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Gravitational-wave astronomy

• The past few years have witnessed a revolution in 
astronomy: direct detection of gravitational 
waves (GWs). 

• The ever-increasing number of GW observations 
of merging binary systems is providing us with a 
unique opportunity to test General Relativity (GR) 
in the strong-field regime, shed light on the 
fundamental aspects of gravity and black holes, 
probe the fundamental nature of astrophysical 
compact objects. 

• Extraordinary scientific potential of upgraded 
detectors and future facilities. 

• Possibility of measuring several frequencies for 
single merging events at high SNR.

• We are witnessing the dawn of the era of precision physics with gravitational waves.  
[Berti et al. ’15], [Barack et al. ’18],  [Cardoso and Pani ’19], [Baibhav et al. ‘19], [Barausse et al. ’20], [Perkins, Yunes and Berti ’20], [Bailes et al. 
’21], [Berti et al. ’22]…

[Nature Reviews Physics, 3, 344–366 (2021)]
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Symmetries of black holes

• Symmetries can help us shed light on the fundamental aspects of black holes and gravity, 
and constrain broad classes of theories beyond General Relativity in a model-
independent way.
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Symmetries of black holes

• Black hole perturbation theory has a long history starting from the work of Regge and 
Wheeler, Zerilli, Teukolsky, Chandrasekhar… 

• Interestingly, recent investigations suggest the subject has depths yet to be plumbed.

Luca Santoni



Outline

I will focus on the static response and Love numbers (LNs) of black holes. 
 

I. Ladder symmetries of black holes and the vanishing of the Love numbers 
II. Love numbers for rotating black holes in higher dimensions

Luca Santoni



Symmetries of vanishing 
Love numbers

I.



Symmetries of black holes

• “The black holes of nature are the most perfect macroscopic objects there are in the 
universe: the only elements in their construction are our concepts of space and 
time.” 
(S. Chandrasekhar, in “The mathematical theory of black holes”) 
  

• Black holes are among the simplest and most robust objects in nature: uniquely 
determined by their mass and spin (and charge). 

• This simplicity is inherited by the perturbations. 

• Some aspects of this simplicity are well understood in terms of (hidden) symmetries of 
General Relativity. 
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Hidden symmetries of black holes

• In GR, the two d.o.f. in the gravitational wave emitted by a perturbed black hole have the 
same characteristic frequencies, i.e. are isospectral. 

• Isospectrality has been known to follow from a duality of the linearized equations of 
motion (a.k.a. Chandrasekhar relation) since the 1970s [Chandrasekhar ’75].

• Symmetry behind the vanishing of the Love numbers unclear until very recently.
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Static response and tidal deformability
• The Love numbers are the coefficients encoding the (static) tidal deformability of a 

compact object (analogous to the electric and magnetic susceptibilities in EM).

• In EM we solve� : 
�  

• The boundary condition at �  fixes � , while �  and �  are determined by regularity 
conditions across the surface (continuity of �  and � ). 

• For instance, if � , one finds �   (�  and � are the vacuum and 

dielectric permittivities). 

• �  are the coefficients of the induced response.

⃗∇2Φ = 0
Φext = ∑

ℓ

Aℓ [rℓ + kℓr−ℓ−1] Pℓ(cos θ) , Φint = ∑
ℓ

BℓrℓPℓ(cos θ) .

r = + ∞ Aℓ kℓ Bℓ⃗E ∥
⃗D⊥

⃗E 0 = A1 ̂z kℓ=1 = −
ϵ/ϵ0 − 1
ϵ/ϵ0 + 2

r3
0 ϵ0 ϵ

kℓ
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Tidal Love numbers

• A novel and important channel to test GR and compact objects in the strong-field 
regime. 

• An explicit calculation in GR (in D=4) shows that �  for a black hole, as opposed to 
other types of compact objects. 
[Fang and Lovelace ’05], [Binnington and Poisson ‘09], [Damour and Nagar ’09], [Kol and Smolkin ’11].

kℓ = 0

• Tidal deformability affects the dynamics during 
the inspiral.  

• An alteration in the phase of the GW signal can 
be used to constrain the tidal deformability of the 
objects.
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Vanishing Love Numbers
• A conceptually clean way to define the (conservative) LNs is in terms of the worldline 

effective action [Goldberger and Rothstein ’04, ’05, …], [Kol and Smolkin ’11], [Porto ‘16]. 
• At distances large compared to the characteristic size of an object, there is an effective 

description where the object is modeled as a point particle. Corrections due to the 
object’s finite size and its internal structure are encoded in higher-derivative operators in 
the effective theory.  

• Let’s consider e.g. a scalar field around a black hole:  

                                

• �  are the LN coefficients. 
• One generically expects: �  and to find (classical) RG running. 
• After matching with the UV result: �  in D=4 and no running. 
• Generically non-zero in D>4. 

[Kol and Smolkin ’11], [Hui, Joyce, Penco, LS and Solomon ’21], 
[Charalambous and Ivanov ’23], [Rodriguez, LS, Solomon and Temoche ’23]

S = −
1
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Vanishing Love Numbers

• Following ’t Hooft’s naturalness principle, the vanishing of the Love numbers is a 
naturalness puzzle from an EFT perspective. [Rothstein ’14], [Porto ’16] 

�  

• Looks like something that can very likely follow from a symmetry in the theory.

S = −
1
2 ∫ d4x (∂ϕ)2 − M∫ dτ + ∫ dτ[ − gϕ +

∞

∑
ℓ=0

λℓ

2ℓ! (∂(a1
⋯∂aℓ)T

ϕ)
2]
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Symmetries of vanishing Love Numbers
• In [2105.01069] we showed that the vanishing of the Love numbers is the consequence of 

linearly realized symmetries governing static perturbations around black holes.  

• Let’s start from the Teukolsky equation with �  (static limit):  

 �  

• We can set �  by virtue of ladder operators in � (which generalize the Teukolsky-
Starobinsky identities). 

• In fact we can also set �  — ladder operators allow to extend the argument to any � . 
• I’ll set for simplicity �  — the generalization to Kerr is straightforward. 

The equation is simply: 
                                             �  ,                 �  , 
which is �  on Schwarzschild with � . 

• �  is the conserved charge associated with a symmetry of the (static) scalar 
action. 

• It is useful because it allows to connect asymptotics:  
                   �   
                 �   

ω = 0

∂r (Δ∂rϕ(s)
ℓ ) + s(2r − rs)∂rϕ(s)

ℓ + ( a2m2 + is(2r − rs)am
Δ

− (ℓ − s)(ℓ + s + 1)) ϕ(s)
ℓ = 0

s = 0 s

ℓ = 0 ℓ
a = 0

∂r (Δ∂rϕ0) = 0 Δ = r(r − rs)
□ ϕ = 0 ω = 0 = ℓ

P0 ≡ Δ∂rϕ0

ϕ0 ∼ r0 as r → + ∞ → P0 = 0 → ϕ0 ∼ const. as r → rs

ϕ0 ∼ r−1 as r → + ∞ → P0 ≠ 0 → ϕ0 ∼ log(r − rs) as r → rs
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Symmetries of vanishing Love Numbers
• Generalization to all �s through ladder operators: �  

� ,             �  

�              
�        

  
• The vanishing of the Love numbers follows from two facts: (1) the purely decaying 

solution (�  at large �) is divergent at the horizon, and (2) the solution that is 
regular at the horizon is a finite polynomial going as � .  

• The growing branch respects the symmetry, while the decaying branch spontaneously 
breaks the symmetry. 
(See also [Achour, Livine, Mukohyama, Uzan ’22]) 

• Fact (1) is consistent with the no-hair theorem (a black hole cannot sustain static, scalar 
profile that decays at infinity [Bekenstein ’72]).

ℓ ϕℓ±1 ∝ D±
ℓ ϕℓ

D+
ℓ ≡ − Δ∂r+

ℓ + 1
2 (rs − 2r) D−

ℓ ≡ Δ∂r+
ℓ
2 (rs − 2r)

ϕℓ ∼ rℓ as r → + ∞ → Pℓ = 0 → ϕℓ ∼ const. as r → rs

ϕℓ ∼ r−(ℓ+1) as r → + ∞ → Pℓ ≠ 0 → ϕℓ ∼ log(r − rs) as r → rs

∼ 1/rℓ+1 r
∼ 1 + r + … + rℓ

Luca Santoni

[Hui, Joyce, Penco, LS and Solomon ’21]



From Schwarzschild to AdS, with Love
• The symmetry has a geometric origin: it arises from the (E)AdS isometries of a 

dimensionally reduced black hole spacetime.  
Let’s consider a static scalar �  in a Schwarzschild background, 

                     � . 

After a Weyl rescaling, the metric becomes �  with 
 
                               �  
 

�  

 
where � . The space has 6 Killing vectors: 3 rotations and 3 translations (or 
“boosts”). The translation that mixes �  and � acts on the original �  as 
                                        �  
or, equivalently, 
                                             �  .

ϕ

S =
1
2 ∫ dθdφdr g ϕ □ ϕ , ds2 = dr2 + Δ (dθ2 + sin2 θ dφ2)

EAdS3

g̃ij = Ω2gij , ϕ̃ = Ω− 1
2 ϕ , where Ω ≡ L2/Δ ,

S =
1
2 ∫ d3x g̃(ϕ̃ □̃ ϕ̃ +

r2
s

4L4
ϕ̃2) , ds̃2 = dr2

⋆ +
4L4

r2
s

sinh2( r⋆rs

2L2 )(dθ2 + sin2 θ dφ2)

dr⋆ = (L2/Δ)dr
r⋆ θ ϕ

δϕ = − 2Δ cos θ∂rϕ + (rs − 2r)∂θ(sin θ ϕ)

δϕℓ = cℓ+1D−
ℓ+1ϕℓ+1 − cℓD+

ℓ−1ϕℓ−1

[Hui, Joyce, Penco, LS and Solomon ’21]
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From Schwarzschild to AdS, with Love

• At large r, �  reduces to a SCT,   � .  

• We claim that this is the sought-after infrared symmetry that forbids Love number (and 
hair) couplings in the point-particle effective action.

δϕ δϕ = ci(xi − ⃗x 2∂i + 2xi ⃗x ⋅ ⃗∂ )ϕ

[Hui, Joyce, Penco, LS and Solomon ’21]
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Ladder in Kerr: static limit
[Hui, Joyce, Penco, LS and Solomon ’21]

• The previous algebraic ladder structure has a direct analog in a Kerr background: 
 
        
with �   and �  . 

• The static Klein-Gordon equation, � has both ladder 
and horizontal symmetries. 

• The ladder symmetries �  descend from a CKV of the 3D-static metric:  
 

• �  is the CKV that induces       
�  

• The conserved charges �  associated with the horizontal symmetries, evaluated for the 
“growing branch”, are non-zero (and imaginary), unlike in the Schwarzschild case:  

                                        �  

which reproduces the dissipative response [Le Tiec and Casals ’20].

ρ2 ≡ r2 + a2 cos2 θ Δ ≡ r2 − rrs + a2

∂r(Δ∂rϕℓ)+ a2m2

Δ ϕℓ − ℓ(ℓ + 1)ϕℓ = 0 ,

D±
ℓ

ξμ = (0, Δ cos θ, 1
2 (2r − rs)sin θ, 0)

δϕ = ξμ∂μϕ+ 1
2 (2r − rs)cos θ ϕ ⇒ δϕℓ = cℓ+1D−

ℓ+1ϕℓ+1 − cℓD+
ℓ−1ϕℓ−1 ,

Pℓ

Pℓ ∝ iq
ℓ

∏
k=1

(k2 + 4q2) , q ≡
am

r+ − r−
,

ds2 = −
ρ2 − rsr

ρ2
dt2 −

2arsr sin2 θ
ρ2

dtdφ +
ρ2

Δ
dr2 + ρ2dθ2 +

(r2 + a2)2 − a2Δ sin2 θ
ρ2

sin2 θdφ2

ds2
K =

ρ2 − rrs

Δ (dr2 + Δdθ2 +
Δ2 sin2 θ
ρ2 − rrs

dφ2) .
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Ladder in Spin: From Scalar to Vector and Tensor

• Ladder operators in the spin, � , raise and lower s in the Teukolsky equation 
(� ), 

    �  

• Allow to extend the previous results from scalar to vector and tensor fields. 

• �  are related to what are known as Teukolsky–Starobinsky identities.  
In Chandrasekhar’s notation,  
 
�  
 
where � .  
 
The new twist we are adding is that, in the static limit, we can truncate these operations, 
enabling us to increment s by unity, � .

E±
s

E±
s ϕ(s)

ℓ = ϕ(s±1)
ℓ

∂r(Δ∂rϕ(s)
ℓ ) + s(2r − rs)∂rϕ(s)

ℓ + (a2m2 + is(2r − rs)am
Δ

− (ℓ − s)(ℓ + s + 1))ϕ(s)
ℓ = 0 ,

E±
s

ϕ(−1) = Δ𝒟†
0𝒟

†
0Δϕ(1), ϕ(1) = 𝒟0𝒟0ϕ(−1), ϕ(−2) = Δ2𝒟†

0𝒟
†
0𝒟

†
0𝒟

†
0Δ

2ϕ(2), ϕ(2) = 𝒟0𝒟0𝒟0𝒟0ϕ(−2),

𝒟0 ≡ ∂r + i[am − ω(r2 + a2)]/Δ

E±
s ϕ(s)

ℓ = ϕ(s±1)
ℓ

[Hui, Joyce, Penco, LS and Solomon ’21, ’22]
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Hidden symmetries at finite frequency

• In binary systems, the induced deformation in a compact object, as well as the perturbing 
tidal field of the companion, is never exactly static. 
Is it possible to extend the ladder symmetries beyond the static limit?  

• The scalar action is 

� . 

• Define the near-zone approximation by replacing  �   with  � .  

• This has the virtue of preserving the correct singularity as � , while still accurately 
capturing the dynamics at larger �, as long as � .

S =
1
2 ∫ dtdrdΩS2 [ r4

Δ
(∂tϕ)2 − Δ(∂rϕ)2 + ϕ∇2

ΩS2
ϕ]

(r4/Δ)∂2
t ϕ (r4

s /Δ)∂2
t ϕ

r → rs
r ωr ≪ 1

[Hui, Joyce, Penco, LS and Solomon ’22]
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Hidden symmetries at finite frequency

• In this limit, the scalar action is the same as that of a massless scalar minimally coupled to 
an effective near-zone metric: 

�  . 

• This metric has the following main properties: 
_ only extension of dynamics at finite �  that retains the (static) ladder generators; 
_ is a conformally-flat �  spacetime (�  6 KVs + 9 CKVs).

ds2near-zone = −
Δ
r2

s
dt2 +

r2
s

Δ
dr2 + r2

s (dθ2 + sin2 θ dφ2)

ω
AdS2 × S2 ⇒

[Hui, Joyce, Penco, LS and Solomon ’22]
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Hidden symmetries at finite frequency
• The 6 KVs and 9 CKVs are:

[Hui, Joyce, Penco, LS and Solomon ’22]

�

J01 = − 2Δ
rs

cos θ ∂r−
∂rΔ
rs

sin θ ∂θ

J02 = − cos φ [ 2Δ
rs

sin θ ∂r+
∂rΔ
rs ( tan φ

sin θ
∂φ − cos θ∂θ)]

J03 = − sin φ [ 2Δ
rs

sin θ ∂r−
∂rΔ
rs ( cot φ

sin θ
∂φ + cos θ∂θ)]

K± = e±t/2rs
Δ

rs
cos θ ( r3

s

Δ ∂t ∓ ∂rΔ∂r ∓ 2 tan θ∂θ)
M± = e±t/2rs cos φ [ r2

s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ∓

2 Δ
rs

tan φ
sin θ

∂φ]
N± = e±t/2rs sin φ [ r2

s

Δ
sin θ∂t∓

Δ∂rΔ sin θ
rs

∂r±
2 Δ

rs
cos θ∂θ±

2 Δ
rs

cot φ
sin θ

∂φ]

�  

  

T = 2rs ∂t

L± = e±t/2rs(2rs ∂r Δ∂t ∓ Δ∂r)
J23 = ∂φ

J12 = cos φ ∂θ − cot θ sin φ ∂φ

J13 = sin φ ∂θ + cot θ cos φ ∂φ

• Different perspective on the vanishing of the LNs proposed by [Charalambous, Dubovsky and Ivanov ’21].  
• This unifies the different sets of symmetries. 
• Only � , �  and �  remain good symmetries in the static limit (� ). 

• �  recovers precisely the ladders:  �  , or equivalently
� ,   �  and � .

T Jij J0i ω = 0
J01 δϕ = ξμ∂μϕ+ 1

4 ∇μξμϕ
δϕℓ = cℓ+1D−

ℓ+1ϕℓ+1 − cℓD+
ℓ−1ϕℓ−1 D+

ℓ ≡ − Δ∂r+
ℓ + 1

2 (rs − 2r) D−
ℓ ≡ Δ∂r+

ℓ
2 (rs − 2r)
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Love numbers for 
rotating black holes in 
higher dimensions

II.



Love numbers for rotating black holes in higher dimensions

• To understand why the vanishing of black hole Love numbers in general relativity is 
special and not generic, consider a higher-dimensional rotating black hole. 

• Qualitative features of Love numbers, such as their multipolar and dimensional 
dependence, do not often care about the field’s spin.  

• Scalar field on Myers—Perry spacetime (single plane of rotation) in (� )-dimensions: 

�  , 

�  . 

• Given the symmetries of the metric, we can decompose: 
�  , 

     where � . 

• Radial equation in the static limit: 

�  .

n + 4

ds2 = − dt2 +
Σ
Δ

dr2 + Σdθ2 + (r2 + a2)sin2 θ dφ2 +
μ

rn−1Σ
(dt − a sin2 θ dφ)2 + r2 cos2 θ dΩ2

n

Δ = r2 + a2 −
μ

rn−1
, Σ = r2 + a2 cos2 θ, D = n + 4

Φ(t, r, θ, φ, θ1, …, θn) = e−iωteimφϕ(r)Sℓm(θ)YL(θ1, …, θn)
ℓ ≥ L + |m |

1
rn

d
dr (rnΔ

dϕ
dr ) + [ m2a2

Δ
−

L(L + n − 1)a2

r2
− ℓ(ℓ + n + 1)] ϕ = 0
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Love numbers of Myers—Perry black holes in 5D

• Complex singularity structure. Focus on � .  

• The �  equation has three regular singular points at � , i.e. it can be 
recast in hypergeometric form: 

�  , 

�  , 

�  . 

• Expanding the solution that is regular at the horizon �  at large radii, 
�  : 

�  . 

• The Love numbers are non-vanishing and have log running. 
[Rodriguez, LS, Solomon and Temoche ’23], [Charalambous and Ivanov ’23]

D = 5

D = 5 r2 = 0, μ − a2, ∞

ϕ → r− 3
2 x

2ℓ + 1
4 (1 − x)

iam

2 μ − a2 ϕ , x ≡ μ − a2

r2

x(1 − x)ϕ′�′ �(x) + [𝔠 − (𝔞 + 𝔟 + 1)x]ϕ′ �(x) − 𝔞 𝔟 ϕ(x) = 0

𝔞 = 1+ ℓ
2 + ia(m − L)

2 μ − a2
, 𝔟 = 1+ ℓ

2 + ia(m + L)

2 μ − a2
, 𝔠 = ℓ + 2

r = μ − a2

ϕ ∼ rℓ + λℓr−ℓ−2

λℓ = (−1)ℓ 2Γ(𝔞)Γ(𝔟)
ℓ! Γ(ℓ + 2)Γ(𝔞 − ℓ − 1)Γ(𝔟 − ℓ − 1)

ln ( r0

r ) ∈ Re
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Love numbers of rotating black ring in 5D
• The landscape of vacuum solutions in higher-dimensional GR is richer than in � . 

In �  there exist black objects with extended horizons (black strings and black p-
branes) as well as solutions presenting horizons with non-trivial topology (black rings).  

• Black rings are smooth rotating solutions (no conical singularity) with horizon topology 
� , where the tension and gravitational self-attraction are balanced by the centrifugal 
repulsion. [Emparan and Reall ’02]

4D
D > 4

S1 × S2

[Rodriguez, LS, Solomon and Temoche ’23]
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[Schnülle ’12]

• In suitable coordinates the metric is: 

�  

�

ds2 = −
̂f
̂g

dt − r0 sinh σ cosh σ
R + r0 cosh2 σ
R − r0 cosh2 σ

r
R − 1

r ̂f
R dψ

2

+

+
̂g

(1 + r cos θ
R )

2
f
̂f (1 −

r2

R2 ) R2dψ2 +
dr2

(1 − r2

R2 )f
+

r2

g
dθ2 +

g
̂g
r2 sin2 θ dϕ2

f = 1 −
r0

r
, ̂f = 1 −

r0 cosh2 σ
r

, g = 1 +
r0

R
cos θ , ̂g = 1 +

r0 cosh2 σ
R

cos θ .

• The horizon is at � . For thin large rings, �  is roughly the radius of the �  circle. 
To avoid conical singularities the spin cannot be arbitrary:  � .

r = r0 R S1

cosh2 σ = 2/(1 + (r0/R)2)



Love numbers of rotating black ring in 5D
• We can decompose: 

�  . 

• The equation becomes separable in the static limit � . 
The radial equation is: 

�  . 

• The exact solution involves generalized Heun functions.  
Instead of solving numerically, use method of matched asymptotic expansion: first solve 
in the near and far zones, and then match along a surface of an intermediate overlap 
region. 

• For the ring, analytic solutions in asymptotic regions exist for �  (large thin ring).  

• In this limit, the black ring resembles a black string that has been bent into a circular 
shape.

Φ(t, r, θ, ϕ, z) = e−iωt+imϕ+iνz (1 +
r
R

cos θ) Ψ(r, θ)

ω = 0

∂r r (r − r0)(1 −
r2

R2 ) ∂r Ψ + ν2 r2(r − r0 cosh2 σ)

(r0 − r)(1 − r2

R2 )
Ψ − (2r − r0)

r
R2

Ψ = KΨ

r0

R
≪ 1

[Rodriguez, LS, Solomon and Temoche ’23]
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Love numbers of rotating black ring in 5D
• Focus on � . For the computation of the Love numbers, the complete matching 

procedure will actually be unnecessary. In the near region, we shall approximate: 

�  , 

�  , 

     such that the eq. becomes: 

�  . 

• The equation can be solved analytically in terms of hypergeometric functions. 
In the overlap region between near and far zones, �  and (after analytic 
continuation in real space for � ): 

�   

• The Love numbers (conservative response) vanish, like for a Kerr black hole in � . 

• In the limit of zero spin � , �  recover �  of Schwarzschild �  black holes.

r0

R
≪ 1

Δ∂r (Δ0 ∂r Ψ) + (V(r0) − K Δ0) Ψ = 0

Δ ≡ r(r − r0), Δ0 ≡ r(r − r0)(1 − r2
0 /R2)

∂r [r(r − r0)∂rΨ] + [ r2
0𝒲2

r(r − r0)
− ℓ(ℓ + 1)] Ψ = 0, 𝒲 =

ν r0 sinh σ

1 −
r2
0

R2

Ψ ∼ rℓ + λBR
ℓ r−ℓ−1

ℓ

λBR
ℓ∈ℕ = (−1)ℓ+1 Γ(ℓ + 1)2Γ(ℓ − 2i𝒲 + 1)

2 Γ(2ℓ + 1)Γ(2ℓ + 2)Γ(−ℓ − 2i𝒲)
∈ Im

4D

σ = 0 λBR
ℓ λSch

ℓ 4D

[Rodriguez, LS, Solomon and Temoche ’23]
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Love numbers of boosted black string in 5D

• Add a flat direction � to a Myers—Perry black hole and then boost it with parameter �: 

�   

�  .  

•  The Klein—Gordon equation on this metric admits separation of variables: 

�  . 

• The radial equation is:  �  .

z σ

ds2 = −(1 −
μ r1−n cosh2 σ

Σ ) dt2 +
μ r1−n sinh(2σ)

Σ
dtdz + (1 +

μ r1−n sinh2 σ
Σ ) dz2

+
r2Σ
Δ

dr2 + Σ dθ2 +
r2(r2 + a2)2 − Δa2 sin2 θ

r2Σ
sin2 θ dϕ2

−
2μ r1−n cosh σ

Σ
a sin2 θ dtdϕ −

2μ r1−n sinh σ
Σ − μ r1−n

a sin2 θ dzdϕ + r2 cos2 θ dΩ2
Sn ,

Δ = r2(r2 + a2 − μ r1−n) , Σ = r2 + a2 cos2 θ , D = n + 5

Φ = eimϕ+iνzΨ(r)Sm
ℓ (θ)YL(Ω)

Δ
rn+2

∂n (rn−2Δ∂rΨ) + [ΔV1(r) + V2(r)]Ψ = 0

[Rodriguez, LS, Solomon and Temoche ’23]
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Love numbers of boosted black string in 5D

• Let us compute the static response using the method of matched asymptotic expansion. 

• Let us first define a near zone valid in the range  � : replace �  while 
preserving the structure of the singularity at � , 

�  . 

• The (radial) scalar equation in the near-zone approximation in 5D (� , � ) is 

�   

• This can be solved exactly. The static response can be defined as the coefficients of the 
decaying falloff in the region that overlaps with the far zone. To leading order in � : 

�  , 

     which reproduce the (scalar) static response of a Kerr black hole in 4D.

r+ ≤ r ≪ |1/ν | r → r+
r = r+

ΔV1(r) + V2(r) → ΔV1(r+) + V2(r+)

n = 0 L = 0
Δ
r3

∂r [r−1 Δ∂rΨ] + [−
Δ
r2 (κ2r2

+ + Alm) + a2m2 cosh2 σ + μr+ (r2
+ + a2) ν2 sinh2 σ

−m2a2 sinh2 σ − 2νmaμr+ sinh σ]Ψ = 0 .

1/ν

Ψ ∼ rℓ + λℓr−ℓ−1 , λℓm = −
Γ(−2ℓ)Γ(ℓ + 1)Γ(1 + ℓ + 2iam

r+ − r−
)

Γ(2ℓ + 2)Γ(−ℓ)Γ(−ℓ + 2iam
r+ − r−

)

[Rodriguez, LS, Solomon and Temoche ’23]
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Love numbers of Kerr black holes

�   

• The calculation of Love numbers of Kerr black holes in general relativity (� ) is 
affected by an intrinsic ambiguity: subleading corrections in the falloff of the source 
happen to have the same power exponent as the leading tidal response contribution. 

λKerr
ℓm = −

Γ(−2ℓ)Γ(ℓ + 1)Γ(1 + ℓ + 2iam
r+ − r−

)

Γ(2ℓ + 2)Γ(−ℓ)Γ(−ℓ + 2iam
r+ − r−

)

D = 4

[Rodriguez, LS, Solomon and Temoche ’23]
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• This source/response ambiguity is usually resolved through an analytic continuation in � . 
[Le Tiec and Casals ’20], [Charalambous, Dubovsky and Ivanov ’21] 

• Performing the calculation in higher dimensions for a black string with tunable parameter 
� has no ambiguity and provides an alternative robust way of deriving �  in general 
relativity.

ℓ

ν λKerr
ℓm



Love numbers of boosted black string in 6D

• It is possible to extend the previous result to 6D. 

• The (radial) scalar equation in the near-zone approximation (� ) is: 

�   

• This can be solved exactly. The static response coefficients defined in the region that 
overlaps with the far zone are, to leading order in � : 

� , 

     which reproduce the response of Myers—Perry black holes in 5D. 

r+ ≤ r ≪ |1/ν |

Δ
r3

∂r (r−1 Δ∂rΨ) + [−
Δ
r2 (ν2r2

+ + Aℓm +
a2L2

r2 ) + m2a2 cosh2 σ

+μ (r2
+ + a2) ν2 sinh2 σ − m2a2 sinh2 σ − 2νmaμ sinh σ]Ψ = 0.

1/ν

Ψ ∼ rℓ + λℓr−ℓ−2 , λℓ = [(−1)ℓ 2Γ(𝔞)Γ(𝔟)
ℓ! Γ(ℓ + 2)Γ(𝔞 − ℓ − 1)Γ(𝔟 − ℓ − 1)

ln ( r0

r )]
ν=0

[Rodriguez, LS, Solomon and Temoche ’23]
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Conclusions



Conclusions and open directions

• Symmetries are key tools to shed light on the fundamental aspects of gravity and 
compact objects, and constrain broad classes of theories beyond GR. 

• Isospectrality and the vanishing of the Love numbers in GR are examples of properties 
that follow from hidden symmetries in the theory. 

• What can we learn from (hidden) symmetries of gravity about the regime beyond linear 
perturbation theory?
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Conclusions and open directions

• The direct detection of GWs is a unique opportunity to test GR in the strong gravity 
regime.  

• Love numbers are a useful observable to characterize and constrain the properties of 
black holes and neutron stars.  

• The study of the static response of higher dimensional rotating black holes is relevant 
because: 
_ it provides a robust and unambiguous way of computing Love numbers of 4D objects; 
_ the rich phenomenology of Love numbers in higher dimensions can teach us important 
lessons about gravity.

Luca Santoni

• There seems to be a critical region around 
�  where the behavior in �  of 
the dissipative coefficients changes.  

• This suggests that tidal deformations for the 
faster spinning Myers—Perry black holes may 
play an important role in elucidating the 
stability of these objects. 

(J/M2)crit ≃ 0.286 ℓ
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Conclusions and open directions

• How about the static response of rotating black holes in � ? And for higher spins? 

• Matching with EFT? (See also [Charalambous and Ivanov ’23]) 

Black holes solutions are no longer unique in vacuum, hence a complete “point-particle” 
EFT interpretation should reflect this fact.

D > 6
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