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I. Combining probes

Ncluster(iM,iz)
Clgal(iz) ↔ 2pcf

Motivations:

• increased constraints, can break degeneracies.
• mitigate super-sample covariance (SSC) on small scales.
• future : dark energy, modified gravity, fNL.



Cluster count in a bin of mass (iM) and redshift (iz)

Galaxy angular power spectrum between two redshift bins
(in the following jz = kz)

Halo-galaxy-galaxy angular bispectrum

Cluster count is the monopole of the halo density field

I. Covariance of the galaxy spectrum 
and cluster counts
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Ingredients : cosmology, halo model, Halo Occupation Distribution (HOD)

Ex:

I. Diagrammatic method
for the hgg bispectrum
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1 : z=0.2-0.3 and log(M/Msun) = 13-14

2 : z=0.2-0.3 and log(M/Msun) = 15-16

3 : z=0.9-1.0 and log(M/Msun) = 13-14

II. Ideal results I : scale dependence 
of the covariance



... z=0.9-1.0z=0.8-0.9

...z=0.1-0.2 z=0.2-0.3

{
{Nclusters

Cgal(l)

II. Ideal results II :
joint covariance matrix

9 z-bins z=0.1-1.0

4 logM bins
logM = 14-16

8 multipoles 
l=30-300

no photo-z errors, 
purity nor 

completeness

full cluster autocov 
(shot-noise, 

sample variance)

full crosscov

galaxy autocov : 
Gaussian, SSC, 
1h trispectrum



II. Fisher analysis

after marginalisation 
over HOD parameters

S/N(Clgal) = S/N(Ncl)

Joint constraints better 
than if probes were 

independent

σ8 Ωm h^2 wDE

σ8

Ωm h^2

wDE



Cluster counts follow a Poisson distribution
Galaxy correlation is more Gaussian

→ How to mix their likelihood ?
(cannot assume that the joint likelihood is Gaussian)

Edgeworth / Gram-Charlier expansion

Expand around independent case. Result :

III. Joint likelihood
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III. Joint likelihood : functional form



• valid to combine any 
Gaussian and Poisson 
observables
(e.g. weak-lensing/counts) 

• large counts and small 
crosscov limit :
Gaussian with correct 
covariance matrix

• extended to include cluster 
sample covariance

• inclusion of Bayesian 
hyperparameters 
→ robustness to tension and 
error estimates
(in progress)

B. Joint likelihood :
conclusions / perspectives



• Cluster counts - galaxy spectrum cross-covariance
   with a diagrammatic formalism

• Full non-linear model is needed : HM+HOD

• Cross-covariance is not negligible and creates a synergy 
between the probes

•  Joint non-Gaussian likelihood

• Future : MC pipeline for realistic forecast and application to 
DES data

Conclusions



Thanks for your attention



Super-sample covariance

Reaction of observable to long wavelength modes (=background change)

Covariance of the density monopole (between two redshifts)



Diagrams for the galaxy trispectrum



Halo-galaxy-galaxy 
bispectrum : from 3D to 2D

angular bispectrum 3D bispectrum Bessel functions

Limberʼs approximation on k2 and k3
(bispectrum varies slowly compared to besselʼs oscillations)



Ingredients

halo mass function
(Sheth&Tormen or Tinker)

Halo Occupation Distribution
(Tinker&Wetzel 2010)

halo profile
(NFW)

halo bias
(Tinker : 1, Sheth&Tormen : 1&2)

matter power spectrum
(Eisenstein&Hu 98)+ cosmology

(growth function, comoving volume...)



Counts - gal spectrum covariance, 
with cross-redshifts



Bayesian hyperparameters

• Statistical method allowing to detect underestimation of 
error bars or inconsistencies between data sets

• Idea : rescale error bars
one rescaling parameter per data set. These parameters 
are included in the MCMC exploration. Then marginalise 
over them.
• Only done for Gaussian distribution at the moment

Hobson et al. 2002

without HP with HP



Hyperparameters for a 
Poisson distribution

• not possible to satisfy all the properties of the Gaussian 
case
(i.e. keep the mean but rescale the variance)

• two possible approximate prescriptions
with a good asymptotic behaviour


