Solution to binary black hole dynamics

Sashwat Tanay
LUTH, Observatoire de Paris
\section*{GReCO Seminar, IAP Paris}
29 Jan, 2024

In collaboration with L. C. Stein, G. Cho, J. T. Gálvez Ghersi, and R. Samanta

Plan of the talk

- Introduction and theory

Plan of the talk

- Introduction and theory
- 1.5PN: solution to the BBH system

Plan of the talk

- Introduction and theory
- 1.5PN: solution to the BBH system
- 2PN: two new constants of motion

Plan of the talk

- Introduction and theory
- 1.5PN: solution to the BBH system
- 2PN: two new constants of motion
- Conclusions and future avenues

Introduction and theory

Gravitational waves (GWs) from binary black holes

- Stellar mass BBHs: LIGO/LISA sources of GWs.

Gravitational waves (GWs) from binary black holes

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.

Gravitational waves (GWs) from binary black holes

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.

Gravitational waves (GWs) from binary black holes

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.
- Quadrupole formula: $\bar{h}_{i j}(t, \mathbf{x}) \sim \frac{2 G}{r} \frac{d^{2} l_{i j}\left(t_{r}\right)}{d t^{2}} ; I_{i j}(t)=\int x^{i} x^{j} T^{00}(t, \mathbf{x}) d^{3} x$

Gravitational waves (GWs) from binary black holes

- Stellar mass BBHs: LIGO/LISA sources of GWs.
- Matched filtering: Model GWs to detect GWs.
- Inspiral stage: the longest-lived stage of BBH evolution.
- Quadrupole formula: $\bar{h}_{i j}(t, \mathbf{x}) \sim \frac{2 G}{r} \frac{d^{2} l_{i j}\left(t_{r}\right)}{d t^{2}} ; I_{i j}(t)=\int x^{i} x^{j} T^{00}(t, \mathbf{x}) d^{3} x$
- GWs are functions of black hole trajectories (focus of the talk).

Binary black-holes and post-Newtonian theory

- BBHs in inspiral stage are studied within post-Newtonian (PN) approximation.

Binary black-holes and post-Newtonian theory

- BBHs in inspiral stage are studied within post-Newtonian (PN) approximation.
- Applicable when black holes are far apart $\left(\frac{G m}{c^{2} R} \ll 1\right)$ and move slowly $\left(v^{2} / c^{2} \ll 1\right)$.

Binary black-holes and post-Newtonian theory

- BBHs in inspiral stage are studied within post-Newtonian (PN) approximation.
- Applicable when black holes are far apart $\left(\frac{G m}{c^{2} R} \ll 1\right)$ and move slowly $\left(v^{2} / c^{2} \ll 1\right)$.
- Quantities are expanded in the small parameter v^{2} / c^{2}.

Binary black-holes and post-Newtonian theory

- BBHs in inspiral stage are studied within post-Newtonian (PN) approximation.
- Applicable when black holes are far apart $\left(\frac{G m}{c^{2} R} \ll 1\right)$ and move slowly $\left(v^{2} / c^{2} \ll 1\right)$.
- Quantities are expanded in the small parameter v^{2} / c^{2}.
- Example: schematic representation of Hamiltonian. Each factor of $1 / c^{2} \Longrightarrow$ one PN order.

$$
\begin{aligned}
H= & (\ldots)+\frac{1}{c^{2}}(\ldots)+\frac{1}{c^{3}}(\ldots)+\frac{1}{c^{4}}(\ldots) \\
& 0 P N \quad 1 P N \quad 1.5 P N \quad 2 P N
\end{aligned}
$$

Binary black-holes and post-Newtonian theory

- BBHs in inspiral stage are studied within post-Newtonian (PN) approximation.
- Applicable when black holes are far apart $\left(\frac{G m}{c^{2} R} \ll 1\right)$ and move slowly $\left(v^{2} / c^{2} \ll 1\right)$.
- Quantities are expanded in the small parameter v^{2} / c^{2}.
- Example: schematic representation of Hamiltonian. Each factor of $1 / c^{2} \Longrightarrow$ one PN order.

$$
\begin{aligned}
H= & (\ldots)+\frac{1}{c^{2}}(\ldots)+\frac{1}{c^{3}}(\ldots)+\frac{1}{c^{4}}(\ldots) \\
& 0 P N \quad 1 P N \quad 1.5 P N \quad 2 P N
\end{aligned}
$$

- OPN \sim Newtonian order. The rest are relativistic corrections.

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.
- Canonical transformation: $(q, p) \leftrightarrow(Q, P)$, such that $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q \Longrightarrow$

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.
- Canonical transformation: $(q, p) \leftrightarrow(Q, P)$, such that $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q \Longrightarrow \dot{Q}=\partial H / \partial P, \dot{P}=-\partial H / \partial Q$.

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.
- Canonical transformation: $(q, p) \leftrightarrow(Q, P)$, such that $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q \Longrightarrow \dot{Q}=\partial H / \partial P, \dot{P}=-\partial H / \partial Q$.
- Canonical transformations preserve the form of Hamilton's equations.

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.
- Canonical transformation: $(q, p) \leftrightarrow(Q, P)$, such that $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q \Longrightarrow \dot{Q}=\partial H / \partial P, \dot{P}=-\partial H / \partial Q$.
- Canonical transformations preserve the form of Hamilton's equations.
- Hamilton's equations $\Longrightarrow \dot{G}(q, p)=\{G, H\}$. [Goldstein]

Canonical transformations and Poisson brackets

- Hamilton's equations: $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q$.
- Canonical transformation: $(q, p) \leftrightarrow(Q, P)$, such that $\dot{q}=\partial H / \partial p, \dot{p}=-\partial H / \partial q \Longrightarrow \dot{Q}=\partial H / \partial P, \dot{P}=-\partial H / \partial Q$.
- Canonical transformations preserve the form of Hamilton's equations.
- Hamilton's equations $\Longrightarrow \dot{G}(q, p)=\{G, H\} . \quad$ [Goldstein]
- Poisson bracket: $\{f, g\}=\left(\frac{\partial f}{\partial q} \frac{\partial g}{\partial p}-\frac{\partial f}{\partial p} \frac{\partial g}{\partial q}\right)$.

Phase space of spinning PN BBHs

COM FRAME

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]
- With $m=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$ and $\vec{n}:=\vec{R} / R$, the 2PN Hamiltonian becomes

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]
- With $m=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$ and $\vec{n}:=\vec{R} / R$, the 2PN Hamiltonian becomes

$$
\begin{aligned}
H & =\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{4}} F_{2}(\vec{R}, \vec{P}) \\
& +\frac{1}{c^{3}} F_{3}\left(\overrightarrow{S_{1}} \cdot \vec{L}, \overrightarrow{S_{2}} \cdot \vec{L}\right)+\frac{1}{c^{4}} F_{4}\left(\overrightarrow{S_{1}} \cdot \vec{n}, \overrightarrow{S_{2}} \cdot \vec{n}, \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right) .
\end{aligned}
$$

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]
- With $m=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$ and $\vec{n}:=\vec{R} / R$, the 2PN Hamiltonian becomes

$$
\begin{aligned}
H & =\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{4}} F_{2}(\vec{R}, \vec{P}) \\
& +\frac{1}{c^{3}} F_{3}\left(\overrightarrow{S_{1}} \cdot \vec{L}, \overrightarrow{S_{2}} \cdot \vec{L}\right)+\frac{1}{c^{4}} F_{4}\left(\overrightarrow{S_{1}} \cdot \vec{n}, \overrightarrow{S_{2}} \cdot \vec{n}, \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right) .
\end{aligned}
$$

- Evolution eqn. for $G\left(R^{i}, P^{i}, S_{1}^{i}, S_{2}^{i}\right): \dot{G}=\{G, H\}$.
[Goldstein]

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]
- With $m=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$ and $\vec{n}:=\vec{R} / R$, the 2PN Hamiltonian becomes

$$
\begin{aligned}
H & =\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{4}} F_{2}(\vec{R}, \vec{P}) \\
& +\frac{1}{c^{3}} F_{3}\left(\overrightarrow{S_{1}} \cdot \vec{L}, \overrightarrow{S_{2}} \cdot \vec{L}\right)+\frac{1}{c^{4}} F_{4}\left(\overrightarrow{S_{1}} \cdot \vec{n}, \overrightarrow{S_{2}} \cdot \vec{n}, \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right) .
\end{aligned}
$$

- Evolution eqn. for $G\left(R^{i}, P^{i}, S_{1}^{i}, S_{2}^{i}\right): \dot{G}=\{G, H\}$. [Goldstein]
- Lingo: $\{F, G\}=0 \sim F \& G$ commute.

2PN Hamiltonian

- Starting point: 2PN Hamiltonian due to [Barker, O'Connell-1975]
- With $m=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$ and $\vec{n}:=\vec{R} / R$, the 2PN Hamiltonian becomes

$$
\begin{aligned}
H & =\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{4}} F_{2}(\vec{R}, \vec{P}) \\
& +\frac{1}{c^{3}} F_{3}\left(\overrightarrow{S_{1}} \cdot \vec{L}, \overrightarrow{S_{2}} \cdot \vec{L}\right)+\frac{1}{c^{4}} F_{4}\left(\overrightarrow{S_{1}} \cdot \vec{n}, \overrightarrow{S_{2}} \cdot \vec{n}, \overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}\right) .
\end{aligned}
$$

- Evolution eqn. for $G\left(R^{i}, P^{i}, S_{1}^{i}, S_{2}^{i}\right): \dot{G}=\{G, H\}$. [Goldstein]
- Lingo: $\{F, G\}=0 \sim F \& G$ commute.
- G is a constant $\Longleftrightarrow\{G, H\}=0$.

Phase space of spinning PN BBHs

No. of phase space variables $=10$

Phase space of spinning PN BBHs

No. of phase space variables $=10\left(\right.$ since $\left.\dot{S}_{1}=\dot{S}_{2}=0\right)$:

Phase space of spinning PN BBHs

No. of phase space variables $=10$ (since $\dot{S}_{1}=\dot{S}_{2}=0$):
$R_{x}, R_{y}, R_{z}, \quad P_{x}, P_{y}, P_{z}, \quad S_{1 \phi}, S_{1 z}, \quad S_{2 \phi}, S_{2 z}$

Phase space of spinning PN BBHs

No. of phase space variables $=10$ (since $\left.\dot{S}_{1}=\dot{S}_{2}=0\right)$:
$R_{x}, R_{y}, R_{z}, \quad P_{x}, P_{y}, P_{z}, \quad S_{1 \phi}, S_{1 z}, \quad S_{2 \phi}, S_{2 z}$

$$
\mathbb{R}^{3} \oplus \mathbb{R}^{3} \otimes S^{2} \otimes S^{2}
$$

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{aligned}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{aligned}
$$

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{array}{rlrl}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{array}
$$

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{array}{rlrl}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{array}
$$

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{aligned}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{aligned}
$$

- Liouville-Arnold theorem: $2 n$ phase space variables \& n commuting constants of motion \Longrightarrow integrability. [V. I. Arnold]

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{aligned}
\dot{\mathcal{J}}_{i}=-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i}=\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{aligned}
$$

- Liouville-Arnold theorem: $2 n$ phase space variables \& n commuting constants of motion \Longrightarrow integrability. [V. I. Arnold]
- 10 phase-space variables $\Longrightarrow 5$ commuting constants for integrability $\rightarrow 5$ actions \& 5 angles $(5+5=10)$.

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{array}{rlrl}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{array}
$$

- Liouville-Arnold theorem: $2 n$ phase space variables \& n commuting constants of motion \Longrightarrow integrability. [V. I. Arnold]
- 10 phase-space variables $\Longrightarrow 5$ commuting constants for integrability $\rightarrow 5$ actions \& 5 angles $(5+5=10)$.
- Line of approach:

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{array}{rlrl}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{array}
$$

- Liouville-Arnold theorem: $2 n$ phase space variables \& n commuting constants of motion \Longrightarrow integrability. [V. I. Arnold]
- 10 phase-space variables $\Longrightarrow 5$ commuting constants for integrability $\rightarrow 5$ actions \& 5 angles $(5+5=10)$.
- Line of approach: (1) prove integrability

Integrable systems and action-angles

- Integrable system: canonical transformation $(\vec{p}, \vec{q}) \leftrightarrow(\overrightarrow{\mathcal{J}}, \vec{\theta})$ exists such that $H=H(\overrightarrow{\mathcal{J}})$ and $\{\vec{p}, \vec{q}\}\left(\theta_{i}+2 \pi\right)=\{\vec{p}, \vec{q}\}\left(\theta_{i}\right)$.
- $\mathcal{J}_{i}=$ action $\sim p ; \quad \theta_{i}=$ angle $\sim q \quad$ [Goldstein]
- Hamilton's eqns. \Longrightarrow

$$
\begin{array}{rlrl}
\dot{\mathcal{J}}_{i} & =-\partial H / \partial \theta_{i}=0 & \Longrightarrow \mathcal{J}_{i} \text { stay constant } \\
\dot{\theta}_{i} & =\partial H / \partial \mathcal{J}_{i} \equiv \omega_{i}(\overrightarrow{\mathcal{J}}) & & \Longrightarrow \theta_{i}=\omega_{i}(\overrightarrow{\mathcal{J}}) t
\end{array}
$$

- Liouville-Arnold theorem: $2 n$ phase space variables \& n commuting constants of motion \Longrightarrow integrability. [V. I. Arnold]
- 10 phase-space variables $\Longrightarrow 5$ commuting constants for integrability $\rightarrow 5$ actions \& 5 angles $(5+5=10)$.
- Line of approach: (1) prove integrability (2) find action-angles

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.
- Chaos \Longrightarrow no closed-form solutions; numerical solution also not easy.

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.
- Chaos \Longrightarrow no closed-form solutions; numerical solution also not easy.
- Action-angles \rightarrow solution and frequencies.

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.
- Chaos \Longrightarrow no closed-form solutions; numerical solution also not easy.
- Action-angles \rightarrow solution and frequencies.
- Canonical perturbation theory: $\left(\overrightarrow{\mathcal{J}}_{\text {old }}, \vec{\theta}_{\text {old }}, \vec{\omega}_{\text {old }}\right) \rightarrow\left(\overrightarrow{\mathcal{J}}_{\text {new }}, \vec{\theta}_{\text {new }}, \vec{\omega}_{\text {new }}\right)$. [Goldstein]

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.
- Chaos \Longrightarrow no closed-form solutions; numerical solution also not easy.
- Action-angles \rightarrow solution and frequencies.
- Canonical perturbation theory: $\left(\overrightarrow{\mathcal{J}}_{\text {old }}, \vec{\theta}_{\text {old }}, \vec{\omega}_{\text {old }}\right) \rightarrow\left(\overrightarrow{\mathcal{J}}_{\text {new }}, \vec{\theta}_{\text {new }}, \vec{\omega}_{\text {new }}\right)$. [Goldstein]

It's nice to have integrable systems (they occur rarely),

Integrable systems are nice (and rare) systems!

- Integrable systems are not chaotic.
- Chaos \Longrightarrow no closed-form solutions; numerical solution also not easy.
- Action-angles \rightarrow solution and frequencies.
- Canonical perturbation theory: $\left(\overrightarrow{\mathcal{J}}_{\text {old }}, \vec{\theta}_{\text {old }}, \vec{\omega}_{\text {old }}\right) \rightarrow\left(\overrightarrow{\mathcal{J}}_{\text {new }}, \vec{\theta}_{\text {new }}, \vec{\omega}_{\text {new }}\right)$. [Goldstein]

It's nice to have integrable systems (they occur rarely), and extra nice to have action-angles.

1.5PN: solution to the BBH system

The calculations of this section were long and arduous, but as it turns out, they were merely child's play. At the time of writing, the gravitational waves for binary systems in circular motion have been calculated all the way out to 3.5 PN order, and this is a much, much larger challenge. At 2pn order, for example, one finds not only the expected "standard" corrections of order β^{4}, but also tail contributions generated by the 0.5 PN order terms. At 2.5 PN order one finds tails generated by the 1 PN terms, 1 PN corrections to the 1.5 PN tail terms, as well as standard 2.5 PN terms. At 3 PN order there are, in addition to the standard terms, tails generated by the normal 1.5 pN terms, 1.5 PN corrections to the 1.5 PN tail terms, and completely new "tails of tails" terms: tails generated by the 1.5 pN tails. These formidable calculations have been carried out by a number of groups around the world, at an enormous cost of labor and sweat (perhaps even blood) There was a strong motivation

Book: Gravity (Eric Poisson \& Clifford Will), pg. 614

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
- 1976: 1PN solution given [R. Wagoner \& C. Will]

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
- 1976: 1PN solution given [R. Wagoner \& C. Will]
- 1985: Elegant solution and angle variable at $1 P N[$. Damour \& N. Deruelle]

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
- 1976: 1PN solution given [R. Wagoner \& C. Will]
- 1985: Elegant solution and angle variable at 1PN [T. Damour \& N.

Deruelle]

- 1988: 2PN actions and solution (spin terms ignored; they enter at 1.5PN) [T. Damour \& G. Schafer]

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
- 1976: 1PN solution given [R. Wagoner \& C. Will]
- 1985: Elegant solution and angle variable at 1PN [T. Damour \& N. Deruelle]
- 1988: 2PN actions and solution (spin terms ignored; they enter at 1.5PN) [T. Damour \& G. Schafer]
- 1999: 3PN action variables (spin terms ignored) [T. Damour et. al]

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
- 1976: 1PN solution given [R. Wagoner \& C. Will]
- 1985: Elegant solution and angle variable at 1PN [T. Damour \& N. Deruelle]
- 1988: 2PN actions and solution (spin terms ignored; they enter at 1.5PN) [T. Damour \& G. Schafer]
- 1999: 3PN action variables (spin terms ignored) [T. Damour et. al]
- Several solutions exist for limiting cases $\left(S_{A}, e \rightarrow 0, m_{1}=m_{2}\right)$ up to 4PN [A. Gopakumar, N. Yunes, A. Klein, N. Cornish, K. Chatziioannou].

Historical ties to Paris

- Delaunay: director of Observatoire de Paris.

Historical ties to Paris

- Delaunay: director of Observatoire de Paris.
- Damour: 1PN angle/solution and 2PN actions.

General relativistic celestial mechanics of binary systems I. The post-Newtonian motion

by

T. DAMOUR

Groupe d'astrophysique relativiste, E. R. n ${ }^{\circ} 176$ du CNRS, Observatoire de Paris-Meudon, 92195 Meudon Principal Cedex (France)
and
N. DERUELLE

Laboratoire de gravitation et cosmologie relativistes, E. R. A. $\mathrm{n}^{\circ} 533$ du CNRS, Institut Henri Poincaré, 11 rue Pierre et Marie Curie, 75005 Paris (France)

```
Higher-Order Relativistic Periastron Advances
and Binary Pulsars.
T. Damour and G. Schäfer (*)
Groupe d'Astrophysique Relativiste, CNRS
DARC,Observatoire de Paris, Section de Meudon - 92195 Meudon Principal Oedex,
(ricevuto il 14 Marzo 1988)
```

and Binary Pulsars.
T. Damour and G. Schäfer (*)

Groupe d'Astrophysique Relativiste, CNRS
DARC, Observatoire de Paris, Section de Meudon - 92195 Meudon Principal Oedex, (ricevuto il 14 Marzo 1988)

History of PN BBH action-angles and solutions

- 1609: Kepler equation $I=u-e \sin u=n t$ gives the Newtonian angle variable.
- 1850-1920: Delaunay \& Sommerfeld contributed to the Newtonian action-angles.
- 1966: 1.5PN Hamiltonian given in Barker et. al (1966). (55 years-old!)
- 1976: 1PN solution given [R. Wagoner \& C. Will]
- 1985: Elegant solution and angle variable at 1PN [T. Damour \& N. Deruelle]
- 1988: 2PN actions and solution (spin terms ignored; they enter at 1.5PN) [T. Damour \& G. Schafer]
- 1999: 3PN action variables (spin terms ignored) [T. Damour et. al]
- Several solutions exist for limiting cases $\left(S_{A}, e \rightarrow 0, m_{1}=m_{2}\right)$ up to 4PN [A. Gopakumar, N. Yunes, A. Klein, N. Cornish, K. Chatziioannou].

RESULTS: action-angles \& the solution at 1.5PN

- Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

$$
H=\underbrace{\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)}_{\text {Newtonian }}+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{3}} F_{2}\left(\vec{R}, \vec{P}, \overrightarrow{S_{1}}, \overrightarrow{S_{2}}\right)
$$

Spins enter at 1.5PN \rightarrow orbital-precession.

RESULTS: action-angles \& the solution at 1.5PN

- Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

$$
H=\underbrace{\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)}_{\text {Newtonian }}+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{3}} F_{2}\left(\vec{R}, \vec{P}, \overrightarrow{S_{1}}, \overrightarrow{S_{2}}\right)
$$

Spins enter at 1.5PN \rightarrow orbital-precession.

- Result: We construct all 5 actions, angles \& frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].

RESULTS: action-angles \& the solution at 1.5PN

- Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

$$
H=\underbrace{\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)}_{\text {Newtonian }}+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{3}} F_{2}\left(\vec{R}, \vec{P}, \overrightarrow{S_{1}}, \overrightarrow{S_{2}}\right)
$$

Spins enter at 1.5PN \rightarrow orbital-precession.

- Result: We construct all 5 actions, angles \& frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].
- Result: We construct $\left\{\vec{R}, \vec{P}, \vec{S}_{1}, \vec{S}_{2}\right\}$ as functions of $(\vec{J}, \vec{\theta})$,

RESULTS: action-angles \& the solution at 1.5PN

- Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

$$
H=\underbrace{\left(\frac{P^{2}}{2 \mu}-\frac{G m_{1} m_{2}}{R}\right)}_{\text {Newtonian }}+\frac{1}{c^{2}} F_{1}(\vec{R}, \vec{P})+\frac{1}{c^{3}} F_{2}\left(\vec{R}, \vec{P}, \overrightarrow{S_{1}}, \overrightarrow{S_{2}}\right)
$$

Spins enter at 1.5PN \rightarrow orbital-precession.

- Result: We construct all 5 actions, angles \& frequencies of the most general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].
- Result: We construct $\left\{\vec{R}, \vec{P}, \vec{S}_{1}, \vec{S}_{2}\right\}$ as functions of $(\vec{J}, \vec{\theta})$, thereby constructing the solution $\left(\vec{R}(t), \vec{P}(t), \vec{S}_{1}(t), \vec{S}_{2}(t)\right)$.

RESULTS: action expressions

$$
\begin{aligned}
& m \equiv m_{1}+m_{2}, \quad \mu \equiv m_{1} m_{2} / m, \quad \nu \equiv \mu / m, \quad \vec{L} \equiv \vec{R} \times \vec{P} \\
& \sigma_{1} \equiv\left(2+3 m_{2} / m_{1}\right), \quad \sigma_{2} \equiv\left(2+3 m_{1} / m_{2}\right), \quad \vec{S}_{\text {eff }} \equiv \sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2} \\
& \vec{J}=\vec{L}+\vec{S}_{1}+\vec{S}_{2}
\end{aligned}
$$

RESULTS: action expressions

- $m \equiv m_{1}+m_{2}, \quad \mu \equiv m_{1} m_{2} / m, \quad \nu \equiv \mu / m, \quad \vec{L} \equiv \vec{R} \times \vec{P}$, $\sigma_{1} \equiv\left(2+3 m_{2} / m_{1}\right), \quad \sigma_{2} \equiv\left(2+3 m_{1} / m_{2}\right), \quad \vec{S}_{\text {eff }} \equiv \sigma_{1} \overrightarrow{\vec{S}_{1}}+\sigma_{2} \vec{S}_{2}$, $\vec{J}=\vec{L}+\vec{S}_{1}+\vec{S}_{2}$.
- $\mathcal{J}_{1}=L, \quad \mathcal{J}_{2}=J, \quad \mathcal{J}_{3}=J_{z}$.

RESULTS: action expressions

$$
\begin{aligned}
& \text { - } m \equiv m_{1}+m_{2}, \quad \mu \equiv m_{1} m_{2} / m, \quad \nu \equiv \mu / m_{1}, \quad \vec{L} \equiv \vec{R} \times \vec{P} \\
& \sigma_{1} \equiv\left(2+3 m_{2} / m_{1}\right), \quad \sigma_{2} \equiv\left(2+3 m_{1} / m_{2}\right), \quad \vec{S}_{\text {eff }} \equiv \sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2} \\
& \vec{J}=\vec{L}+\vec{S}_{1}+\vec{S}_{2}
\end{aligned}
$$

- $\mathcal{J}_{1}=L, \quad \mathcal{J}_{2}=J, \quad \mathcal{J}_{3}=J_{z}$.
- $\mathcal{J}_{4}=-\mathcal{J}_{1}+\frac{G m \mu^{3 / 2}}{\sqrt{-2 H}}-\frac{G^{2} m \mu^{3}}{c^{2} \mathcal{J}_{1}^{3}}\left(\vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)+\frac{G m}{c^{2}}\left(\frac{3 G m \mu^{2}}{\mathcal{J}_{1}}+\frac{\sqrt{-H} \mu^{1 / 2}(-15+\nu)}{4 \sqrt{2}}\right)$.

RESULTS: action expressions

- $m \equiv m_{1}+m_{2}, \quad \mu \equiv m_{1} m_{2} / m, \quad \nu \equiv \mu / m, \quad \vec{L} \equiv \vec{R} \times \vec{P}$,
$\sigma_{1} \equiv\left(2+3 m_{2} / m_{1}\right), \quad \sigma_{2} \equiv\left(2+3 m_{1} / m_{2}\right), \quad \vec{S}_{\text {eff }} \equiv \sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2}$,
$\vec{J}=\vec{L}+\vec{S}_{1}+\vec{S}_{2}$.
- $\mathcal{J}_{1}=L, \quad \mathcal{J}_{2}=J, \quad \mathcal{J}_{3}=J_{z}$.
- $\mathcal{J}_{4}=-\mathcal{J}_{1}+\frac{G m \mu^{3 / 2}}{\sqrt{-2 H}}-\frac{G^{2} m \mu^{3}}{c^{2} \mathcal{J}_{1}^{3}}\left(\vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)+\frac{G m}{c^{2}}\left(\frac{3 G m \mu^{2}}{\mathcal{J}_{1}}+\frac{\sqrt{-H} \mu^{1 / 2}(-15+\nu)}{4 \sqrt{2}}\right)$.
- \mathcal{J}_{5} is very lengthy.

Moment of truth

FIG. 2: Comparison of the analytical solutions with the numerical one. For a system with $\left(m_{1}, m_{2}\right)=(5 / 2,1)$ and the initial values of the phase-space variables being $\vec{R}=(2,2,2), \vec{P}=(1 / 2,-1 / 2,1 / 3), \quad \overrightarrow{S_{1}}=\sqrt{\epsilon}(0,1,1), \vec{S}_{2}=\sqrt{\epsilon}(1$, $-3 / 10,0$). Subfigures (a) and (b) show evolution of x-component of \vec{R} and \vec{S}_{1}, respectively. We choose $\epsilon=0.003$ for (a) and $\epsilon=0.01$ for (b). All this results in a Newtonian-orbital time period of $T_{N} \sim 29$ for both (a) and (b), and the PN parameter ~ 0.0036 for (a) ~ 0.012 for (b) respectively. Throughout we keep $G=1$.

Mathematical ingredients of the action-angle recipe

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology,

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]
- ...albeit the problem statement is a simple coupled ODE system $\dot{G}=\{G, H\}$.

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]
- ...albeit the problem statement is a simple coupled ODE system $\dot{G}=\{G, H\}$.
- We have all seen this before (in spirit)!

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]
- ...albeit the problem statement is a simple coupled ODE system $\dot{G}=\{G, H\}$.
- We have all seen this before (in spirit)!
$\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\pi / n}{\sin (\pi / n)}$
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]
- ...albeit the problem statement is a simple coupled ODE system $\dot{G}=\{G, H\}$.
- We have all seen this before (in spirit)!
$\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\pi / n}{\sin (\pi / n)}$
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22
- LHS and RHS are built out of reals, but we need complex variables (extra variables) to prove it.

Mathematical ingredients of the action-angle recipe

- Used complex analysis, symplectic differential geometry \& topology, and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan, V. I. Arnold, Fasano-Marmi]
- ...albeit the problem statement is a simple coupled ODE system $\dot{G}=\{G, H\}$.
- We have all seen this before (in spirit)!
$\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\pi / n}{\sin (\pi / n)}$
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22
- LHS and RHS are built out of reals, but we need complex variables (extra variables) to prove it.
- (In)famous example: Fermat's last theorem [YouTube:Veritasium].

Veritasium on p-adic numbers

Link: youtu.be/tRaq4aYPzCc

2PN: two new constants of motion

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 \mathrm{PN}$ integrable.

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 P N$ integrable.
- 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via numerical simulations)

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 P N$ integrable.
- 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via numerical simulations) and the detectability prospects of GWs

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 P N$ integrable.
- 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via numerical simulations) and the detectability prospects of GWs
- Chaos: N. Cornish, J. Levin
- No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
- On the fence: A. Buonanno, M. Hartl

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 P N$ integrable.
- 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via numerical simulations) and the detectability prospects of GWs
- Chaos: N. Cornish, J. Levin
- No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
- On the fence: A. Buonanno, M. Hartl
- Simmering tension: "However the above analysis was strongly criticized in Ref. [9]..." [gr-qc:0511009]

History: are PN BBHs chaotic or integrable?

- 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively [Barker, Gupta, O'Connell].
- 2001: 5 commuting constants were found by Damour at 1.5 PN [gr-qc:0103018] $\Longrightarrow 1.5 P N$ integrable.
- 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via numerical simulations) and the detectability prospects of GWs
- Chaos: N. Cornish, J. Levin
- No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
- On the fence: A. Buonanno, M. Hartl
- Simmering tension: "However the above analysis was strongly criticized in Ref. [9]..." [gr-qc:0511009]
- See the Introduction of [gr-qc:0511009] and [2012.06586] for details.

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at $1.5 \mathrm{PN}: H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}$.

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at $1.5 \mathrm{PN}: H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}$.
- Commuting constants of motion at 2PN: $H^{2 P N}, J_{z}, J^{2}, \ell^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}$.

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at $1.5 \mathrm{PN}: H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}$.
- Commuting constants of motion at 2PN: $H^{2 P N}, J_{z}, J^{2}, \not \ell^{2}, \vec{S}_{e f f} \cdot \vec{L}$.
- Result: found corrections to $\vec{S}_{\text {eff }} \cdot \vec{L}$ and L^{2} to render them commuting constants

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at $1.5 \mathrm{PN}: H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}$.
- Commuting constants of motion at 2PN: $H^{2 P N}, J_{z}, J^{2}, \not \ell^{2}, \vec{S}_{e f f} \cdot \vec{L}$.
- Result: found corrections to $\vec{S}_{\text {eff }} \cdot \vec{L}$ and L^{2} to render them commuting constants \Longrightarrow 2PN integrability [2012.06586].

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at 1.5PN: $H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}$.
- Commuting constants of motion at 2PN: $H^{2 P N}, J_{z}, J^{2}, \not \ell^{2}, \vec{S}_{e f f} \cdot L_{L}$.
- Result: found corrections to $\vec{S}_{\text {eff }} \cdot \vec{L}$ and L^{2} to render them commuting constants \Longrightarrow 2PN integrability [2012.06586].
- They are not exact commuting constants; only in the PN perturbative sense.

RESULTS: integrable or non-integrable at 2PN?

- Commuting constants of motion at 1.5PN: $H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}$.
- Commuting constants of motion at 2PN: $H^{2 P N}, J_{z}, J^{2}, \not \ell^{2}, \vec{S}_{e f f} \cdot L_{L}$.
- Result: found corrections to $\vec{S}_{\text {eff }} \cdot \vec{L}$ and L^{2} to render them commuting constants \Longrightarrow 2PN integrability [2012.06586].
- They are not exact commuting constants; only in the PN perturbative sense.
- The non-exact nature of integrability \Longrightarrow the tension b / w the two camps.

The fourth commuting constant of motion

With the definitions:

$$
\begin{aligned}
\sigma_{1} & :=\left(2+3 m_{2} / m_{1}\right) \\
\sigma_{2} & :=\left(2+3 m_{1} / m_{2}\right) \\
\vec{S}_{\mathrm{eff}} & :=\sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2} \\
\vec{L} & :=\vec{R} \times \vec{P} \\
\epsilon & :=1 / c^{2}
\end{aligned}
$$

The fourth commuting constant of motion

With the definitions:

$$
\begin{aligned}
\sigma_{1} & :=\left(2+3 m_{2} / m_{1}\right) \\
\sigma_{2} & :=\left(2+3 m_{1} / m_{2}\right) \\
\vec{S}_{\mathrm{eff}} & :=\sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2} \\
\vec{L} & :=\vec{R} \times \vec{P} \\
\epsilon & :=1 / c^{2}
\end{aligned}
$$

The 4th commuting constant is

The fourth commuting constant of motion

With the definitions:

$$
\begin{aligned}
\sigma_{1} & :=\left(2+3 m_{2} / m_{1}\right) \\
\sigma_{2} & :=\left(2+3 m_{1} / m_{2}\right) \\
\vec{S}_{\mathrm{eff}} & :=\sigma_{1} \vec{S}_{1}+\sigma_{2} \vec{S}_{2} \\
\vec{L} & :=\vec{R} \times \vec{P} \\
\epsilon & :=1 / c^{2}
\end{aligned}
$$

The 4th commuting constant is

$$
\begin{aligned}
& \widetilde{L^{2}} \equiv L^{2}-\epsilon\left[\frac{\left(m_{2} P^{i} S_{1 i}+m_{1} P^{i} S_{2 i}\right)^{2}}{m_{1}^{2} m_{2}^{2}}+\frac{2 G\left(m_{2} R^{i} S_{1 i}+m_{1} R^{i} S_{2 i}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(R^{i} R_{i}\right)^{3 / 2}}\right. \\
& \left.+\left(\frac{P^{i} P_{i}}{m_{1} m_{2}}-\frac{2 G m_{1} m_{2}}{\left(m_{1}+m_{2}\right) \sqrt{R^{i} R_{i}}}\right) S_{1 a} S_{2}^{a}\right] .
\end{aligned}
$$

And the 5 th commuting constant is ...

And the 5th commuting constant is ...

$$
\begin{aligned}
& \widetilde{\vec{S}_{\text {eff }} \cdot \vec{L}}=\vec{S}_{\text {eff }} \cdot \vec{L}+\frac{\epsilon\left(P^{a} S_{1 a}\right)^{2}}{m_{1}^{2}}+\frac{3 m_{2} \epsilon\left(P^{a} S_{1 a}\right)^{2}}{4 m_{1}^{3}}-\frac{2 G m_{2}^{2} \epsilon\left(R^{a} S_{1 a}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}} \\
& -\frac{3 G m_{2}^{3} \epsilon\left(R^{a} S_{1 a}\right)^{2}}{2 m_{1}\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}}+\frac{3 \epsilon\left(P^{a} S_{1 a}\right)\left(P^{a} S_{2 a}\right)}{4 m_{1}^{2}} \\
& +\frac{3 \epsilon\left(P^{a} S_{1 a}\right)\left(P^{a} S_{2 a}\right)}{4 m_{2}^{2}}+\frac{2 \epsilon\left(P^{a} S_{1 a}\right)\left(P^{a} S_{2 a}\right)}{m_{1} m_{2}}+\frac{3 m_{1 \epsilon}\left(P^{a} S_{2 a}\right)^{2}}{4 m_{2}^{3}} \\
& +\frac{\epsilon\left(P^{a} S_{2 a}\right)^{2}}{m_{2}^{2}}-\frac{3 G m_{1}^{2} \epsilon\left(R^{a} S_{1 a}\right)\left(R^{a} S_{2 a}\right)}{2\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}} \\
& -\frac{4 G m_{1} m_{2} \epsilon\left(R^{a} S_{1 a}\right)\left(R^{a} S_{2 \mathrm{a}}\right)}{\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}}-\frac{3 G m_{2}^{2} \epsilon\left(R^{a} S_{1 a}\right)\left(R^{a} S_{2 a}\right)}{2\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}} \\
& -\frac{2 G m_{1}^{2} \epsilon\left(R^{a} S_{2 a}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}}-\frac{3 G m_{1}^{3} \epsilon\left(R^{a} S_{2 a}\right)^{2}}{2 m_{2}\left(m_{1}+m_{2}\right)\left(R_{a} R^{a}\right)^{3 / 2}}+\frac{1}{2}\left(S_{1}^{a} S_{2 a}\right) .
\end{aligned}
$$

Conclusions and future avenues

Summary

For a BBH with arbitrary masses, spins and eccentricity,

Summary

For a BBH with arbitrary masses, spins and eccentricity,

- 1.5PN: Found all the actions and frequencies and constructed the action-angle based solution.

Summary

For a BBH with arbitrary masses, spins and eccentricity,

- 1.5PN: Found all the actions and frequencies and constructed the action-angle based solution.
- 2PN: Found 2 new (PN perturbative) constants of motion, thereby establishing the integrable nature of the BBH.

Summary

For a BBH with arbitrary masses, spins and eccentricity,

- 1.5PN: Found all the actions and frequencies and constructed the action-angle based solution.
- 2PN: Found 2 new (PN perturbative) constants of motion, thereby establishing the integrable nature of the BBH.

Afterthoughts: (1) Nature is complex; elaborate math unavoidable

Summary

For a BBH with arbitrary masses, spins and eccentricity,

- 1.5PN: Found all the actions and frequencies and constructed the action-angle based solution.
- 2PN: Found 2 new (PN perturbative) constants of motion, thereby establishing the integrable nature of the BBH .

Afterthoughts: (1) Nature is complex; elaborate math unavoidable (2) Using classical mechanics to do GW research.

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2PN spinning systems. Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }}} \cdot \vec{L}\right)$

$$
\begin{aligned}
a_{r} & =-\frac{1}{2 h}\left(1-\frac{1}{2}(\nu-7) \frac{h}{c^{2}}-2 \frac{s_{\mathrm{eff}} \cdot l}{l^{2}} \frac{h}{c^{2}}\right), \\
e_{r}^{2} & =1+2 h l^{2}-2(6-\nu) \frac{h}{c^{2}}-5(3-\nu) \frac{h^{2} l^{2}}{c^{2}} \\
& +8\left(1+h l^{2}\right) \frac{s_{\mathrm{eff}} \cdot l}{l^{2}} \frac{h}{c^{2}}, \\
n & =(-2 h)^{3 / 2}\left(1+\frac{2 h}{8 c^{2}}(15-\nu)\right),
\end{aligned}
$$

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2PN spinning systems.
Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }}} \cdot \vec{L}\right)$

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2PN spinning systems.
Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }} \cdot \vec{L}}\right)$
- Add radiation reaction via $\dot{\vec{C}}=\vec{f}(\vec{C}) . \vec{C} \equiv\left(H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)$. Hint: Spins don't shrink. We may need only \dot{L}^{2}, \dot{H}. But how to integrate?

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2 PN spinning systems.
Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }} \cdot \vec{L}}\right)$
- Add radiation reaction via $\dot{\vec{C}}=\vec{f}(\vec{C}) . \vec{C} \equiv\left(H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)$. Hint: Spins don't shrink. We may need only \dot{L}^{2}, \dot{H}. But how to integrate?
- Work out libration-rotation separatrix and resonances using action-angles.
Hint: Use $|\partial \vec{C} / \partial \overrightarrow{\mathcal{J}}|=0 \&|\partial \vec{\omega} / \partial \overrightarrow{\mathcal{J}}|=0$. Gerosa-Kesden orbit averaged.

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2 PN spinning systems.
Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }} \cdot \vec{L}}\right)$
- Add radiation reaction via $\dot{\vec{C}}=\vec{f}(\vec{C}) . \vec{C} \equiv\left(H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)$. Hint: Spins don't shrink. We may need only \dot{L}^{2}, \dot{H}. But how to integrate?
- Work out libration-rotation separatrix and resonances using action-angles.
Hint: Use $|\partial \vec{C} / \partial \overrightarrow{\mathcal{J}}|=0 \&|\partial \vec{\omega} / \partial \overrightarrow{\mathcal{J}}|=0$. Gerosa-Kesden orbit averaged.
- Compute action-angles for EMRI (extreme mass ratio inspirals). Match PN and EMRI actions \rightarrow re-present EOB.
EOB for non-spinning system used AAs; no AAs for spinning EOB.

Future avenues

- Find 2PN action-angles using canonical pert. theory \rightarrow extend QKP elements ($a, e_{t}, e_{r}, e_{\phi}, n$) to 2 PN spinning systems.
Hint: $\left(H^{1.5 P N}, J^{2}, J_{z}, L^{2}, \vec{S}_{\text {eff }} \cdot \vec{L}\right) \rightarrow\left(H^{2 P N}, J^{2}, J_{z}, \widetilde{L^{2}}, \widetilde{S_{\text {eff }} \cdot \vec{L}}\right)$
- Add radiation reaction via $\dot{\vec{C}}=\vec{f}(\vec{C}) . \vec{C} \equiv\left(H^{1.5 \mathrm{PN}}, J^{2}, J_{z}, L^{2}, \vec{S}_{\mathrm{eff}} \cdot \vec{L}\right)$. Hint: Spins don't shrink. We may need only \dot{L}^{2}, \dot{H}. But how to integrate?
- Work out libration-rotation separatrix and resonances using action-angles. Hint: Use $|\partial \vec{C} / \partial \overrightarrow{\mathcal{J}}|=0 \&|\partial \vec{\omega} / \partial \overrightarrow{\mathcal{J}}|=0$. Gerosa-Kesden orbit averaged.
- Compute action-angles for EMRI (extreme mass ratio inspirals). Match PN and EMRI actions \rightarrow re-present EOB.
EOB for non-spinning system used AAs; no AAs for spinning EOB.
- Prove integrability at 3PN.

Refs:

- Papers: 2012.06586, 2110.15351, 2210.01605.
- Lecture notes: 2206.05799
- Mathematica package:
github.com/sashwattanay/BBH-PN-
Toolkit
- YouTube video on the package
- Contact: sashwat.tanay@obspm.fr

Thank you! Questions?

