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Introduction

• First direct observation of a black hole in 2019 [Akiyama et al. ’19]

• New opportunity to test General Relativity in its strong field regime

• Extract observables from the observed image: critical curve
• Parametrize deviations from the GR prediction

• This work: analytical computation of the critical curve beyond GR

• Exciting opportunities to apply this framework to future observations
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Black hole critical curve



Black hole observations Critical curve computation in General Relativity

Results from the EHT collaboration

40 µas

M87* 2018 April 21 First direct observation of the vicinity of a
black hole in 2017

• Months of data using
very-long-baseline interferometry

• First-of-its-kind observation followed
by several others

• Black holes: strong field prediction of
General Relativity −→ perfect
laboratories for testing the theory

[Akiyama et al. ’24]
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Black hole observations Critical curve computation in General Relativity

Different trajectories around the black hole

• The accretion disk (orbiting the black hole) emits light
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Black hole observations Critical curve computation in General Relativity

Different trajectories around the black hole

• The accretion disk (orbiting the black hole) emits light

• Some light is directly deflected by the black hole, doing
n = 0 revolutions around it

• Some light does n = 1 revolution around the black hole
then escapes

• Some light is trapped for n > 1 revolutions but ultimately
also escapes

• We observe a superposition of all possible trajectories:
those with n > 1 are very close together

3



Black hole observations Critical curve computation in General Relativity

What do we see?

Full n = 0 n = 1 n = 2

Photon Ring

Inner Shadow Shadow

• Photons escape after n orbits so one
region is singled out: the critical curve

• Convergence is exponential so n & 1 is
sufficient [Lupsasca et al. ’24]

The critical curve contains information
about the black hole spacetime while being

independent of the accretion disk

[Lupsasca et al. ’24]
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Black hole observations Critical curve computation in General Relativity

Conception of a test of General Relativity

Observations prospects
• Peak in intensity producing a clear interferometric pattern allowing for extraction
[Lupsasca et al. ’24]

• Future array of telescopes : the Black Hole EXplorer (BHEX) mission [Johnson et al. ’24]

Critical curve as a test of GR
• Can get information about the spacetime without modelling the accretion disk

• Analytical computation possible in General Relativity

Need for theoretical predictions for alternative theories beyond GR and
exotic objects (wormholes...)
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Black hole observations Critical curve computation in General Relativity

Principle of computation

Main focus: circular photon orbits around a Kerr black hole

• Such orbits are unstable

• Studied using the null geodesics

d2xα

dλ2 + Γα
µν

dxµ

dλ
dxν

dλ
= 0

1. Solve the equations for all positions
near the BH

2. Find the impact of each geodesic on
the observer’s screen

3. Extract the shape of the critical curve

−→ made much easier due to the integrability of geodesics on a Kerr black hole

6



Black hole observations Critical curve computation in General Relativity

Kerr black hole

Kerr metric: stationary axisymmetric black hole

ds2 = −
(

1 − 2Mr
Σ

)
dt2+

Σ

∆
dr2+Σdθ2+

(
r2 + a2 +

2Mra2

Σ
sin2 θ

)
sin2 θ dφ2 −4Mra sin2 θ

Σ
dt dφ

Σ = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2

Regions
• Outer horizon r+ = M +

√
M 2 − a2

• Inner horizon r− = M −
√

M 2 − a2

• Ergoregion r±
e = M ±

√
M 2 − a2 cos2 θ

Tetrad

lµ∂µ =
r2 + a2

∆
∂t + ∂r +

a
∆
∂φ

nµ∂µ =
r2 + a2

2Σ
∂t −

∆

2Σ
∂r +

a
2Σ

∂φ
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Black hole observations Critical curve computation in General Relativity

Integrability of the system

4D space: a geodesic L has 8 degrees of freedom xµ, pµ

Symmetries of spacetime
• Stationarity: ξµ∂µ = ∂t

• Axisymmetry: χµ∂µ = ∂φ

• Rank-2 Killing tensor

Kµν = r2gµν + 2Σl(µnν)

∇(µKνρ) = 0

Constants of motion on L
• Energy E = −ξµpµ

• Angular momentum L = χµpµ

• Hamiltonian H = pµpµ/2

• Carter constant [Carter ’68]

K = Kµνpµpν

The system is integrable thanks to this additional symmetry 8



Black hole observations Critical curve computation in General Relativity

Petrov classification

Main idea: classify spacetimes by multiplicity of the principal null directions of the Weyl
tensor. Higher multiplicity −→ higher symmetry

I

II

III

D

N O

Most general spacetime Kerr spacetime

algebraically
special
spacetimes

1
2

CµνρσXρσ = λXµν

Algebraically special spacetimes have various interesting properties: analytic
expressions, separability...

9



Black hole observations Critical curve computation in General Relativity

Killing tower

• Kµν can be built from a Killing-Yano 2-form:

Kµν = −YµαYα
ν , ∇αYµν +∇νYµα = 0

• This Killing-Yano 2-form exists because the Kerr metric is of Petrov type D and has no
acceleration [Kubiznak, Frolov ’07]

• One can introduce a principal tensor h = ?Y

• From this principal tensor, one can construct an abundant structure of tensors with
specific algebraic relations [Frolov et al. ’17]

• In particular, one can recover

• the complete integrability of the geodesic motion
• integrability of the motion of spinning particles [Ramond ’22]

• separability of the perturbation equations for spin s [Teukolsky ’72] 10



Black hole observations Critical curve computation in General Relativity

Summary

• The image of a black hole contains a critical curve which
does not depend on the accretion disk

• Comparing this curve to the theoretical prediction yields
a new test of GR in its strong regime

• Theoretical shape can be obtained analytically due to the
integrability of the geodesic motion

−→ How can one obtain the critical curve in beyond-GR theories?

[Gourgoulhon ’25]
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Roadmap for generalizing Kerr

No-hair theorem
Kerr is the unique asymptotically flat stationary and axisymmetric vacuum solution of GR

Modified gravity
• Extensions of General Relativity [Deffayet

et al. ’11; Langlois, Noui ’16]

• Disformal transformations [Anson et al.

’21; Ben Achour et al. ’20]

• ad hoc parametrizations of the metric
functions [Johannsen, Psaltis ’10]

• This work: focus on parametrizing
without requiring a specific action

Preserving symmetries
• Plebanski-Demianski family that
maintains Petrov type D [Plebanski,

Demianski ’76]

• Preserving separability of
Hamilton-Jacobi [Carter ’68]

• This work: unique solution preserving
the Killing tower [Krtous et al. ’07]
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Existing parametrizations

ds2 = gtt dt2 + 2gtφ dt dφ+ grr dr2 + gθθ dθ2 + gφφ dφ2 [Yagi et al. ’24]

gtt = − Σ̃(A5 − a2A2
2 sin

2 θ)

ρ4 , gtφ =
aA5(A5 − A0)Σ̃ sin2 θ

ρ4 , gφφ =
Σ̃ sin2 θA5(A2

1 − a2A5 sin
2 θ)

ρ4 ,

Σ̃ = r2 + a2 cos2 θ + f (r) + g(θ) , gθθ = Σ̃ , grr =
Σ̃

A5

ρ4 = a4A2
2A5 sin

4 θ + a2 sin2 θ(A2
0 − 2A0A5 − A2

1A2
2) + A2

1A5 .

• Provides both radial and polar
deformations

• General case: Petrov type I

• Radial deformations can keep a
Killing-Yano 2-form

• No such 2-form for polar deformations 13



Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Kerr-off-shell family

Kerr off-shell: most general spacetime beyond Kerr
with Killing tower preserved [Krtous et al. ’07]

ds2 = −∆r(r)
Σ

(
dτ + y2dϕ

)2
+

∆y(y)
Σ

(
dτ − r2dϕ

)2
+

Σ

∆r(r)
dr2 +

Σ

∆y(y)
dy2 , Σ = r2 +y2

Observations
• Does not rely on a specific
action

• Provides both radial and polar
deviations

• Integrability makes the critical
curve computation analytical

Theory
• Preserves the Killing tower of Kerr: expect the
same properties (Teukolsky equation, etc.)

• Preserves the Petrov type D of Kerr

• Recover Kerr with

∆r = r2 − 2Mr + a2 , ∆y = a2 − y2 ,

y = a cos θ , ϕ = φ/a , τ = t − aφ . 14



Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Concrete examples

Radial deformations
• ∆r(r) = r2 − 2Mr + a2 + αM 2: Kerr-MOG [Moffat ’15]

• ∆r(r) = r2 + a2 − 2rMe−`M/r : Simpson-Visser regular model [Simpson, Visser ’22]

• ∆r(r) = r2 − 2Mr + a2 + qM 2 log
( r

M
)
: logarithmic corrections

Polar deformations
• ∆y(y) = a2 − y2 + py4: corrections that maintain the y-parity
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Hamiltonian dynamics

1. Geodesic parametrized by xµ(λ) and pµ(λ) in Hamiltonian formulation:

{τ, pτ} = 1 , {r , pr} = 1 , {y, py} = 1 , {ϕ, pϕ} = 1 . (1)

2. Conserved charges: E and L from Killing vectors, K from the Killing-Yano and H

3. Reformulate the dynamical system:

Σ
dτ
dλ

=
r2(r2E − L)

∆r
− y2(y2E + L)

∆y
, Σ

dr
dλ

= ±
√

Vr(r) ,

Σ
dϕ
dλ

=
r2E − L

∆r
+

y2E + L
∆y

, Σ
dy
dλ

= ±
√

Vy(y) .
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Full geodesic motion

4. Label each null geodesic by (`, k) = (L/E ,K/E2)

5. Obtain the final form for the geodesic motion:

dτ
dλ′ =

r2(r2 − `)

∆r
− y2(y2 + `)

∆y
,

dr
dλ′ = ±

√
Vr(r) , Vr(r) = (r2 − `)2 −∆rk ,

dϕ
dλ′ =

r2 − `

∆r
+

y2 + `

∆y
,

dy
dλ′ = ±

√
Vy(y) , Vy(y) = ∆yk − (y2 + `)2 .
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Photon ring

• Spherical photon orbits: set of
positions where a null geodesic with
r = cst can exist

• Critical null geodesic: geodesic with
the same (`, k) as a spherical photon
orbits but with r 6= cst
−→ geodesics infinitesimally close to
these evolve towards the observer and
build the critical curve

Black

hole

(adapted from [Gourgoulhon ’25]) 18



Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Observation of the curve

• Stationary observer at (rO , yO) with no angular
momentum and rO � r+

• 2D coordinates (α, β) on the screen [Bardeen ’73]

• Orthogonal frame

e(τ) = ∂τ , e(y) =

√
∆y(yO)

rO
∂y ,

e(r) = ∂r , e(ϕ) =
1

rO
√
∆y(yO)

∂ϕ

• Spherical photon orbits at r = r0 have Vr(r0) = 0 and V ′
r(r0) = 0, yielding

`(r0) = r0

(
r0 −

4∆r(r0)

∆′
r(r0)

)
, k(r0) =

16r2
0∆r(r0)

∆′
r(r0)

[Gourgoulhon ’25]
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Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Projection on the screen

Impact of the critical geodesics on the screen at large rO :

α(r0) = −
√
∆y(yO)

rO

(
1 +

y2
O + `(r0)

∆y

)
, β(r0) = ± 1

rO

(
k(r0)−

(y2
O + `)2

∆y

)1/2

.

−→ parametric analytical expression describing the critical curve

[Gourgoulhon ’25] 20



Generalizing the Kerr spacetime Geodesic motion in Kerr off-shell Critical curve computation

Summary

• Consider the most general spacetime that preserves the Killing tower of symmetries
of Kerr

• Find the parameters `(r0) and k(r0) that describe all spherical photon orbits

• The critical curve is built from geodesics infinitesimally close to these

• Obtain an analytical parametric shape (α(r0), β(r0)) for the critical curve

• Result true for any value of ∆r and ∆y

−→ How can one constrain GR using this result?
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Examples Comparison with experiments Degeneracy

Predicted photon rings

Kerr
• Recover the circle shape of Schwarzschild when a → 0

• Asymmetric deformation when the spin increases

− 5.0 − 2.5 0.0 2.5 5.0 7.5
rO α

− 4

− 2

0

2

4

r O
β

a = 0 .2
a = 0 .7
a = 0 .95

0.0 2.5 5.0

rOα/rh

−4

−2

0

2

4

r O
β
/r

h

l/lextr = 0.0

l/lextr = 0.3

l/lextr = 0.6

l/lextr = 0.9

Simpson-Visser
• New parameter ` affects the global scale of the curve

• No deformation of the Kerr shape
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Examples Comparison with experiments Degeneracy

More examples

Log deviations
• Global modification of both the scale and the shape

• Effect barely visible at low values of q

−2 0 2 4

rOα/rh

−4

−2

0

2

4

r O
β
/r

h

q = −0.5

q = 0.0

q = 0.5

−2 0 2 4 6

rOα/rh

−4

−2

0

2

4

r O
β
/r

h

p = 0

p = 1

p = 5

Polar deformation
• Deformation similar to the one induces by the log term

• High values of p required to see differences
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Examples Comparison with experiments Degeneracy

Building an observable

Quantitative description?
• Position (α = 0, β = 0) not available on
a screen

• Interferometric observation does not
yield directly (α(r0), β(r0))

• Parametrization of closed convex
curves [Gralla, Lupsasca ’20]

−→ describe the curve by

f (ϕ) = d(ϕ)
2

+ C(ϕ)

24



Examples Comparison with experiments Degeneracy

The circlipse parametrization

Parametrize the convex hull d by a circlipse shape [Gralla, Lupsasca ’20]

f (ϕ) = R0 +

√
R2

1 sin
2 ϕ+ R2

2 cos
2 ϕ︸ ︷︷ ︸

d(ϕ)/2

+(X − χ) cosϕ+ arcsin(χ cosϕ)︸ ︷︷ ︸
C(ϕ)

0 π
4

π
2

3π
4

π

ϕ

9.6

9.7

9.8

9.9

10.0

10.1

10.2

d

Critical curve

Circlipse

a yO R0 R1 R2 Residuals
0.95 0.6 9.23 0.94 0.30 10−4

0.5 0 9.51 0.82 0.72 10−4

−→ the shape is sufficient to describe all GR
parameter space
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Examples Comparison with experiments Degeneracy

Degeneracy beyond GR

Beyond-GR modifications are degenerate with GR parameters variation:

Parameters M a ` yO R0 R1 R2 Residuals
Kerr 1 0.2 0 10.0 0.394 0.370 1.88 × 10−5

SV 1.32 0.1 0.82 0 10.0 0.402 0.380 1.53 × 10−5

−→ cannot discriminate up to 10−2 between Kerr and Simpson-Visser!

−→ Independent measurements of mass and spin required to test General Relativity
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Examples Comparison with experiments Degeneracy

Summary

• We can obtain the critical curve for a broad class of radial and polar deformations of
Kerr

• The resulting image can be fitted by a circlipse shape for all examples we
considered, as in General Relativity

• This implies a degeneracy in the measurement of the critical curve

• It will require independent measurements of black hole mass and spin to be lifted

27



Conclusion

• Observing the critical curve is a new way to test GR in its strong regime

• This curve can be computed analytically due to the integrability of the geodesic
motion in Kerr and does not depend on the accretion disk

• Our work: consider the unique generalization of Kerr that preserves its Killing tower
symmetry

• We obtain analytically the critical curve for this class

• Constraining deviations from GR will be possible by critical curve measurements
provided independent measurements of black hole parameters are realised
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Thank you for your attention!
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