

# Multimessenger prospects for massive black hole binaries in LISA

Alberto Mangiagli

Collaborators: Chiara Caprini, Marta Volonteri, Sylvain Marsat, Susanna Vergani, Nicola Tamanini, Henri Inchauspé, Lorenzo Speri

Laboratoire Astroparticule et Cosmologie (APC)

IAP seminar, Paris

# Outline

- Introduction on gravitational waves (GWs) and massive black hole (MBHs)
- ► GWs from the coalescence of MBH binaries (MBHBs)
- > Electromagnetic (EM) and GW emissions from MBHBs
- Cosmology prospects

$$g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u},\quad h_{\mu
u}\ll 1$$

Every accelerating mass distribution with non-zero quadrupole momentum emits GWs!  $$\downarrow$$ 

Compact objects binaries are perfect candidates!





## How can we detect them?

Typical strain  $h \simeq \frac{\Delta L}{L} \simeq 10^{-21} \rightarrow$  Weak signal!



## The first detection: GW150914!





▶ BH-BH merger
 ▶ d<sub>L</sub> = 410 Mpc (z ~ 0.09)
 ▶ m<sub>1</sub> = 36M<sub>☉</sub>, m<sub>2</sub> = 29M<sub>☉</sub>

Peak luminosity ~ 10<sup>56</sup> erg/s

Up so far ...



## Overview

#### THE SPECTRUM OF GRAVITATIONAL WAVES





# What are massive black holes (MBHs)?

We currently believe that MBHs are hosted at the center of galaxies with masses up to  $\sim 10^9-10^{10}M_\odot$ 



For today talk, let's focus on the interval

$$M_{BH}\sim 10^{5-7}\,M_\odot$$

When two galaxies merge, the MBHs in their center form a binary and, eventually, merge emitting gravitational waves (GWs)



The path to coalescence is still unclear and long: from  $\sim 10~\text{kpc}$  to  $10^{-3}~\text{pc}$ 

- Dynamical friction with gas and stars is efficient down to ~pc scales
- > 3-body interactions?
- Refill of loss cone?

(For reviews : Volonteri+10, Mayer+13, De Rosa+19, arXiv:2203.06016)

# Why should we focus on MBHBs?

## The importance of MBHBs

#### Astrophysics

#### Constrain MBHBs formation and evolution scenarios



Multi-messenger

Formation of X-ray corona and jet around newly formed horizons



#### Cosmology

Testing the expansion rate of the Universe



# **Observing the entire Universe with GWs**

In mid-2030s LISA (Laser Interferometer Space Antenna) will observe the GWs from the coalescence of MBHBs in the entire Universe (ArXiv:1702.00786)

3rd Large class mission selected by European Space Agency (ESA)

Successfully ended Phase A - Now in Phase B1 - Mission Adoption at end 2023





# The LISA Consortium

A large community to support LISA mission:

- > +1300 full and associate members
- 5 Working Groups: Data Challenges, Astrophysics, Cosmology, Fundamental Physics, Waveform
- > 2 Consortium meetings/yr, LISA Symposium every 2 yrs and WG meetings every year



#### https://www.elisascience.org/

# GWs from the coalescence of MBH binaries

# **MBHB** merger rates



#### Let's proceed with order: How many MBHB mergers do we expect?

Large uncertainties in astrophysical processes (Klein+16, Katz+19, Barausse+20):

- Initial seed mass
- Time delays between galaxy and MBHBs merger
- Feedback processes

Cosmological simulations predicts  $\sim$  1/yr with  $M_{BH}\gtrsim 10^5\,M_\odot$ 

From few to several hundreads per year

# How MBHBs do look like in LISA?

- Strong and long-lasting signals
- > Strong overlap between signals from different sources  $\rightarrow$  Global fit approach
- Detectable up to z ~ 20



# What information LISA can provide?

MBHBs can be detected days or weeks before merger



During the inspiral LISA can provide additional information: individual BH mass, spins and luminosity distance can be constrained to  $\sim$  5% *before* merger

What about the sky localization?

(AM+20, Piro+22)

## LISA sky localization for systems at z = 1



 $\Delta\Omega \simeq \text{telescope FOV only close to merger} \begin{cases} < 10 \text{ hrs} & \text{LSST} \\ \text{merger} & \text{Athena} \end{cases}$ Large distributions  $\rightarrow$  strong dependence from true binary position

# "Multimodal" LISA events

Systems with multimodal sky posterior distribution from LISA data analysis



- Arise from LISA degeneracy pattern function
- > Relevant especially for the inspiral search
- Might pose issues for the search of the EM counterpart

# EM and GW emissions from MBHBs

# What EM emission do we expect?

No transient AGN-like emission has been associated unambiguously to a MBHBs
 Uncertainties on BH of 10<sup>5−7</sup> M<sub>☉</sub> concerning bolometric correction, obscuration, spectra and variability

## During the inspiral ...



- The binary excavates a cavity
- Two bright minidisks around each BHs emitting in X-ray
- Gas streams flowing in the cavity
- Periodicities due to the orbital motion of the binary might be clear signatures (Dal Canton, AM +19)

(Bowen+18, Gold+14, Haiman+17, Tang+18, Nobel+21, Combi+22, ...)

## What EM emission do we expect?



#### **Post-merger signatures**

- Disk-rebrightening (Rossi+10)
  - In-plane kicks for BHs with spins aligned along the orbital momentum
  - X Might be to weak to be observed
- Afterglow emission (Yuan+21)
  - Broad band emission from radio to X-ray
  - X Delays from days to months

However, close at merger, minidisks might be depleated  $\Rightarrow$  Reduction in luminosity (Tang+18)



## **Multi-messenger in practice**



# A realistic population of MBHBs

How many counterparts do we expect over LISA time mission? (AM+2207.10678)

Estimate the number of counterparts over LISA time mission and cosmological parameters

#### Key improvements respect to previous works

- Improve the modeling of the EM counterpart
- $\blacktriangleright$  Bayesian parameter estimation for GW signal (Marsat+20)  $\rightarrow$  expensive but realistic

## Starting point

Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)



# Modeling the EM emission

## **Observing strategies**

Optical

LSST, VRO

- Identification+redshift
- $\blacktriangleright$  Deep as m $\sim$  27.5
- $\blacktriangleright$  FOV  $\sim 10 \, deg^2$

| F | Radio |  |
|---|-------|--|
| S | KA    |  |

- Only identification
- $\blacktriangleright$  Deep as  $F \sim 1 \, \mu {
  m Jy}$
- $\blacktriangleright \ FOV \sim 10 \, deg^2$
- Redshift with ELT
- Flare+Jet emission

- X-ray *Athena* 
  - Only identification
  - > Deep as  $F_X \sim 3 \times 10^{-17} \text{ erg/s/cm}^2$
  - $\blacktriangleright$  FOV  $\sim 0.4 \, deg^2$
  - Redshift with ELT
  - > Accretion from catalog or Eddington

# Additional variations

AGN obscuration (Ueda+14, Gnedin+07)

- Affect LSST/VRO and Athena
- Typical hydrogen column density distribution

Radio Jet (Cohen+06)

- Affect SKA
- Assume a jet opening angle of ~ 30° (Yuan+21)

# Two main scenarios

#### Procedure



#### We focus on two scenarios

### Maximising

- AGN obscuration neglected
- ► Isotropic flare emission
- Eddington accretion for X-ray emission

## Minimising

- AGN obscuration included
- > Collimated flare emission with  $\theta \sim 30^{\circ}$
- Catalog accretion for X-ray emission

## **Redshift and total mass distributions**



## **Redshift and total mass distributions**



## **Redshift and total mass distributions**



# EMcps in optical, X-ray and radio



# EMcp rates in 4 yr

| (In 4 yr) | LSST, VRO                   | SKA+ELT   |           |                                | Athen                          | a+ELT |                 |                                           |                      |                         |
|-----------|-----------------------------|-----------|-----------|--------------------------------|--------------------------------|-------|-----------------|-------------------------------------------|----------------------|-------------------------|
|           |                             | Isotropic | Isotropic | Isotropic                      | Isotropic θ                    | 0 200 | 0 60            | Catalog                                   | Eddington            |                         |
|           |                             |           |           |                                |                                |       | $v \sim 30$     | $\sim 30^{\circ}$ $\theta \sim 0^{\circ}$ | $F_{X, lim} = 4e-17$ | $F_{\rm X,lim} = 4e-17$ |
|           | $\Delta\Omega=10{ m deg^2}$ |           |           | $\Delta\Omega=0.4\text{deg}^2$ | $\Delta\Omega=0.4\text{deg}^2$ |       |                 |                                           |                      |                         |
| No-obsc.  | 0.84                        | 6.4       | 1.51      | 0.04                           | 0.49                           | 1.02  | Light           |                                           |                      |                         |
|           | 3.07                        | 14.8      | 2.71      | 0.04                           | 2.67                           | 3.87  | Heavy           |                                           |                      |                         |
|           | 0.53                        | 20.3      | 3.2       | 0.04                           | 0.58                           | 4.4   | Heavy-no-delays |                                           |                      |                         |
| Obsc.     | 0.13                        | 6.4       | 1.51      | 0.04                           | 0.04                           | 0.13  | Light           |                                           |                      |                         |
|           | 0.75                        | 14.8      | 2.71      | 0.04                           | 0.22                           | 0.18  | Heavy           |                                           |                      |                         |
|           | 0.35                        | 20.3      | 3.2       | 0.04                           | 0.18                           | 0.27  | Heavy-no-delays |                                           |                      |                         |

- Dramatic decrease with obscuaration and radio jet
- Parameter estimation selects preferentially *heavy*

| (In 4 yr)       | Maximising | Minimising |  |
|-----------------|------------|------------|--|
| Light           | 6.4        | 1.6        |  |
| Heavy           | 14.8       | 3.3        |  |
| Heavy-no-delays | 20.7       | 3.5        |  |

# What about multimodal events?

### Focus only on the true binary spot

#### **Modes probability**



## Contribution to the expected rate in 4 yr

|          | 1mode | 2modes | 8modes |
|----------|-------|--------|--------|
| Light    | 6.0   | 0.31   | 0.13   |
| Heavy    | 10.7  | 3.9    | 0.18   |
| Heavy-nd | 16.8  | 3.5    | 0.4    |

- 2modes have always one mode more probable than the other
- 8modes provides < 1 counterparts in the entire mission

Multimodal events does not affect (significantly) counterpart estimates

Cosmology prospects

# MBHBs as cosmological probes

The Λ-Cold Dark Matter (ΛCDM) is the most common cosmological parametrization:

- Simple model with good fit to the bulk of data
- X Current tensions :
  - > Early Universe: Cosmic Microwave Background (CMB) observations at z > 1000
  - > Late Universe: SNIa, lensed images, standard sirens at  $z \lesssim 2.5$

Compact object binaires are standard sirens

GWs present several pros respect to standard techniques

- > Direct information on  $d_L \rightarrow$  No calibration errors
- > Independent from CMB or SNIa  $\rightarrow$  Independent estimates

Can MBHBs solve the Hubble tension?

## MBHBs as cosmological probes



# **Bright and Dark sirens**

Bright sirens

Redshift information from the EM counterpart

(Holz+05, Del Pozzo+12, Tamanini+16, LVC+ Nature 551)

- Direct redshift information
- × Challenging detection of EM counterpart
- × Few and faint sources



#### Dark sirens

Redshift information from the galaxy distribution (Schutz86, Petiteau+11, Muttoni+21)

- ✓ More systems
- × Error volumes with  $> 10^3$  galaxies
- × Catalog completeness at  $z\sim2-3$



# Luminosity distance and redshift estimates

## Luminosity distance

- > Accurate estimate of luminosity distance  $\rightarrow \frac{\Delta d_L}{d_l} < 10\%$
- > Lensing relevant for  $z \gtrsim 2-3$
- Peculiar velocities are negligible

## **Redshift measurements**

## LSST/VRO

Photometric measurements with  $\Delta z = 0.03(1 + z)$  (*Laigle* + 19)



Combine the luminosity distance and redshift uncertainty to constrain cosmological parameters



MBHBs multi-messenger will be challenging!

### Concerning the GW signal

- > Systems can be detected weeks before merger but the sky localization is poor
- > The sky localization improves significantly at merger
- There might be many galaxies in LISA error box (See Lops+22)

### Estimating the number of counterpart for MBHB mergers in LISA

- Large uncertainties on the type of EM emissions we expect
- > Most sources are intrinsically faint and at high redshift
- Obscuration decreases the number of EMcps 

   We need better modeling and predictions
- > Few events  $\Rightarrow$  We need accurately planned follow-up strategies

MBHBs multi-messenger will be challenging!

### Concerning the GW signal

- > Systems can be detected weeks before merger but the sky localization is poor
- > The sky localization improves significantly at merger
- There might be many galaxies in LISA error box (See Lops+22)

### Estimating the number of counterpart for MBHB mergers in LISA

- Large uncertainties on the type of EM emissions we expect
- > Most sources are intrinsically faint and at high redshift
- Obscuration decreases the number of EMcps 

   We need better modeling and predictions
- > Few events  $\Rightarrow$  We need accurately planned follow-up strategies

Thanks! Any questions?