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Overview of cosmological perturbation theory

e Cosmological perturbation theory is the building block of modern
theoretical and observational cosmology.

®  Will focus on linearized perturbations.

e |HS of Linearized Einstein equation is gauge invariant for maximally
symmetric background, but not for FLRWV.

5g,uu — 5g,u1/ - £€guu . 5G,uu — 5G,u,/ L:gG’u,/

® Standard cosmological perturbation theory constructs gauge-invariant

variables. Lifshitz, Khalantikof - 1946-63
Hawking, Olson - 1966, 76

James M. Bardeen - 1980

e Einstein equations can be written in gauge-invariant variables.
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Overview of cosmological perturbation theory

® The perturbed spatially flat FLRW metric -
e The perturbations can be split into

N, = 0;,B+ B,

with

0'E; =0=20'B;, 0'h;;; =0=2¢6"h"

o |0 dof of metric is decomposed into 4+4+2 SVT dof.



Downsides of SVT decomposition

SVT decomposition is non-local in position space! SVT is more convenient
in decomposing perturbation in Fourier modes.

Fourier domain is convenient for the study of the fundamental
stochastic GW background.

Given field variables, it is not straight forward to construct SVT variables.
One needs to solve Poisson equations.

It is not also straightforward to reverse engineer the gauge-independent
formalism to a particular coordinate (harmonic or Bondi-Sachs)!

R. Brandenberger, R. Khan, W. H. Press,
Phys Rev D 28, 8, 1983.

SVT decomposition obscures the relation between gravitational field
and multipolar structure of the individual compact source.



Questions...

e Relation of linearized gravitational fields in terms of multipolar
structure of individual compact sources in FLRW?

In Minkowski background this has been achieved in PN/PM
methods in position space using STF tensors.

® Position space decoupled EOM in FLRW?

®  Definition of compact sources in FLRW geometry!?

e Definition of multipole moments in FLRW?



A detour to linearized gravity in flat case
1

!_inearized Guv = Nuw + h,ul/v Buv = Ny — =Nuuh
inhomogeneous 2
wave equation 5 N
l h,, = —167T),, withgauge, O"h,, =0
Solve in Green’s function
~ 1
h--:4G/d3x' Tii(t — |z — 2|, 2’
l (¥} ‘ZU o ZU/‘ @]( | ‘7 )
Relate source integral in - 1 ..
terms of source moments /d X Tz’j — §ng

Field in terms of ho 2G .
quadrupole moments 1) TQ%J



Background FLRW geometry

Spatially flat FLRWV background in conformal coordinates

g,uydw'udwy — a2 (n)(—d772 + (5wdxzdx3) : Cldn = dt

Decelaration parameter: ¢ = 1 — ——

FLRWV equations:

Continuity equation:

€

8t
z a’e,

A7 G

a*(e + 3p).



Linearized Einstein equation

- - 1
e Define: Guv = Guv T h,LW? hm/ ‘= huv - §guz/h , h = haﬁgaﬁ

. 1 -~ — — — — D [N R~
EOM: 5(—Dhlﬂ/ + VMB,/ + VVB,u - g,uz/(v Ba)) + RMOéﬁVh 7 — EhMV

_ . _ . . - 1 -
(Ruah®y + Ruah®y + G Rash™®) + A(hy, — S Guvh) = 87GOT .

DO | =

_|_

e Linearized equation in FLRWV background -

~

e\ 2
~ a ~ ~ ~
>3ohw —2 (-) { — 0,60 ha® — (1 = 3q)hyu—q(0, hoy + 6, hoy)

a

O, + 2 (9

a

+77WEOO(1 +q) + nuvﬁaa(l — g)} — 2Aa2(ﬁuv - %Eaa)

—167TGa25TW,

e Generalized harmonic gauge - B, := VA%, = — = ho,



Linearized Einstein equation

. . = 7 ~ 2a5
e Generalized harmonic gauge B, := V,h", = ——ho, is crucial
a

for decoupling the equations.

e Generalization of the gauge in de Sitter case: B, = 2A77]}OM
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H. J. De Vega, J. Ramirez, N . G. Sanchez - 1999
A. Ashtekar, B. Bonga, A. Kesavan - 2015
G. Date, J. Hoque - 2015

~ —17 G. Compere, J. Hoque, E. S. Kutluk - 2023
e Define: X, = a huy

e\ 2
. a PV | .
Xpv — 2 (g) { _ C](SM(SSXa + 5(5q — S)X/u/ (5OXOV + 5VXO,LL)

~ ~ X q ~ V ~ «
_I_anXOO(l T Q) + Nuv X (1 — 5)} — 2Aa2(X,uV — 77; X o ) — —167TGG,(STMV.



Decoupled linearized equation

The spatial trace free part and mixed (J1 parts decouple

CL2

. 9
X0i + (—2Aa2 +3(1 — q)%) Yo0i = —167GadTy;.

Scalar equations remain coupled in general

X00 —Aa® + 30%2 —Aa? - (2 +q) Yoo \
Xii )—I_ —3Aa2—% A 2_a_ ~ = —167Ga
i1 .2 4 a .2 ( + 2q) Xii

We will further decouple these equations.
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Conservation of linear stress-energy in FLRW

® Before decoupling the equations further, let us look into the conservation
equations.

o Conservation equations VT, = (), to the linear order

VHST,, — g (6T ,, T, + 6T, ) — h#PN T, = 0.

e Linearized stress-energy tensor is not conserved by its own unlike
maximally symmetric background!
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Compact sources in FLRW!

e In generalized harmonic gauge, conservation equations become

) ) . 1 L
&,7 (aéTQ()) — 82 (CL(STQZ) -+ aéTkk — —Z&n (GJQ (p -+ 6))(XOO + ka),
a ~

(6’77 -+ E)(Gﬁfm) — 8j (CL&TZ]) = (.

with effective stress-energy components

€—p
4
01o; = 010; — paxoi,

0To0 = 6Tp0 + @ (X00 + Xkk),

€E— D . €+ 3p _

A Xkk 1 XOO)-

5Tz’j — (STZ] — pa)zz-j — 57;ja<
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Compact sources in FLRW!

® The concept of compact sources, 07),,, = 0 ,for Minkowski or de
Sitter background does not go through for FLRW!

® Nearly compact sources - 6T); (x) =0 = 5Tij ()

outside a localized volumeYV,

but 5T()0 (ZIZ’) # 0

e The choice of 5TOO (:L’) — () is inconsistent with generalized harmonic
gauge.
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Decoupled linearized equation
® Given the effective stress-energy tensor, we will write down the EOM.

O~ X(ijy = —167GadT ),

O_I_)Z()i — —167TG015T()Z',
O+ ()ZOO -+ >~<7/L) — —167TG&(5T00 -+ 6T7/L)7
O_jzii — —167TGCL5TZZ

N 2
where operators ()% = [ + (ﬁ) (1 +q).

e Decoupling of inhomogeneous perturbation equations in generalized
harmonic gauge without SVT decomposition.
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Linearized equation for power-law cosmologies

| s @ o 1
e For power-law cosmologies: a(n) ~ |77‘ T 77,6_] =
e EOM for power-law cosmologies:
ala—1), . .
1 5
(04 &(a: ))XOz’ = —16mGaolp;,
Y
ala+1) . . ~ -
(LA ( - ))(Xoo + Xii) = —16ma(0Too + 0T%;),
1 -
( | Oé(a > ))Xm — —167TGCL5TZZ
Y

e For RD and MD universe o« = 1, 2 respectively.
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Hadamard ansatz

Can we solve the inhomogeneous wave equation in terms of Green’s
function for power-law cosmologies!?

For power-law cosmologies, wave equations have a generic form
C
(04 5 )ot@) = ~amu(o)
— la) = [ Guoaula') /'

Use the Hadamard construction of Green’s function:
G_|_($, */E,) — U(CE, le/)54—(0-) + V(Qja 37/)6)4—(_0-)'
O - half of the geodesic distance squared between ’and x .

This ansatz is generic for wave equation in curved background.
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Solution of Hadamard ansatz

e Plug the Hadamard ansatz in the wave equation, and solve for U and V.

®  For Minkowski wave-operator U(zx,z') = 1; V(:C, gg’) depends
on potential term.

® V -ssignature of tail term. Field not only depends on the response of
the source at retarded time but on the entire past history.
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Solutionof V

e Vs the solution of the characteristic initial value problem
which satisfies both equations simultaneously.

awv . C
C
( ‘|—¥)V(SB,$/) = 0.

® The problem can be solved by a series -

©.@) n /
o) xr
V=Y
n!
n=0

Thanks to Abraham Harte

O One obtains a transport equation forV - Book - F. G. Eriedlandler

(0°V,) (Do) + (n + 1) = —%P(Vn_l)

18



Solutionof V

e A generic solution for V,,

1" O =i+ 1)
Yn = ( ) [ i+1

21 i=0

e This series solution of V can also expressed in terms of
hypergeometric function.

e With C = a(a £ 1),green’s function for power-law cosmologies -
Cv(Oz T 1)
2mm’

o)
2nn’

Gy(z,2')=0,(0) 2F1(2 £ a,1F o2 )0, (—0).
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Tensor inhomogeneous solution

ala—1)Y\ . .

(5T,L B — : T/ >° 77_|£_£/‘ n
X (i) :4G/d3x’a @ |17 -7 T) ‘|‘Z/d3$// dn’Vna adTyiz (', T').
n=0 Up

1z — | n!

e First term is light-cone term, second term is tail term.

n—|z—z'| o n—p p—|Z—z'| , /
/ f(n")dn =/ f(n)dn +/ F(0" =+ Nret)dn’
up N 0

.= T1 —|—T2

® T, generates instantaneous tail term, while 17 in general depends on
entire past history of the source.
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Source moments

® Having discussed the wave equation in FLRWV, we need two more
things to write source integrals in terms of moment.

® Source moments
® Conservation of stress-energy tensor in FLRWV background

Mass moment: g)) (n) := /dga_tdfggfL — /dga:a£+1(n)5f00x,;,
Momentum moment: P, (n) := / 20157 = / d*za" () 6Tz,

Stress moment: Si;L(7) == /dBf(STEﬁL = /d%a“l(n)éﬁ;ij
L =112 - -1y - multi-index, 21, = T Ljy * Ty,
Pressure moment: %’) (n) = /d?’fnijéfija_m = /d3$a€+1(n)5ij5Tij$L = Sii|L-

1(5) (n) = [ d*za’*(n)T;;0% zrz)
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Conservation equations in terms of moments

@ Conservation equations:

) o 1 o
8n(a5T00) — &,, (a5TOZ) -+ GJ(STkk — —Zé’n(aQ (p —+ 6))(X00 + ka),
(877 + g)(a(ﬁbz) — 8j (aéfw) = 0.

@ Conservation of linearized stress-energy in terms of moments

0 Q(p) (gQéP) o %9)) o gP(i1|i2---ie) + S(H)XL 9
8t i L = (Z — 1)HP7,|L — ZS@(zﬂzzw)

® In Particular,

1

Sin) = [ dalatnTn.a') = 501 (9Q ~2HQY + HQY — ssy).
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Consistence quadrupolar truncation

® Higher order term in Taylor expansion is related to the lower order term
via conservation equation. Distinct feature even in de Sitter!!

Tij(Mret, @) + 70 - & Tig'l)mret? r') + 5 (7 f,)2Ti(g’2)(77reta ')+ ...

N

d3 '
’ T~‘(n—|x—x’\,az’):/d3x’

iz — 2| p

A consistence quadrupolar truncation is crucial.
/d3xa£+1waL = 0, Ve > 2.

Conservation equations imply

P(ﬂﬂf) — Ov Pz‘ljkl — O; Si(j|kl) = 0.
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Consistence quadrupolar truncation

® Solution in terms of SO(3) irreducible tensors

1 1 1

Py = §€lz‘(jt]k)l - 5 ik Py + —5jsz'|u,
1 1

Sijlk = §€kl(z = —5k(zQ(p) 5 0ij ;(cp),

1
Siier = 85 Qs — (0ix@rf) + 84Q)) + Qi S — —5145161625% + 501600 Qrm,

where A
J'i] 3Pk|l(zej)kl7 (3t — H)RUJ — Qip),
4 8; — H)J;; = —K;.
K;j = §€kl(z‘5j)k|l- ( : ) J i
@ Thisis even crucial for de Sitter case. G. Compére, J. Hoque, E. S. Kutluk - 2023
Differs from G. Date, J. Hoque - 2015

A. Ashtekar, B. Bonga, A. Kesavan -2015
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Tensor inhomogeneous solution

X(ij>(777 psn;) = Lo (i) T 13 (ig) T 15 (27)

4G 1
Loty = =7 <S<z‘j> 1 (O S gy n — HS i) + gm0 Stigpiue = 3HOS gyt + 2H S
1 1
+2H*(1 4 q)Sijy ) + (nks<z‘j>|kz + = (3nrny — 9k1) (06S (i) k. — 2HS<ij>k:l))
pa(nret) 2
1
3 — g1 )50 1
+ 2p2&2(met)( ngny — Okl) (zg)|kl)7 (1)

e ala—1

( 2k (2 —a,l 4+ a; 2; %))nkswﬂk(n,)

11 d
- ( o I (2 —a, 1l + a3 2; %))5kls<ij>|kzl(n/)

1 1 p* &2 P
+ 2 ,)—( ) (2F1(2 —a, 1+ a;2; f))nkmsamkl(??’)], (2)

n
ala—1) 1 1 , 1 .
Ty v = 4 g - g, Sur —
2 (ij) G( 5 nnret(a(n,)s<zg>|k(n )N 2pa2(n,)5<m|kl(77)( Kl nkz”l))

ala—1) 1 ((1

1
2 2 NMret n') ' =MNret
1
2

(- o+ IR (500) o) (st men)
(3)

7’]/:"’]ret

n’—nret>
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Matter dominate case

For matter dominated case

Ty =4G['"

Using the conservation equation, S;; =

4G mes 4G

Digy = =4 H P, + on
4G mes 4G

= —— [HPuj)," — —

77 an

Tail term truncated to 1/,

Order P term vanishes in tail term.
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TNret

dﬁlan’H(ﬁ/)P@;U)(??,)

tret
dt/HQ(l + Q)P@m (t/).



de Sitter case

® Tail integral can be performed exactly - leaving instantaneous term and
a boundary term.

® dS limit reproduces our previous result. G. Compere, J. Hoque, E. S. Kutluk - 2023

@ Similarly, vector and scalar perturbations can be obtained.
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Summary and outlook

We decouple linearized perturbations around spatially flat FLRW
background in a generalized harmonic gauge - without performing the SVT
decompsition.

Obtain green’s function for power-law cosmologies.

Linearized perturbations are written in terms of multipolar moments of
the effective stress-energy tensor upto the quadrupolar order.

Our result reproduces correct dS limit which differs from Date-]JH,ABK
et. al

An important line of the study will be construction of cosmological
observables in our framework.
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