Theory and Observational Constraints in Nonlocal Gravity

Yves DIRIAN

Seminar

Institut d'Astrophysique de Paris

FNS Postdoc.Mobility Fellow

FONDS NATIONAL SUISSE DE LA RECHERCHE SCIENTIFIQUE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

24.10.2022

Outline

Nonlocal Infrared Modifications of Gravity

Introduction & Motivations Nonlocal Cosmology Observational constraints and parameter inference (Some) Small Scale Solutions Future Perspectives Multi-Messenger Cosmology

Introduction: Accelerated Expansion of the Late Universe

- > Observation of Type Ia supernovae

[SNIa Hubble diag., Betoule+ (2014)]

 \longrightarrow Introduction of Λ for Λ CDM

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = 8\pi G T_{\mu\nu}$$

 $ightarrow heta_{ ext{base}} = (\Omega_{ ext{b}}, \Omega_{\Lambda}, H_0, n_{ ext{s}}, A_{ ext{s}}, z_{ ext{re}})$

- ▷ CMB, BAO+ & complementarity
- $\longrightarrow \Lambda$ compatible w/ high precision obs.

Introduction: What is the Dark Energy?

- > Theoretical and (potential) observational objections
 - Cosmological Constant Problem
 - \longrightarrow No understanding of fundamental vacuum (\sim QG)
 - Coincidence problem
 - Statistical inconsistencies
 - H_0 : CMB vs local measurements σ_8 : cluster counts vs weak lensing
 - Ω_{κ} : CMB [Di Valentino+ (2019)]
- \implies Search for modifications to GR
- \longrightarrow Design and test new alternative theories of gravity
- \longrightarrow Develop methodology for current/future experiments (e.g. LSS, GWs)

Introduction: Nonlocal Gravity Models

Definition: Nonlocal field theories are those that are not local:

Dynamics at x^{μ} not only depends on the values of $\{\phi_i\}$ and on $\{\partial_{\mu_1} \dots \partial_{\mu_N} \phi_i\}$ with $N < \infty$ at x^{μ} .

• Examples: \Box^{-1} , ∂^{∞} , $\exp(M/\Box)$, $\log(\Box/M)$, $e^{2}(\Box)$, $f_{R}(\Box)$, ...

 \longrightarrow where e.g. $(\Box^{-1}\phi)(x) \equiv \int d^4y \sqrt{-g} \ G(x,y)\phi(y)$

- From various contexts:
 - Effective QFT (vacuum pol. of light fields, conformal anomaly)
 - Extra-dimensions (DGP)
 - String theories (relevant in the UV)
 - Infrared ressumation on de Sitter
 - Quantum Gravity considerations
 - etc.
 - \longrightarrow Hard to handle and to understand from first principles
- Dark energy phenomenology: $f(R/\Box)$, $m^2 R \Box^{-2} R$, $R_{\mu\nu} \Box^{-1} R^{\mu\nu}$, more.
 - \longrightarrow no EFT-like techniques such as power-counting

イロト イヨト イヨト イヨト ヨー わへの

Introduction: Nonlocal Gravity Models

• Specific models:

$$G_{\mu\nu} - m^2 \left(g_{\mu\nu}\Box^{-1}R\right)^T = 8\pi G T_{\mu\nu}$$

[Maggiore (2014)]

$$S_{\text{RR}} = M^2 \int \mathrm{d}^4 x \sqrt{-g} \, \left[R - \frac{1}{2} m^2 R \frac{1}{\Box^2} R \right]$$

[Maggiore, Mancarella (2014)]

$$S_{\text{DW}} = M^2 \int \mathrm{d}^4 x \sqrt{-g} \, R \left[1 + f \left(R / \Box \right) \right]$$

[Deser, Woodard (2007)]

Introduction: Nonlocal Gravity Models

• Degravitation idea [Arkani-Hamed+ (2002), Barvinsky (2003), Dvali (2006)]

$$\mathcal{L}_{\text{proca}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A_{\mu} A^{\mu} - A_{\mu} j^{\mu} \quad \Leftrightarrow \quad \mathcal{L}_{\text{nl}} = -\frac{1}{4} F_{\mu\nu} \left(1 - \frac{m^2}{\Box} \right) F^{\mu\nu} - A_{\mu} \tilde{j}^{\mu}$$

where $(\Box^{-1}\phi)(x) = \int \mathrm{d}^4 y \ G(x,y)\phi(y)$ and $\partial_\mu \tilde{j}^\mu \equiv 0$

• Application to Fierz-Pauli massive gravity

$$\mathcal{L}_{\mathsf{nl}} = \frac{1}{2} h_{\mu\nu} \left(1 - \frac{m^2}{\Box} \right) \mathcal{E}^{\mu\nu\rho\sigma} h_{\rho\sigma} - 2m^2 \chi_{\overline{\Box}}^1 \partial_{\mu} \partial_{\nu} (h^{\mu\nu} - \eta^{\mu\nu} h)$$

 \longrightarrow Obstruction: covariantization $\Rightarrow g^{\mu
u}R_{\mu
u} = 0$ "Covariant vDVZ discontinuity"

$$\left[\left(1 - \frac{m^2}{\Box_g} \right) G_{\mu\nu} \right]^T = 8\pi G T_{\mu\nu} \quad \text{[Porrati (2002), Jaccard+ (2013)]}$$

Unviable background cosmology

$$\triangleright \Box^{-1} R_{\mu\nu} \subset \Box^{-1} G_{\mu\nu} \Rightarrow \text{ instabilities} \qquad [\text{Ferreira}+ (2013), \text{ Amendola}+ (2017)]$$
$$\triangleright g_{\mu\nu} \Box^{-1} R \subset \Box^{-1} G_{\mu\nu} \text{ stable} \qquad [\text{Foffa}+ (2013)]$$

Application to Cosmology

Model RTModel RR
$$G_{\mu\nu} - m^2 (g_{\mu\nu} \Box_{ret}^{-1} R)^{\mathrm{T}} = 8\pi G T_{\mu\nu}$$
 $G_{\mu\nu} - m^2 \mathcal{K}_{\mu\nu} (\Box_{ret}^{-1} R, \Box_{ret}^{-2} R) = 8\pi G T_{\mu\nu}$

Resolution method: Localisation

$$\Box V = R \quad \Rightarrow \quad V = \Box_{ret}^{-1} R + V^{(hom)} = \int^t \mathrm{d}^4 x' \sqrt{-g} \ G(x, x') R(x') + V^{(hom)}$$

 $\label{eq:ansatz} \triangleright \mbox{ Auxiliary fields with $vanishing initial conditions$} \Longrightarrow \mbox{ Not in the spectrum (at least linearly)}$

Specialisation to flat FRW

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\,\delta_{ij}\,\mathrm{d}x^i\mathrm{d}x^j$$

Background Evolution

- On flat FLRW: $ds^2 = -dt^2 + a^2(t) d\vec{x}^2$
- Modified Friedmann equations :

 $\begin{aligned} & H^2(t) = 8\pi G \sum_i \bar{\rho}_i(t) + m^2 Y\big(\{\bar{V}_k\}, H(t)\big) \\ &+ \text{ auxiliary EoM for } \{\bar{V}_k\} \end{aligned}$

- $m^2 Y \equiv \bar{
 ho}_{\rm DE}(t)$: Dynamical dark energy
- $\square^{-1}R|_{RD} \simeq 0$: Late-time effectiveness
- Flatness today: $m_{
 m RT}\simeq 0.67 H_0$, $m_{
 m RR}\simeq 0.28 H_0$
- From $\dot{\bar{\rho}}_{\rm DE} = -3H(1+w_{\rm DE})\bar{\rho}_{\rm DE}$ \longrightarrow On the phantom side: $w_{\rm DE} < -1$

Fit:
$$w(t) = w_0 + (1 - a(t))w_a$$

RT: $w_0 \simeq -1.04$, $w_a \simeq -0.02$
RR: $w_0 \simeq -1.15$, $w_a \simeq 0.08$

Background Evolution

• From dark energy conservation:

$$\Omega_{de}(z) = \Omega_{de,0} \exp\left(3\int_0^z \mathrm{d}z' \frac{1+w_{de}(z')}{(1+z')}\right)$$

writing $w_{de}(z \approx 0) \simeq -1 + \delta w_0$, $\Rightarrow \Omega_{de}(z \approx 0) \simeq \Omega_{de,0} (1 + 3z \, \delta w_0)$

 \longrightarrow Phantom dark energy: $\Omega_{de}(z \ge 0) < \Omega_{\Lambda}$

 $H(z) = \left[\Omega_M(z) h^2 + \Omega_{
m de}(z) h^2\right]^{1/2} imes 100 \, {
m km/s/Mpc}$

Linear Structure Formation and Gravitational Waves

$$\mathrm{d}s^{2} = -(1+2\Psi)\mathrm{d}t^{2} + a^{2}(t)[(1+2\Phi)\delta_{ij} + h_{ij}]\mathrm{d}x^{i}\mathrm{d}x^{j}$$

• GWs: $h_A'' + 2\mathcal{H}[1-\delta(\eta)]\tilde{h}_A' + k^2\tilde{h}_A = 0$

- Forecasts for GC, WL+: Euclid-like [Casas, YD, Kunz, Maggiore, Pettorino (in prep.)]
- \triangleright The lower $w_{
 m DE}(z=0)$ the stronger $f\sigma_8$

▷ Modified GWs amplitude

[YD, Foffa, Khosravi, Kunz, Maggiore (2014)] [YD, Foffa, Kunz, Maggiore, Pettorino (2016)]

Boltzmann Code and Parameter Inference

- Implementation in CLASS (https://github.com/dirian/class_public/tree/nonlocal)
 - \rightarrow Code tested against a modified version of CAMB [Bellini+ (2018)]
- Observational constraints with MONTEPYTHON [Lesgourgues, Tram, Audren+ (2011)]
- Cosmological scenario: *Planck* baseline $\{\Omega_b, \Omega_c, H_0, A_s, n_s, z_{reio}\}$ and one massive ν

Datasets:

- ▷ CMB: Planck 2015
- ▷ SNIa: SDSS-II/SNLS3 JLA 2014
- ▷ BAO: BOSS, 6dF and SDSS MGS
- ▷ H_0 : HST (70.6 ± 3.3, 73.8 ± 2.4) ▷ RSD: $f\sigma_8$

[YD, Foffa, Kunz, Maggiore, Pettorino (2016)]

Observational Constraints

Observational Constraints

	Planck			BAO+ <i>Planck</i> + <i>JLA</i>		
Param	ΛCDM	RT	RR	ΛCDM	RT	RR
ω_c	$0.1194^{+0.0015}_{-0.0014}$	$0.1195\substack{+0.0015\\-0.0014}$	$0.1191\substack{+0.0015\\-0.0014}$	$0.119\substack{+0.001\\-0.001}$	$0.1197\substack{+0.001\\-0.001}$	$0.121\substack{+0.001\\-0.001}$
H ₀	$67.5_{-0.66}^{+0.65}$	$68.86^{+0.69}_{-0.7}$	$71.51_{-0.84}^{+0.81}$	$67.67_{-0.5}^{+0.47}$	$68.76^{+0.51}_{-0.46}$	$70.44_{-0.56}^{+0.56}$
$\Delta \chi^2_{\rm min}$	1.6	1.5	0	0	0.6	6.0

• Few parameters with $\gtrsim 1\sigma$ deviation from $\Lambda {\rm CDM}$

 $\longrightarrow \mathsf{Bigger}\ \textit{H}_0 \ in \ nonlocal \ models$

- Nonlocal vs ACDM:
 - \longrightarrow RT statistically equivalent to ΛCDM
 - \longrightarrow RR disfavored with respect to ΛCDM
 - \Longrightarrow Bayesian model comparison (SDDR) gives same conclusions
- BAO+*Planck*+*JLA*: RR creates a *Planck*-*JLA* tension

[YD, Foffa, Kunz, Maggiore, Pettorino (2016)]

イロン イボン イヨン 一日

$$\Delta\omega_c = \Delta(\Omega_c h^2) \sim 1\%$$

Extending the Baseline [YD (2017)]

$$H(z)\simeq \left[\Omega_M(z)\,h^2+\Omega_{
m de}(z)\,h^2
ight]^{1/2}$$

- Phantom DE: $\Omega_{de}(z) < \Omega_{\Lambda}$
- CMB constrains $\omega_M\equiv\Omega_M h^2\sim 1\%$

$$\theta_* = rac{r_{s}(z_*)}{D_A(z_*)} < 0.1\%$$

Distant SNIa constrain Ω_M:

 $D_L(z,\Omega_M) \equiv (1+z) \int_0^z \frac{\mathrm{d}z'}{H(z',\Omega_M)}$

- $\Rightarrow Planck \text{ prefers higher } H_0 \text{ and fixes } \omega_M$ while SNIa prefer higher Ω_M
- \longrightarrow Solution: Extend the initial baseline
- $\Longrightarrow \nu {\rm RR}$ statistical equivalent to $\nu {\rm \Lambda CDM}$
- \Longrightarrow RR prefers massive neutrino at 2σ
- \longrightarrow Future galaxy surveys could be decisive

Solving the tension [YD (2017)]

• Compute the Bayes factor

The tension gets resolved

$$\begin{split} \mathrm{BIC} &: \Delta \chi^2 |_{\Lambda,RR} &= 6.0 \quad \rightarrow \Delta \chi^2 |_{\nu\Lambda,\nu RR} &= 3.4 \ (\textit{weak}) \\ \mathrm{Bayes} &: B_{\Lambda,RR} &= 22.7 \quad \rightarrow B_{\nu\Lambda,\nu RR} &= 1.8 \ (\textit{insignificant}) \end{split}$$

- $\longrightarrow \nu \mathrm{RR}$ model statistical equivalent to $\nu \mathrm{\Lambda CDM}$
- \longrightarrow BIC "fails" in that case
- Bayesian paradigm incorporates Occam's razor
 - $\longrightarrow \Lambda CDM$ is penalized by its significant preference for small neutrino masses
 - \longrightarrow RR prefers massive neutrino at 2σ
 - \longrightarrow Future galaxy surveys could be decisive

Future Perspectives

Galaxy survey Fisher forecast in RT [Casas, YD, Kunz, Maggiore, Pettorino (in prep.)] • Compute sensitivity to cosmo. param.: Fisher information matrix

$$F_{ij}^{\rm GC} = \int d^3k \frac{\partial \ln P_{\rm obs}(z, k_{\rm ref}, \mu_{\rm ref})}{\partial \theta_i} \frac{\partial \ln P_{\rm obs}(z, k_{\rm ref}, \mu_{\rm ref})}{\partial \theta_j} \times [{\rm noise}] \times V_s$$

where $P_{obs} \equiv F[P_{theo}, D_A, H, \sigma_8, P_s, \dots]$

• Fisher code S4 galaxy surveys:

 \rightarrow GCsp, GCph (Lin, NL), WL, 3x2pt, IM

Projected Bayesian model comparison

$$B_{\Lambda\,\mathrm{RT}} = rac{\sigma_{\Omega_{\Lambda}}}{\sigma_{\Omega_{X_{\mathrm{RT}}}}} \exp\left[-rac{1}{2}\left(rac{ar{\Omega}^2_{X_{\mathrm{RT}}}}{\sigma^2_{\Omega_{X_{\mathrm{RT}}}}} - rac{ar{\Omega}^2_{\Lambda}}{\sigma^2_{\Omega_{\Lambda}}}
ight)
ight]$$

- \rightarrow Prospects for testing ACDM vs MG
- \rightarrow Test method's model independence
- \Longrightarrow Combine with current and future exp.

Cosmology of the Deser-Woodard model

• The Deser-Woodard model:

$$S_{\mathrm{DW}} = rac{1}{16\pi G}\int\mathrm{d}^4x\sqrt{-g}\;R\!\left[1+f\!\left(rac{1}{\Box}R
ight)
ight]$$

 \rightarrow Function f fixed to reproduce ACDM background [Deffayet, Woodard (2009)]

$$h_{\Lambda}^{2}(\zeta) \equiv \mathcal{H}_{\Lambda}^{2}(\zeta) / H_{0}^{2} = \left[\Omega_{\Lambda} + \Omega(\zeta)\right]$$

$$f(\zeta) = -2 \int_{\zeta}^{\infty} \mathrm{d}\zeta_{1} \zeta_{1} \phi(\zeta_{1}) - 6\Omega_{\Lambda} \int_{\zeta}^{\infty} \mathrm{d}\zeta_{1} \frac{\zeta_{1}^{2}}{h_{\Lambda}(\zeta_{1}) I(\zeta_{1})} \int_{\zeta_{1}}^{\infty} \mathrm{d}\zeta_{2} \frac{I(\zeta_{2})}{h_{\Lambda}(\zeta_{2}) \zeta_{2}^{4}} + \dots$$
$$X(\zeta) = -\int_{\zeta}^{\infty} \frac{\mathrm{d}\zeta_{1} \zeta_{1}^{2}}{h_{\Lambda}(\zeta_{1})} I(\zeta_{1})$$

 $\longrightarrow \mathsf{Integro-differential\ system}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Cosmology of the Deser-Woodard model [Amendola, YD, Nersisyan, Park (2019)]

The Deser-Woodard model:

$$S_{\mathrm{DW}} = rac{1}{16\pi G} \int \mathrm{d}^4 x \sqrt{-g} \; R igg[1 + figg(rac{1}{\Box}Rigg) igg]$$

Phenomenology and observational constraints

- \longrightarrow Lower growth than ACDM: Lower σ_8
- \implies Describes cosmological observations as well as ΛCDM
- \rightarrow Lack of screening mechanism [Belgacem+ (2019)]

(Some) Small Scale Solutions RR and DW ruled out, RT viable

- Correction to GR of $\mathcal{O}(m^2 r^2)$ on Schwarzchild-like in $r_s \ll r \ll m^{-1}$ [Maggiore+ (2014)]
- No vDVZ discontinuity:

$$\tilde{D}_{\rm GR}(k)+\frac{-i}{k^2}+\frac{-i}{-k^2+m^2}$$

- \implies No Vainshtein screening (?)
- $G_{\rm eff,N}$ in quasi-static linearised FLRW: $\vec{k}|/H(z) \sim |\Box|/R \gg 1$ and $\overleftarrow{\&}$
 - \rightarrow RR (and DW) claimed to be ruled out by Lunar Laser Ranging \dot{G}/G [Belgacem+ (2019)]
- RT model passes all submitted tests $(R/|\Box| \ll 1)$ [Belgacem+ (2020)]

 \implies Considered by LSST and LISA collaborations

$$G_{\mathrm{eff},N}/G(z,|ec{k}|)=ar{F}(z)ig(1+\mathcal{O}(1/|ec{k}^2|)ig)$$

Future Perspectives

Small Scale Dynamics in RT and Screening

- Corrections $\mathcal{O}(m^2r^2)$ on Schwarzchild-like
- No vDVZ discontinuity:

$$\tilde{D}_{\rm GR}(k)+\frac{-i}{k^2}+\frac{-i}{-k^2+m^2}$$

- $G_{\rm eff,N}$ in quasi-static linearised FLRW: $\vec{k}|/H(z) \sim |\Box|/R \gg 1$ and $\overleftarrow{\&}$
 - \implies Understand screening
- Caveat: in these tests $R/|\Box| \ll 1$ and $\Box \rightarrow \nabla_i^2$: non-dynamical
 - \Rightarrow Test RT in dynamical small scale regimes $(R/|\Box|\sim 1)$
- \Longrightarrow Compact objects tests: Collapsing star, BH perturbation theory, PN formalism, superradiance ?, etc.
- \implies Theoretical tests: well-posedness, nonlinear Hamiltonian analysis, .

$$G_{eff,N}/G(z,|ec{k}|)=ar{F}(z)ig(1+\mathcal{O}(1/|ec{k}^2|)ig)$$

Multi-Messenger Astronomy New observational window for cosmology

- GWs from \sim 100 mergers by LIGO/Virgo/KAGRA
- GWs from 1 inspiralling BNS: GW170817

 $\longrightarrow \gamma\text{-}\mathrm{ray}$ burst counterpart: GRB170817A by FERMI and INTEGRAL

$$\tilde{h}_{+,\times}^{\prime\prime}+2\mathcal{H}\tilde{h}_{+,\times}^{\prime}+c_{T}^{2}(\eta)k^{2}\tilde{h}_{+,\times}=0\,,\quad\Longrightarrow\quad|c_{T}(\eta_{0})-c|/c\approx10^{-15}$$

 \rightarrow Dramatic consequences for modified gravity theories

[Creminelli+, Sakstein+, Ezquiaga+, Baker+ (2017)]

• BNS are "standard sirens" [Schutz (1986)]

• GW amplitude $\sim d_L^{-1}$

Electromagnetic counterparts give z

- $\longrightarrow d_L(z) \Rightarrow$ Hubble diagram for GWs
- \implies Cosmological constraints

Cosmological Constraints from GW Standard Sirens [Belgacem, YD, Foffa, Maggiore (2017,2018)]

• Modified propagation for GWs:

$$ilde{h}_{A}^{\prime\prime}+2\mathcal{H}[1-\delta(\eta)] ilde{h}_{A}^{\prime}+k^{2} ilde{h}_{A}=0$$

$$\Rightarrow \tilde{h}_A \sim \frac{1}{d_L^{gw}(z)}$$
with $d_L^{gw}(z) = d_L^{em}(z) \exp\left(-\int_0^z \frac{\mathrm{d}z'}{1+z'}\delta(z')\right)$

Useful parametrisation:

$$rac{d_L^{gw}(z)}{d_L^{em}(z)} = \Xi_0 + rac{1}{(1+z)^n}(1-\Xi_0)$$

- Forecasts for next generation interferometers:
 - ▷ ET+CE [Belgacem, YD, Foffa, Howell, Maggiore, Regimbau (2019)]
 - ▷ LISA [LISA CosWG, Belgacem+ (2019)]
 - \longrightarrow Improved prospects to test GR: $\Delta \Xi_0 = \Delta \textit{w}_0/6$
 - \longrightarrow New (multi-messenger) cosmic complementarity $\longrightarrow \#_{GW} / \#_{GW-GRB} = \mathcal{O}(10^2 - 10^4)!$

Number of BNS and BNS+GRB events [Belgacem, YD, Foffa, Howell, Maggiore, Regimbau (2019)]

• For 10 years, for 2G+Fermi, (ET and ET+CE+CE) + full (1/3) THESEUS

Network	GW events	Joint GW-GRB events		
HLVKI	814	15		
ET	688,426	511 (169)		
ET+CE+CE	7,077,131	907 (299)		

• Redshift reach: ET: z = 2 - 3, +CE: $z \simeq 9$, +THESEUS: $z \simeq 3.4$

Number of GW+GRB detections is orders of magnitude smaller than GW detections

 → GRB detector sensitivity is limited to smaller redshifts that GW detector threshold
 → GRB detection number "saturates": insufficient dedicated GRB/optical/IR telescopes

Future Perspectives

GW Luminosity Distance and Cosmic Inhomogeneities

• GW luminosity distance:

$$ilde{h}_A \sim rac{1}{d_L^{gw}(z)}\,, \qquad ext{with} \qquad d_L^{gw}(z) = d_L^{em}(z)\,\expigg(-\int_0^z rac{\mathrm{d} z'}{1+z'}\delta(z')igg)$$

• Useful parametrisation:

$$rac{d_L^{gw}(z)}{d_L^{em}(z)} = \Xi_0 + rac{1}{(1+z)^n}(1-\Xi_0)$$

- The dipole of d_L^{EM} measures H(z)[Bonvin, Durrer, Kunz (2006)]
 - \longrightarrow How the dipole of d_l^{gw} measures H(z) and $\delta(z)$?
 - \longrightarrow By how much do the (forecast) constraints improve?
- Effects of cosmic inhomogeneities
 - \longrightarrow How do linear FLRW perturbations affect d_{l}^{gw} ?

Thank you!

