

Greco Seminar 24/04/2023

Denis Werth

Based on: ArXiv:2302.00655 (short paper)

ArXiv:2304.xxxxx (long paper)

with Lucas Pinol and Sébastien Renaux-Petel

Cosmology: Observing Correlated Fluctuations

Cosmological fluctuations are correlated on large scales

Cosmology: A History of Time

The physics is encoded in the **time evolution** of these fluctuations

Time

The Cosmological Flow Philosophy

Follow the **time evolution** of primordial fluctuations from their origin as **quantum vacuum fluctuations** to the reheating surface

By studying inflationary fluctuations, we learn about the origin of structures

Why the Cosmological Flow: Break the Vicious Circle

Outline

I. The Physics of Inflation

II. The Cosmological Flow

III. Applications

I. The Physics of Inflation

- Basics of Inflation from Observations
- Primordial Non-Gaussianities

Superhorizon Fluctuations

Fluctuations from a priori causally disconnected patches are correlated

Inflation

These fluctuations were generated during a period of accelerated expansion, before the conventional ΛCDM cosmology

Adiabatic Fluctuations

The CMB power spectrum is evidence that the dominant contribution to the primordial perturbations is adiabatic

Primordial fluctuations can be described by a single fluctuating scalar degree of freedom

Near Scale-Invariant Fluctuations

Primordial fluctuations are approximately scale-invariant

$$\Delta_{\zeta}^{2} = \frac{k^{3}}{2\pi^{2}} \langle \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} \rangle' = A_{s} \left(\frac{k}{k_{\star}}\right)^{n_{s}-1} \text{ with } n_{s} = 0.9652 \pm 0.0042 \quad \text{ Planck [2018]}$$

On CMB scales, inflation can be described by an approximate de Sitter spacetime

Almost Gaussian Fluctuations

Primordial fluctuations are very close to Gaussian

$$\frac{\langle \zeta \zeta \zeta \rangle}{\langle \zeta \zeta \rangle^{3/2}} < 10^{-3}$$

The physics of inflation (=interactions) is encoded in deviations from Gaussianity

Primordial Non-Gaussianities

For weakly coupled fluctuations, the leading non-Gaussian signature is the three-point correlation function of ζ (=bispectrum)

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_{\zeta}(k_1, k_2, k_3)$$
Homogeneity

Isotropy

The sum of the momentum 3-vectors must form a closed triangle

The bispectrum is a "function of triangle"

Shapes of Non-Gaussianities

The amplitude of the bispectrum is given by $f_{\rm NL}$ and the physics of inflation is encoded in the **shape function**

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle' \equiv (2\pi)^4 \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2} \Delta_{\zeta}^4$$

$$f_{\rm NL} \equiv \frac{10}{9} S(k, k, k)$$

$$f_{\rm NL}^{\rm eq} = -26 \pm 47$$

$$f_{\rm NL}^{\rm loc} = -0.9 \pm 5.1$$

The Physics of Non-Gaussianities

Primordial non-Gaussianities are a probe of the physics of inflation (=particle content, interactions, masses, spins, sound speeds, etc)

Cosmological Collider Physics

During inflation, very massive particles ($\sim 10^{14}\,$ GeV) can be produced whose decays lead to observable correlations

Primordial non-Gaussianities in a Nutshell

Observations

- CMB-S4
- 3D LSS surveys
- 21cm

Phenomenology

- New physics at the highest reachable energies
- Cosmological Collider physics

Primordial non-Gaussianities

Theory

- QFT in dS
- Derive analytical solutions for these correlators
- Formal aspects and analytical structure
- Similar to flat-space scattering amplitudes or boundary correlators in AdS

Achucarro, Adshead, Baumann,
Benincasa, Bonifacio, Chen,
Creminelli, Easther, Komatsu,
Langlois, Lim, Maldacena,
McAllister, Nicolis, Pajer, Pimentel,
Renaux-Petel, Seery, Senatore,
Sleight, Stefanyszyn, Taronna,
Tolley, Vernizzi, Wang, Weinberg...
and many others

II. The Cosmological Flow

- In-in Formula
- Inflationary Correlators
- The Cosmological Flow Approach

In-in Formula

• From first principles, we want to compute equal-time correlators

• The theory is described by a **Hamiltonian**

described by a
$$m{Hamiltonian}$$
 $m{X}^a \equiv (m{arphi}^lpha,m{p}^eta)$ $H(m{X}^a) = H_0(m{X}^a) + H_I(m{X}^a)$

• We go from the Heisenberg picture to the interaction picture

$$X^a \equiv \mathcal{U}^\dagger X^a \, \mathcal{U} \qquad \langle \Omega | \mathcal{O}(\boldsymbol{\varphi}^\alpha, \boldsymbol{p}^\beta) | \Omega \rangle = \langle \Omega | \, \mathcal{U} \, \mathcal{O}(\boldsymbol{\varphi}^\alpha, \boldsymbol{p}^\beta) \, \mathcal{U}^\dagger | \Omega \rangle$$
 Heisenberg-picture fields

In-in Formula

• The interaction-picture fields evolve with the free Hamiltonian

$$\frac{\mathrm{d}X^a}{\mathrm{d}t} = i\left[H_0(X^b), X^a\right]$$

• We choose the unitary operator to evolve with the interacting Hamiltonian

$$\frac{\mathrm{d}\mathcal{U}}{\mathrm{d}t} = i\,\mathcal{U}H_I(X^a) \longrightarrow \mathcal{U} = \bar{\mathrm{T}}\exp\left(i\int_{-\infty^+}^t H_I(t')\mathrm{d}t'\right)$$
Dyson's formula
$$i\epsilon \text{ prescription}$$

$$\langle \Omega | \mathcal{O}(\mathbf{X}^a) | \Omega \rangle = \langle 0 | \left[\bar{\mathrm{T}} e^{i \int_{-\infty^+}^t H_{\mathrm{I}}(t') \mathrm{d}t'} \right] \mathcal{O}(X^a) \left[\bar{\mathrm{T}} e^{-i \int_{-\infty^-}^t H_{\mathrm{I}}(t') \mathrm{d}t'} \right] | 0 \rangle$$

Technical Difficulties of Perturbation Theory

In practice, we compute Feynman-Witten diagrams involving complicated time integrals

$$\langle \mathbf{X}^4 \rangle = \int dt \int dt' V(t) V(t') \mathcal{G}(k_{12}, t, t') K(k_1, t) K(k_2, t) K(k_3, t') K(k_4, t')$$

- Background is time-dependent
- Algebraic complexity
- Late-time correlators receive contributions from all times
- We cannot use standard techniques from particle physics

• . . .

Recent Analytical Developments

Cosmological Bootstrap Program Arkani-Hamed, Baumann, lee, Pimentel, Joyce, Duaso Pueyo [2019, 2020, 2022] AdS-inspired Mellin Space Bootstrap Equations for Boost-breaking Interactions Pimentel and Wang [2022], Jazayeri and Renaux-Petel [2022] Cosmological Potytopes Arkani-Hamed, Benincasa, Postnikov,

Fundamental Principles (Symmetries & Causality & Locality)

Sleight and Taronna [2019, 2021]

Pajer, Stefanyszyn, Supeł, Goodhew, Jazayeri, Melville, Gordon Lee, Bonifacio, Wang [2020, 2021]

Partial Mellin-Barnes Representation

Qin and Xianyu [2022]

McLeod [2017, 2018, 2019, 2020, 2022]

Limitations of Analytical Methods

Weak Quadratic Mixing

 $\mathcal{L}^{(2)}\supset \rho\dot{\phi}\sigma$ treated perturbatively

Only Single-Exchange Diagram

Often only 1 or 2 Fields

(Near) Scale-Invariance

Large hierarchy of masses/couplings but not the intermediate regimes

Treatment of Equilateral and Squeezed Configurations Separately

Aside from isolated examples...

Equations of Motion

• Without loss of generality, the Hamiltonian can be written

Any time/momentum dependence

$$H = \frac{1}{2!} H_{\mathsf{ab}} \boldsymbol{X}^{\mathsf{a}} \boldsymbol{X}^{\mathsf{b}} + \frac{1}{3!} H_{\mathsf{abc}} \boldsymbol{X}^{\mathsf{a}} \boldsymbol{X}^{\mathsf{b}} \boldsymbol{X}^{\mathsf{c}} + \frac{1}{4!} H_{\mathsf{abcd}} \boldsymbol{X}^{\mathsf{a}} \boldsymbol{X}^{\mathsf{b}} \boldsymbol{X}^{\mathsf{c}} \boldsymbol{X}^{\mathsf{d}} + \dots$$

• The fully non-linear equations of motion are

Commutator

$$\frac{\mathrm{d}\boldsymbol{X}^{\mathsf{a}}}{\mathrm{d}t} = i\left[H,\boldsymbol{X}^{\mathsf{a}}\right] \qquad \qquad \left[\boldsymbol{X}^{\mathsf{a}},\boldsymbol{X}^{\mathsf{b}}\right] = i\epsilon^{\mathsf{a}\mathsf{b}}$$

$$= \epsilon^{\mathsf{a}\mathsf{c}}H_{\mathsf{c}\mathsf{b}}\boldsymbol{X}^{\mathsf{b}} + \frac{1}{2!}\epsilon^{\mathsf{a}\mathsf{d}}H_{\mathsf{d}\mathsf{b}\mathsf{c}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}} + \frac{1}{3!}\epsilon^{\mathsf{a}\mathsf{e}}H_{\mathsf{e}\mathsf{b}\mathsf{c}\mathsf{d}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}}\boldsymbol{X}^{\mathsf{d}} + \dots$$

$$= u^{\mathsf{a}}{}_{\mathsf{b}}\boldsymbol{X}^{\mathsf{b}} + \frac{1}{2!}u^{\mathsf{a}}{}_{\mathsf{b}\mathsf{c}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}} + \frac{1}{3!}u^{\mathsf{a}}{}_{\mathsf{b}\mathsf{c}\mathsf{d}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}}\boldsymbol{X}^{\mathsf{d}} + \dots$$
Theory dependence

• Interaction-picture operators are solution to the linear equations of motion

$$\frac{\mathrm{d}X^{\mathsf{a}}}{\mathrm{d}t} = u^{\mathsf{a}}{}_{\mathsf{b}}X^{\mathsf{b}}$$

Fourier notation

$$A_{\mathsf{a}}B^{\mathsf{a}} = \sum_a \int rac{\mathrm{d}^3 k_a}{(2\pi)^3} A_a(oldsymbol{k}_a) B^a(oldsymbol{k}_a)$$

Tree-level Two-point Inflationary Correlators

Two-point correlators read

$$\langle \Omega | \mathbf{X}^{\mathsf{a}} \mathbf{X}^{\mathsf{b}} | \Omega \rangle = \langle 0 | X^{\mathsf{a}} X^{\mathsf{b}} | 0 \rangle$$

Dias, Fazer, Mulryne, Seery, Ronayne [2010, 2011, 2012, 2013, 2015, 2016, 2018]

• Adopt a diagrammatic representation of correlators

$$egin{array}{lll} {\tt a} & = X^{\tt a}(t) & \langle X^{\tt a} X^{\tt b}
angle = egin{array}{lll} {\tt a} & {\tt a} & {\tt b} \\ {\tt b} & = & {\tt o} & {\tt o} \\ & & {\tt external field insertion at } t & {\tt o} & {\tt o} \end{array}$$

• Using the equation of motion, we obtain

$$\frac{\mathrm{d}X^{\mathsf{a}}}{\mathrm{d}t} = u^{\mathsf{a}}{}_{\mathsf{b}}X^{\mathsf{b}}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \stackrel{\mathrm{a}}{\circ} = \stackrel{\mathrm{b}}{\circ} + \stackrel{\mathrm{a}}{\circ} = \stackrel{\mathrm{b}}{\circ} + \stackrel{\mathrm{a}}{\circ} = \stackrel{\mathrm{b}}{\circ} = \stackrel{\mathrm{c}}{\circ} = \stackrel$$

$$rac{\mathrm{d}}{\mathrm{d}t}\langle m{X}^{\mathsf{a}}m{X}^{\mathsf{b}}
angle = u^{\mathsf{a}}{}_{\mathsf{c}}\langle m{X}^{\mathsf{c}}m{X}^{\mathsf{b}}
angle + u^{\mathsf{b}}{}_{\mathsf{c}}\langle m{X}^{\mathsf{a}}m{X}^{\mathsf{c}}
angle$$

Equivalent to linear equation of motion + quantisation condition

Tree-level Three-point Inflationary Correlators

Three-point correlators read

$$\langle \Omega | \mathbf{X}^{\mathsf{a}} \mathbf{X}^{\mathsf{b}} \mathbf{X}^{\mathsf{c}} | \Omega \rangle = \langle 0 | \frac{i}{3!} \int_{-\infty}^{t} \mathrm{d}t' H_{\mathsf{def}} \left[X^{\mathsf{d}} X^{\mathsf{e}} X^{\mathsf{f}}, X^{\mathsf{a}} X^{\mathsf{b}} X^{\mathsf{c}} \right] | 0 \rangle$$

Differentiating with respect to time gives

Tree-level Three-point Inflationary Correlators

• The flow equations for the three-point correlators are

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \boldsymbol{X}^{\mathsf{a}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}}\rangle = u^{\mathsf{a}}{}_{\mathsf{d}}\langle \boldsymbol{X}^{\mathsf{d}}\boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{c}}\rangle + u^{\mathsf{a}}{}_{\mathsf{de}}\langle \boldsymbol{X}^{\mathsf{b}}\boldsymbol{X}^{\mathsf{d}}\rangle\langle \boldsymbol{X}^{\mathsf{c}}\boldsymbol{X}^{\mathsf{e}}\rangle + (2 \text{ perms})$$

Time

Initial Conditions

- In the far past, modes do not feel the effect of spacetime curvature
- Set of uncoupled degrees of freedom
- Asymptotically reaching the vacuum state and analytical calculations become **tractable**

Resumming Quadratic Mixings

• The flow equations encode an exact treatment of quadratic interactions in $H_{ab}X^aX^b$

• We have converted the problem of computing nested time integrals to solving a set of coupled differential equations

Key Ideas of the Cosmological Flow

IV. Observables at the end of inflation

I. Initial conditions in the far past

II. Flow equations = Theory

III. Applications

- Goldstone Description of Inflationay Fluctuations
- Cosmological Collider at Strong Mixing
- Cosmological Collider Flow
- Cosmological Collider with Primordial Features

Goldstone Description of Inflationary Fluctuations

Inflation can be described by a process of spontaneous symmetry breaking

- Stuckelberg trick $t \to t + \pi(\boldsymbol{x},t) \longrightarrow \delta g^{00} \to -2\dot{\pi} \dot{\pi}^2 + (\partial_i \pi)^2/a^2$ Decoupling limit $M_{\rm Pl} \to \infty$ and $\dot{H} \to 0$ while keeping $M_{\rm Pl}^2 \dot{H}$ fixed

Goldstone Description of Inflationary Fluctuations

The relevant degree of freedom is the **Goldstone boson** associated with the spontaneous breaking of time-translation invariance

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore [2008]

Goldstone Boson coupled to an Additional Field

We couple the Goldstone boson to an additional massive scalar field

$$-\lambda_{1}\dot{\boldsymbol{\pi}_{c}}\frac{(\partial_{i}\boldsymbol{\pi_{c}})^{2}}{a^{2}}-\lambda_{2}\dot{\boldsymbol{\pi}_{c}}^{3}-\mu\boldsymbol{\sigma}^{3}-\frac{1}{2}\alpha\dot{\boldsymbol{\pi}_{c}}\boldsymbol{\sigma}^{2}-\frac{1}{2\Lambda_{1}}\frac{(\partial_{i}\boldsymbol{\pi_{c}})^{2}}{a^{2}}\boldsymbol{\sigma}-\frac{1}{2\Lambda_{2}}\dot{\boldsymbol{\pi}_{c}}^{2}\boldsymbol{\sigma}$$

Self-interactions

Non-linearly realised symmetry

$$H/\Lambda_1 \propto \rho/H$$

Cosmological Collider Signal at Strong Mixing

The cosmological collider signal of heavy but weakly mixed particle oscillates at the same frequency than that of a light but strongly mixed particle

Frequency

$$\mu_{\rm eff}^2 = m_{\rm eff}^2 / H^2 - 9/4$$

Effective mass for the heavy field

$$m^2 \rightarrow m_{\text{eff}}^2 = m^2 + \rho^2$$

Resummation of quadratic mixings

Cosmological Collider Flow

Cosmological Collider Flow

The Cosmological Flow enables us to shed light on characteristic time scales at play

The cosmological collider signal probes the superhorizon time evolution of σ

Primordial Features

Features arise when the couplings are time-dependent

Time-dependent quadratic mixing oscillating at the frequency
$$\mu_c$$

$$\rho(t) \to \rho(t+\pi) \approx \rho(t) + \pi \dot{\rho}(t)$$
 Non-linearly realised symmetry
$$\mathcal{L}_{\pi-\sigma}/a^3 = \rho(t)\dot{\pi}_c \sigma + \frac{\rho(t)}{2f_\pi^2}(\partial_\mu \pi_c)^2 \sigma + \frac{\dot{\rho}(t)}{f_\pi^2}\pi_c \dot{\pi}_c \sigma$$

Cosmological Collider Signals with Primordial Features

The presence of features breaks the link between the mass of the exchanged particle and the frequency of the cosmological collider signal

$$\lim_{k_3/k_1\to 0} S(k_1, k_1, k_3) \sim \left(\frac{k_3}{k_1}\right)^2 \left[\mathcal{A}_+ \cos\left(\left(\mu + \mu_c\right) \log\left(\frac{k_3}{k_1}\right) + \delta_+\right) + \mathcal{A}_- \cos\left(\left(\mu - \mu_c\right) \log\left(\frac{k_3}{k_1}\right) + \delta_-\right) \right]$$

Standard Lore before the Cosmological Flow

The Cosmological Flow Era

Any theory: # dofs, couplings, time-dependence, sound speeds, masses, etc

Conclusions

Primordial **non-Gaussianities** to understand the **physics of inflation**, primary target for future missions

Cosmological Collider: probe the laws of physics at the highest reachable energies

The Cosmological Flow

Concentrating on **exploring** and **understanding** the physics in motivated scenarios **in full generality**

Efficient and systematic approach to compute inflationary correlators, avoiding technical difficulties

We have only scratched the tip of the iceberg ...

Outlook

The cosmological flow offers straight extensions

We have paved the way to a systematic investigation of the rich and fascinating subject of inflationary correlators

Effective Field Theory of Inflationary Fluctuations

The relevant degree of freedom is the **Goldstone boson** associated with the spontaneous breaking of time-translation invariance

Stuckelberg trick

$$t \to t + \pi(\boldsymbol{x}, t) \longrightarrow \delta g^{00} \to -2\dot{\pi} - \dot{\pi}^2 + (\partial_i \pi)^2/a^2$$

• Decoupling limit

$$M_{\mathrm{Pl}}
ightarrow \infty$$
 and $\dot{H}
ightarrow 0$ while keeping $M_{\mathrm{Pl}}^2 \dot{H}$ fixed

Primordial Features: Effective Single-Field Description

When the field σ is sufficiently massive, we can integrate it out and obtain an effective single-field theory for π

Solve for the linear equation of motion

$$(-\Box + m^2)\sigma = \rho \dot{\pi}_c \qquad \longrightarrow \qquad \sigma = \frac{\rho}{-\Box + m^2} \dot{\pi}_c \approx \frac{\rho}{m^2} \left(1 - \frac{\Box}{m^2} + \dots \right) \dot{\pi}_c$$

Reduced speed of sound

$$\mathcal{L}/a^{3} = \frac{1}{2\tilde{c}_{s}^{2}(t)}\dot{\pi}_{c}^{2} - \frac{1}{2}\frac{(\partial_{i}\pi_{c})^{2}}{a^{2}} + \frac{1}{2f_{\pi}^{2}}\left(\frac{1}{\tilde{c}_{s}^{2}(t)} - 1\right)\dot{\pi}_{c}(\partial_{\mu}\pi_{c})^{2} - \frac{\dot{\tilde{c}}_{s}(t)}{f_{\pi}^{2}\tilde{c}_{s}(t)}\pi_{c}\dot{\pi}_{c}^{2}$$
with $\tilde{c}_{s}^{-2}(t) = 1 + \frac{\rho^{2}}{m^{2}}$

Primordial Features: Effective Single-Field Description

The effective single-field theory gives wrong predictions

Phase Diagram of the $\pi-\sigma$ Model

Quadratic Theory Phase Diagram

Single-Exchange Diagram Phase Diagram

Weak mixing : $\rho/H \lesssim c_s^{-1/2}$

Strong mixing : $ho/H \lesssim c_s^{3/4} \frac{\kappa^{1/2}}{\Delta_\zeta}$

Single-Exchange Diagram Phase Diagram

Weak mixing :
$$\tilde{
ho}/H \lesssim \frac{c_s^{-1/2}}{2\pi\Delta_\zeta}$$

Strong mixing :
$$\tilde{\rho}/H \lesssim \frac{\rho}{H} \frac{\kappa^{1/2}}{c_s^{1/4} \Delta_{\zeta}}$$

Double-Exchange Diagram Phase Diagram

Weak mixing :
$$\tilde{\alpha} \lesssim \frac{c_s^{-1/2}}{2} \frac{1}{(2\pi\Delta_\zeta)^{1/2}}$$

Strong mixing :
$$\tilde{\alpha} \lesssim \left(\frac{\rho \Delta_{\zeta}}{16c_s^{5/2}H\kappa}\right)^{1/4}$$

Triple-Exchange Diagram Phase Diagram

Weak mixing : $\mu/H \lesssim 1$ Strong mixing : $\mu/H \lesssim 1$

Strong mixing: $\mu/H \lesssim c_s^{-3/4} \left(\rho/H\right)^{3/4}$

Numerical Challenges and Developments

Direct Calculations (not systematic)

- Wick rotation [Chen and Wang 2010]
- Numerical mode functions [Assassi et al. 2013]
- Holder summation [Junaid et al. 2015]
- Cesaro/Riesz summation [Tran et al. 2022]

• . . .

Indirect Calculations

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \langle \phi^3 \rangle = g - iK \langle \phi^3 \rangle$$

 Translate the problem of computing Feynman-type integrals to solving differential equations in time

Systematic framework to study inflationary correlators : the **transport approach**

Codes Available for Inflationary Calculations

Two-point function solvers:

- FieldInf
- ModeCode & MultiModeCode
- PyFlation

Our code:

- Decouple from a specific background
- EFT at the level of the fluctuations

Three-point function solvers:

• BINGO (single-field inflation)

Transport approach:

- CppTransport
- PyTransport

Ringeval, Brax, van de Bruck, Davis, Martin [2006] Price, Frazer, Xu, Peiris, Easther [2015] Huston, Malik [2009, 2011] Hazra, Sriramkumar, Martin [2013] Dias, Fazer, Seery [2015] Mulryne [2016]