)

z
, (5.16)

where C0 is a contour that rotates around the origin (see Figure 3). We adopt the clockwise

direction for contour integration throughout. So condition (c) is also satisfied since the Laurent

expansion of  ̃4 around z = �EL and z = ER directly follows from that of  4 at EL = 0 and

ER = 0 respectively which are in turn fixed by the COT in terms of lower-point vertices, as we

explained above. Using that Laurent expansion, we can straightforwardly compute the residues

of  ̃4/z at these locations. They are given by

1

2⇡i

I

CL

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=�EL

= �

X

0<nm

An(EL, ER, k1k2, k3k4, s)

En

L

, (5.17)

1

2⇡i

I

CR

dz
 ̃4(z)

z
= Res

"
 ̃4(z)

z

#

z=ER

= �

X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.18)

Notice that our partial energy shift was carefully chosen such that the total energy is independent

of z:
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Any shift that does not have this property will introduce additional singularities at zT (defined

via kT (zT ) = 0). The residues of  ̃4/z at such poles cannot be fixed by the COT since the total

energy poles precisely cancel on each side of the equation, see e.g. Table 1.

We now make use of the analyticity of  ̃4(z) in order to deform the C0 contour and arrive at
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=  Res +B , (5.21)

where B is a boundary contribution at infinity i.e.

B =
1

2⇡i

I

C1

dz
 ̃4(z)

z
, (5.22)
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The singular part of the Laurent expansion of  ̃4 around these poles is dictated by the right-hand

side ⌅ of the COT i.e.

 ̃4(z) =
X

0<nm

An(ER, EL, k1k2, k3k4, s)

(z + EL)n
+ O(z + EL) , (5.14)
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(m � n)!

⇥
@m�n

z (z + EL)
m ⌅(EL + z, ER � z, k1k2, k3k4, s)

⇤
z=�EL

. (5.15)

Notice that, in principle, the coe�cients An can be expressed in terms of Rn. As a corollary to

(a) and (b), we can use the residue theorem to write,

 4(EL, ER, k1k2, k3k4, s) =
1

2⇡i

I

C0

dz
 ̃4(z)

z
, (5.16)

where C0 is a contour that rotates around the origin (see Figure 3). We adopt the clockwise

direction for contour integration throughout. So condition (c) is also satisfied since the Laurent

expansion of  ̃4 around z = �EL and z = ER directly follows from that of  4 at EL = 0 and

ER = 0 respectively which are in turn fixed by the COT in terms of lower-point vertices, as we

explained above. Using that Laurent expansion, we can straightforwardly compute the residues

of  ̃4/z at these locations. They are given by
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Any shift that does not have this property will introduce additional singularities at zT (defined

via kT (zT ) = 0). The residues of  ̃4/z at such poles cannot be fixed by the COT since the total

energy poles precisely cancel on each side of the equation, see e.g. Table 1.
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Let us consider a simple example to illustrate Step I. 
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Figure 2:

amplitude of the same diagram. In de Sitter space we similarly find that the amplitude is
recovered at a total energy pole. To understand this relationship we must first explore the
construction of amplitudes in flat space. For a scalar field, � in flat space with Lagrangian
given by,

L = L0 + Lint, (90)

where L0 is the Lagrangian for a free theory, with classical solutions given by,

�(t,kkk) =
1

p
2Ek

e
iEkt, (91)

the n to 0 amplitude is given by,

AN = �i lim
t0!�1

tf!1

h0|
NY

i

p
2EkkkiakkkU(tf , t0) |0i . (92)

Where U is the interaction picture time evolution operator,

U(t0, t) = T exp


�i

Z
t0

t

p
�gdt

0
Hint(t

0)

�
, (93)

and Hint is constructed from Lint. Under the assumption that the interaction is weak it is
possible to construct the amplitudes from Feynman rules. However, to best make contact
with the calculation of correlators in de Sitter spacetime I will instead describe a slightly
di↵erent procedure. First of all it will be convenient to identify time derivatives with lines
rather than vertices, which means that they will appear in the propagators, and we will
express all results in terms of integrals over time. Furthermore, all lines in the diagram,
including the external ones will be represented by propagators. These boundary propagators
will be automatically time ordered because they connect the early time annihilation operators
with creation operators coming from the inserted Hamiltonian which must occur before the
infinite future. The Feynman propagator is given by,

�F (kkk, t, t
0) = ✓(t� t

0)
1

2Ek

e
�iEk(t�t

0) + ✓(t0 � t)
1

2Ek

e
iEk(t�t

0) (94)

So, including the derivatives on this propagator gives,

�(kkk, t, t0) = ✓(t0 � t)
f
⇤(k)f 0(k)

2Ek

e
�iEk(t�t

0) + ✓(t� t
0)
f(k)f 0⇤(k)

2Ek

e
iEk(t�t

0) (95)
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Our final expression is therefore

 ��
02

4
=  ��

02

Res
+ g2s3 +B��

02
MLT . (6.40)

Lets now compare this bootstrap result to the expression one finds from the bulk computation.

Following the bulk prescription reviewed in Appendix A we compute the 4-point function and

find that it di↵ers from our bootstrap result. After summing over permutations i.e. adding also

the t and u channels, the di↵erence can be accounted for by the contact diagrams of the following

local operators

�L
��

02

int
=

5g2

4
a2(⌘)�2�02

�
g2

2
a2(⌘)�2[�02

� (r�)2]. (6.41)

Note that the final two terms in �L
��

02

int
arise from taking the free theory and performing the

field redefintion

�(x) ! �(x) �
g2

6
�3(x). (6.42)

6.4 E↵ective field theory of inflation

We now turn to the self-interactions of the shift-symmetric Goldstone mode in the e↵ective field

theory of inflation [28]. At cubic order the two self-interactions are

Lint =
g1

3!
a(⌘)�03 +

g2

2
a(⌘)�0(r�)2, (6.43)

and we will refer to these to operators as EFT1 and EFT2 respectively. Let’s begin by boot-

strapping the exchange diagram due to two copies of EFT1. The 3-point function is

 EFT1
3 = �

2g1e2
3

k3

T

. (6.44)

Following Step I of Section 5.1, we use (6.44) to compute the right-hand side of the COT, and

then extract the non-zero residues
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from which it follows that
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(6.48)
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Figure 3: The countour integrals adopted for relating the value of  ̃(z) at origin to its residues

and an associated boundary term at infinity.

and

 Res =
X

0<nm

An(EL, ER, k1k2, k3k4, s)

En

L

+
X

0<nm

An(ER, EL, k3k4, k1k2, s)

En

R

. (5.23)

Notice that we could perform the integral in Cauchy’s theorem in full generality, for any inter-

action at once. Using the above formula, the calculation of  Res is reduced to the elementary

process of taking derivatives of linear combinations of lower-point functions, as dictated by (5.15).

As compared to the Feynman rules for representing  n as integrals in time in the bulk of de Sitter,

(5.23) provides an alternative and equivalent representation of (the singular part of) the wave-

function coe�cients, where time has completely disappeared.

As we illustrate in a number of examples below, the boundary term is generically non-vanishing

and cannot be fixed by the COT alone because both shifted terms on the left-hand side of the

COT diverge as z goes to infinity. However, we know the following facts:

• B cannot have any partial energy poles13 and the Laurent expansion of  4(EL+z, ER�z, ...)

around z = 1 is analytic in EL and ER. This follows from noticing that for any finite

constant c we have B(ER, EL) = B(ER + c, EL � c), and so it cannot have isolated EL or

ER poles.

13This is very similar to BCFW for amplitudes where with a particular momentum shift, the boundary term can

in principle have a pole as one out of the three Mandelstam variables is taken to zero. This is because for a given

shift there is always a sum of two momenta that is independent of the deformation parameter.
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The apparently spurious singularities in the Laurent expansion miraculously cancel in the actual residue, 

Our final expression is therefore
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Lets now compare this bootstrap result to the expression one finds from the bulk computation.

Following the bulk prescription reviewed in Appendix A we compute the 4-point function and

find that it di↵ers from our bootstrap result. After summing over permutations i.e. adding also
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and we will refer to these to operators as EFT1 and EFT2 respectively. Let’s begin by boot-

strapping the exchange diagram due to two copies of EFT1. The 3-point function is
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Following Step I of Section 5.1, we use (6.44) to compute the right-hand side of the COT, and

then extract the non-zero residues
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Compared to the Bulk result, 

One can check that this expression satisfies the COT for any B and so we do not need to add an

s3 term. This expression also satisfies the Manifestly Local Test (MLT) with B = 0 thanks to the

overall factor of (k1k2k3k4)2 that ensures that the first derivative with respect to any ka vanishes

at ka = 0. We therefore set B = 0. Let’s now compare this result to the bulk result which we

compute in Appendix A. We find that, after summing over channels, the two expressions are not

equivalent, but the di↵erence can be accounted for by the local operator15

�L
EFT1
int = �

g2
1

4!
�04. (6.49)

Finally, consider the 4-point function due to two copies of the EFT2 vertex. The relevant 3-point

function is

 EFT2
3 = �

g2

2k3

T

(k6

T � 3k4

T e2 + 11k3

T e3 � 4k2

T e
2

2 � 4kT e2e3 + 12e2

3). (6.50)

Due to the complexity of this 3-point function, the residues An take complicated forms and the

resulting  EFT2

Res
is a long expression, which we provide in Appendix C. With this expression in

hand we can then move to Steps II and III to constrain the boundary term. In contrast to the

�03 self-interaction, here the COT and MLT require a non-zero boundary term. Taking  EFT2

Res

and plugging it into the COT, with (6.50) used to compute the right-hand side, we find that

↵EFT2
0 =

25

2
g2

2. (6.51)

Furthermore, the sum of these two components, from Step I and Step II, does not satisfy the

MLT. Indeed we are required to also add

BEFT2
MLT = �

12g2
2
(k2

1
k2

2
+ k2

3
k2

4
)s2

k3

T

+
4g2

2
s4

kT

� 5g2kT s
2. (6.52)

Our final 4-point function is therefore

 EFT2
4 =  EFT2

Res +
25

4
g2

2s
3 +BEFT2

MLT . (6.53)

Let’s now compare our result to the one arising from the bulk calculation, after we have summed

over channels. Again the two expressions do not agree, but the di↵erence can be accounted for

by the following linear combination of local operators (we remind the reader that we are working

in units with H = 1)

1

g2
2

�L
EFT2
int = �

5

2
�04 + 2�02(r�)2 + 9a(⌘)��03

� 17a2(⌘)�2�02 +
17

2
a2(⌘)�2[�02

� (r�)2] , (6.54)

where again the final two term arise from the field redefintion �(x) ! �(x) + 17

6
g2
2
�3(x). The

details of this expression are not so important, the main point is that in all examples we have

studied our bootstrap result recovers the bulk calculation up to a boundary term that is a contact

diagram from local operators.

15Note that all the scale factors drop out in this interation: there are four positive powers of a(⌘) from the

measure, and four negative powers due to the four derivatives.
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• Step 3 (back to the COT). 𝜓#$% is not gauranteed to satisfy the COT by itself. 
Therefore, COT might already necessitates a boundary term. However, because the 
RHS of the COT is of O(𝑠&) or higher and that B cannot have partial energy poles, 
the only possibily for it is, 

where 𝛼' is supposedly fixed by the RHS of the COT. 

• Step 4 (boundary term from MLT) 𝜓#$% + 𝐵()* is not gauranteed to satisfy the MLT 
either. In such cases a second conribution in the boundary term must be present such 
that,

Notice that on the right hand side above, a lot of cancellation should happen such that 
the result is free of any partial energy pole. 
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ER = 0. This is in contrast with the boundary term B in (5.20), which we argued cannot have

partial energy singularities. It follows that the COT splits into two distinct conditions given by

 Res(ka, s) +  Res(�ka, s) =
X

l�1

sl+3 fl(EL, ER, k1k2, k3k4) , (5.27)

B(ka, s) +B(�ka, s) = ↵0 s
3. (5.28)

By construction  Res should contain all the partial energy singularities, so the first equality has

to hold. The second equality has the particular solution

BCOT(ka, s) =
1

2
↵0 s

3 , (5.29)

and leaves the remaining terms to satisfy the homogeneous equation (the contact COT of [32])

(B(ka, s) � BCOT(ka, s)) + (B(�ka, s) � BCOT(�ka, s)) = 0 . (5.30)

Given that B can only have a total energy pole, we can write

�B ⌘ B(ka, s) � BCOT(ka, s) =
Poly2m+2(ka, s)

k2m�1

T

, (5.31)

where we have used scale invariance to fix the degree of the polynomial in the numerator. Plugging

this Ansatz into (5.30) yields

Poly2m+2(ka, s) � Poly2m+2(�ka, s) = 0 . (5.32)

This implies that the polynomial cannot have odd powers of s. Therefore, �B is an analytic

function of s2 = k2
1
+ k2

2
+ 2k1.k2, and we can rewrite (5.30) as

�B(ka; . . . ) +�B(�ka; . . . ) = 0 , (5.33)

which is precisely the COT for a contact term. This equation is compatible with the hypothesis

that �B is a contact term, but in the next section we show that this is not always the case. In-

stead, there is a part of �B that must necessarily be attributed to the exchange 4-point function

 4.

In summary, in Step II we reconstruct the part BCOT of B by demanding that the COT is

satisfied. The result is given in (5.29) with ↵0 defined in (5.25) in terms of the cubic couplings.

5.3 Step III: constraining the boundary term with the Manifestly Local Test

The previous step has guaranteed that our 4-point function satisfies the Cosmological Optical

Theorem (COT) and so is consistent with unitary time evolution in the bulk. This fixed BCOT in

(5.29). However, we should also make sure that higher-point diagrams that include our 4-point

function as a sub-diagram are consistent with manifest locality and unitarity. In particular, the

4-point diagram we are bootstraping must obey the Manifestly Local Test (MLT) (see Section 3)

@

@ka

 4({k}, s, {k})
���
ka=0

= 0 , (5.34)
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where we are reverting back to the original kinematical parameters ({k}, s) in which the MLT

takes a more compact form. The MLT ensures that the 6-point function shown in Figure 2 has

the correct singularities for a manifestly local theory. Now, it is not guaranteed that  Res+BCOT

satisfies the MLT. When it does not, we must add an additional contribution BMLT to the

boundary term B. In cases where

@

@ka

 Res({k}, s, {k})
���
ka=0

6= 0 , (5.35)

BMLT is found by solving

@

@ka

BMLT

���
ka=0

= �
@

@ka

 Res

���
ka=0

. (5.36)

Let us emphasise that this is a very non-trivial constraint. Since BMLT is only allowed to have

kT poles, if we di↵erentiate with respect to say k1, the left-hand side of (5.36) can only have a

pole at k2 + k3 + k4 = 0. This must also be the case on the right-hand side and given that  Res

can have kT , EL and ER poles, many cancellations must occur. As always, this equation must

hold for the external energy of any field with a massless mode function and so can in principle

yield a system of constraints. For conformally coupled fields (or any field with �+ = 2) the MLT

is again automatically satisfied. In Section 6 we illustrate the power of the 6-point MLT in a

number of informative examples.

With all the compulsory elements added to the boundary term, we are still free to add any

correction � 4(EL, ER, k1k2, k3k4, s) which must:

• only have kT poles,

• satisfy the homogeneous Cosmological Optical Theorem (5.30),

• satisfy the 4-point Manifestly Local Test (3.7).

If � 4 contains only real couplings and has the correct momentum scaling as dictated by scale

invariance, it will always satisfy the homogeneous COT since this is equivalent to the COT for

contact terms. As for the MLT, as we discussed around equation (5.33), � 4 can only depend

on even powers of s which can in turn be written in terms of inner products of the external

momenta. So the MLT actually takes the form for a contact term i.e.

@

@ka

� 4({k}, {k})
���
ka=0

= 0 . (5.37)

In Section 4 we saw that the Bootstrap Rules of [29] along with the MLT allows one to bootstrap

all 3-point functions arising from manifestly local theories. With an adapted form of the Boot-

strap Rules of [29], the 4-point contact MLT, and the fact that � 4 is only permitted to have kT

poles, we expect that this is enough to provide an on-shell definition of a contact 4-point function.

This will be discussed in [58]. In Section 6 we consider a number of examples where we compute

the di↵erence between our bootstrap result for an exchange 4-point function, derived following

our three-step procedure, and the result of the bulk computation and we show that the di↵erence

34


