Dynamical mass inference of galaxy clusters with machine learning

Doogesh Kodi Ramanah

DARK Research Fellow, Niels Bohr Institute

arXiv: 2003.05951 (Neural flow mass estimator) arXiv: 2009.03340 (Simulation-based inference)

In collaboration with Radek Wojtak, Nikki Arendse, Zoe Ansari, Christa Gall, Jens Hjorth

Galaxy clusters

1. Introduction

Galaxy clusters are the most massive gravitationally bound structures in the universe. Clusters are complex, dark-matterdominated systems of mass $\geq 10^{14} h^{-1} M_{\odot}$. Galaxy clusters

Galaxy clusters

Galaxy clusters

1. Introduction

Galaxy clusters are the most massive gravitationally bound structures in the universe. Clusters are complex, dark-matterdominated systems of mass $\geq 10^{14} h^{-1} M_{\odot}$. Galaxy clusters

Virgo Cluster (Image credit: NASA/ESA)

BORG 2M++ reconstruction

(Movie by Guilhem Lavaux)

Importance for cosmology

- Cosmological information encoded in abundance of galaxy clusters
- Cluster mass function (CMF) variation of number density of clusters with mass
- CMF particularly sensitive to matter density and amplitude of fluctuations, $\{\Omega_{
 m m},\sigma_8\}$

Abdullah+ 2020 (ApJ) - arXiv: 2002.11907

Importance for cosmology

- Cosmological info encoded in abundance of galaxy clusters
- Cluster mass function (CMF) variation of number density of clusters with mass
- CMF particularly sensitive to matter density and amplitude of fluctuations, $\{\Omega_{
 m m},\sigma_8\}$

Abdullah+ 2020 (ApJ) - arXiv: 2002.11907

Neural flow mass estimator

Observables & challenges

What are our observables?

Projected radial distance from cluster centre $\rightarrow R_{\rm proj}$ Galaxy line-of-sight velocity $\rightarrow v_{\rm los}$

Series of classical methods:

M-o_v scaling relation
 Virial mass estimator
 Jeans analysis
 Distribution function

Observables & challenges

What are our observables?

Projected radial distance from cluster centre $\rightarrow R_{\rm proj}$ Galaxy line-of-sight velocity $\rightarrow v_{\rm los}$

Series of classical methods:

- 1) $M-\sigma_v$ scaling relation
- 2) Virial mass estimator
- 3) Jeans analysis
- 4) Distribution function

Physical effects breaking idealized assumptions:

- 1) Dynamical substructure
- 2) Cluster triaxiality
- 3) Halo environment
- 4) Cluster mergers

• Selection effects:

- 1) Incomplete cluster observations
- 2) Interlopers (non-members)

Observables & challenges

What are our observables?

Projected radial distance from cluster centre $\rightarrow R_{\rm proj}$ Galaxy line-of-sight velocity $\rightarrow v_{\rm los}$

Series of classical methods:

- 1) $M-\sigma_v$ scaling relation
- 2) Virial mass estimator
- 3) Jeans analysis
- 4) Distribution function

• Physical effects breaking idealized assumptions:

- 1) Dynamical substructure
- 2) Cluster triaxiality
- 3) Halo environment
- 4) Cluster mergers

• Selection effects:

1) Incomplete cluster observations
 2) Interlopers (non-members)

• Inputs for neural network:

(Normalized) Gaussian KDE \rightarrow smooth phase-space mapping

0.2 -

0.0

-2000

-1000

0

 $v_{\rm los} \, [{\rm km \, s^{-1}}]$

2000

1000

Mock cluster catalogue

- **MDPL2** MultiDark (*N*-body) simulation (**GADGET2**)
- Halos \rightarrow clusters, subhalos \rightarrow galaxies (**ROCKSTAR** + **UNIVERSEMACHINE**)

Simulation box of 1 h^{-1} Gpc Mass resolution of $1.51 \times 10^9 h^{-1}$ M $_{\odot}$ Ho+ 2019 (ApJ) - arXiv: 1902.05950

Matthew Ho

 $CNN \rightarrow cluster mass$ (point estimates)

Mock cluster catalogue

- **MDPL2** MultiDark (*N*-body) simulation (**GADGET2**)
- Halos \rightarrow clusters, subhalos \rightarrow galaxies (**ROCKSTAR** + **UNIVERSEMACHINE**)
- **Pure** v/s **contaminated** catalogue (interlopers)

Ho+ 2019 (ApJ) - arXiv: 1902.05950

 $CNN \rightarrow cluster mass$ (point estimates)

Dynamical mass estimators with ML

Mock cluster catalogue

- **MDPL2** MultiDark (*N*-body) simulation (**GADGET2**)
- Halos \rightarrow clusters, subhalos \rightarrow galaxies (**ROCKSTAR** + **UNIVERSEMACHINE**)
- **Pure** v/s **contaminated** catalogue (interlopers)
- Flat mass function for training so as not to encode cosmological info

Ho+ 2019 (ApJ) - arXiv: 1902.05950

Neural flow schematic

- Normalizing flows (neural density estimator)
- Model conditional density distribution $\rightarrow \mathcal{P}(M|\tilde{d})$, where $\tilde{d} \equiv \{R_{\mathrm{proj}}, v_{\mathrm{los}}\}$
- In essence, neural network learns transformation from base (e.g. Gaussian) distribution
- Network trained using pairs of $\{M, \tilde{d}\}$ minimize negative log likelihood
- Train on pure & contaminated catalogues separately

Normalizing flow (NoF)

Performance validation

- Usual truth v/s predictions plot
- Larger uncertainties (& residual scatter ϵ) for contaminated set
- Performance on contaminated set ~4 times improvement over classical $(M-\sigma_v)$ relation

 $\epsilon \equiv \log_{10}(M_{\rm true}/M_{\rm pred})$

Precision of cluster mass estimators

• Galaxy cluster people usually express total scatter as:

$$\sigma^2 = \sigma_N^2 (N_{\text{members}}/100)^{-1} + \sigma_0^2$$
Richness-dependent Richness-independent

component ("statistical error")

Richness-independent component ("systematic error")

- If negligible systematic errors, then:
 - σ = statistical error given by Poisson noise with amplitude σ_N

Precision of cluster mass estimators

Robustness tests

• Verify robustness to galaxy selection effects & typical velocity errors

Saliency maps

• Topographical representation of the informative structures in input 2D phase space

Ó

 $v_{\rm los} \, [{\rm km}\,{\rm s}^{-1}]$

1000

0.4

0.2

0.0

-2000

-1000

Univers JC 2020

Dynamical mass estimators with ML

2000

Real world applications

Infer masses of some well-known clusters

Galaxy cluster	NF dynamical mass	Literature value
Coma A1689 A85 A119 A576	14.84 ± 0.11 14.88 ± 0.10 14.78 ± 0.13 14.60 ± 0.12 14.72 ± 0.10	$\begin{array}{c} 14.91 \pm 0.11^{1} \\ 15.05 \pm 0.12^{2} \\ 14.88 \pm 0.07^{3} \\ 14.61 \pm 0.11^{4} \\ 14.69 \pm 0.08^{3} \end{array}$
A1651 A2142 A2670	14.85 ± 0.13 14.83 ± 0.14 14.60 ± 0.10	$\begin{array}{c} 14.81 \pm 0.11^{3} \\ 14.95 \substack{+0.04 \\ -0.14} \\ 14.72 \pm 0.10^{4} \end{array}$

 1 Łokas & Mamon (2003)

 2 Lemze et al. (2009)

- ³ Wojtak & Łokas (2007)
- ⁴ Abdullah et al. (2020)

⁵ Munari et al. (2014)

3D phase-space distribution

• Galaxy cluster observables:

Galaxy positions projected on to plane of sky $\rightarrow (x_{\text{proj}}, y_{\text{proj}})$ Line-of-sight velocities of galaxy members $\rightarrow v_{\text{los}}$

- Motivation for $3D \rightarrow$ render model more sensitive to interlopers
- Mock SDSS cluster catalogue: MDPL2 + semi-analytical model of galaxy formation (SAG)

Why neural networks don't work and how to use them

Neural networks as universal model approximators

We can think of a neural network, $\mathbb{NN}(w, \alpha) : \mathbf{d} \to \tau$, as an approximation of a model, $\mathcal{M} : \mathbf{d} \to \mathbf{t}$, where \mathbf{d} is some input data to the network and the output of the network is τ which is an estimate of some target, \mathbf{t} , associated with the data. The neural network itself is a function of some trainable parameters called weights, w, and some hyperparameters, α , which encompass the architecture of the network, the initial values of the weights, the form of activation functions, the choice of cost function, etc.

Likelihood of obtaining targets given a network

In a traditional sense, the training of a neural network is equivalent to minimising a cost or *loss* function, $\Lambda(\mathbf{t}, \boldsymbol{\tau})$, with respect to the weights of the network, \boldsymbol{w} (and hyperparameters, $\boldsymbol{\alpha}$) given a set of pairs of data and targets for training and validation, $\{\mathbf{d}_i^{\text{train}}, \mathbf{t}_i^{\text{train}} | i \in [1, n_{\text{train}}]\}$ and $\{\mathbf{d}_i^{\text{val}}, \mathbf{t}_i^{\text{val}} | i \in [1, n_{\text{val}}]\}$. The cost function, $\Lambda(\mathbf{t}, \boldsymbol{\tau})$, measures how close the outputs of a fixed network, $\mathbb{NN}(\boldsymbol{w}^*, \boldsymbol{\alpha}^*) : \mathbf{d} \to \boldsymbol{\tau}$, are to some target, \mathbf{t} , given a data-target pair, $\{\mathbf{d}, \mathbf{t}\}$, at some fixed network parameters and hyperparameters, $\boldsymbol{w} = \boldsymbol{w}^*$ and $\boldsymbol{\alpha} = \boldsymbol{\alpha}^*$. That is, how likely is it that the output of the network provides the true target for the input data given a chosen set of weights and fixed network hyperparameters, i.e. the cost function is equivalent to the (negative logarithm of the) likelihood function

 $\Lambda(\mathbf{t},oldsymbol{t})\simeq -{
m ln}\mathcal{L}(\mathbf{t}|\mathbf{d},oldsymbol{w}^*,oldsymbol{lpha}^*).$

https://www.aquila-consortium.org/method/machine%20learning/nn.html

Tom Charnock

Charnock, Lavaux & Wandelt 2018 (PRD) arXiv: 1802.03537

> Data compression via the Information Maximizing Neural Network (IMNN)

1 Train a network to compress input data to desired summary **Generate (training) data** $d_{\text{train}} = \mathcal{F}(\theta), \quad \theta \sim \mathcal{P}(\theta)$ $\stackrel{\mathcal{P}(\theta)}{\underset{\text{prior}}{\overset{\mathcal{P}(\theta)}{\overset{f}{\underset{\text{train}}{\overset{f}{\underset{\text{train}}{\overset{f}{\underset{\text{train}}{\underset{\text{prior}}{\overset{f}{\underset{\text{train}}{\underset{\text{train}}{\underset{\text{prior}}{\overset{f}{\underset{\text{train}}{\underset{\text{train}}{\underset{\text{train}}{\underset{\text{prior}}{\overset{f}{\underset{\text{train}}{\underset{train}}{\underset{train}}}}}}}}}}}}}}}}}}}$

Feed a separate test set to obtain $\{\theta, \mathcal{D}\}\$ & compute a density estimate of joint PDF

Generate (test) data

$$d_{\text{test}} = \mathcal{F}(\theta), \quad \theta \sim \mathcal{P}(\theta)$$

Credit: Schematics adapted from Tom's lectures

Dynamical mass estimators with ML

Dynamical mass estimators with ML

CNN architecture

- Nothing fancy just a standard $\mathrm{CNN}_{\mathrm{3D}}$ model
- Feature extraction \rightarrow compress to a single scalar (dynamical cluster mass)
- Relatively simple network with ~ 100 k trainable parameters

Performance validation

Performance validation

- $\rm CNN_{3D}$ tends to overestimate masses below ~14.1 dex
- Larger uncertainties for low-mass clusters
- Robust uncertainties with simulation-based inference

 $\epsilon \equiv \log_{10}(M_{\rm true}/M_{\rm pred})$

 Posterior is unbiased: Sub-optimal network → inflated posterior (but not incorrectly biased)

Interloper contamination

Colours – mass ratio of interloper cluster(s) to original cluster **Size** – inverse distance between the clusters (i.e. closer = larger)

Dynamical mass estimators with ML

Interloper contamination

Colours – mass ratio of interloper cluster(s) to original cluster **Size** – inverse distance between the clusters (i.e. closer = larger)

- Induces primarily a bias (overestimation)
- This bias is properly accounted via simulation-based inference

Information gain with higher dimensionality

- CNN_{1D} & $\text{CNN}_{2D} \rightarrow$ results reproduced from Ho+ 2019 (ApJ) arXiv: 1902.05950
- Performance quantified in terms of residual scatter
- Same mock catalogue for comparison
- Gain in constraining power when exploiting full 3D phase-space distribution

Precision of ML cluster mass estimators

• As before, express total scatter as:

Precision of ML cluster mass estimators

• As before, express total scatter as:

- Progressive improvement in precision of CNN models with higher dimensionality
- $\rm CNN_{3D}$ is less sensitive to cluster richness than neural flow mass estimator

Application to SDSS clusters

- GalWeight catalogue 910 galaxy clusters (Abdullah+ 2020, ApJS) arXiv: 1907.05061
- Apply same phase-space cuts and preprocessing as for mock catalogue
- Overall consistency of our predictions with results from the GALWEIGHT mass estimator

Mass function from SDSS clusters

- Cluster mass function reconstructed from our SDSS dynamical mass estimates
- Recover mass function predicted by Planck ACDM down to mass completeness limit

Summary & future work

Neural flow mass estimator:

- Promising performance w.r.t classical & recent ML methods
- Robustness to velocity errors and galaxy subsampling (richness)
- Saliency maps to show informative regions
- Application to a set of real clusters

(DKR, Wojtak+ 2020, MNRAS)

Summary & future work

Neural flow mass estimator:

- Promising performance w.r.t classical & recent ML methods
- Robustness to velocity errors and galaxy subsampling (richness)
- Saliency maps to show informative regions
- Application to a set of real clusters

(DKR, Wojtak+ 2020, MNRAS)

Simulation-based inference (CNN_{3D}):

- Ensures uncertainties are not underestimated
- Optimally exploit information content of 3D dynamical phase-space distribution
- Application to SDSS catalogue dynamical mass estimates with uncertainties
- Recover Planck ΛCDM mass function down to mass completeness limit

(DKR, Wojtak & Arendse 2020, submitted)

Summary & future work

Neural flow mass estimator:

- Promising performance w.r.t classical & recent ML methods
- Robustness to velocity errors and galaxy subsampling (richness)
- Saliency maps to show informative regions
- Application to a set of real clusters

(DKR, Wojtak+ 2020, MNRAS)

Simulation-based inference (CNN_{3D}):

- Ensures uncertainties are not underestimated
- Optimally exploit information content of 3D dynamical phase-space distribution
- Application to SDSS catalogue dynamical mass estimates with uncertainties
- Recover Planck ACDM mass function down to mass completeness limit

(DKR, Wojtak & Arendse 2020, submitted)

Future work:

 Cosmological inference from SDSS cluster abundance (normalizing flows, simulation-based inference & variational inference) arXiv: 2006.13231

Collaboration with Matthew Ho

Back-up slides

Normalizing flows

• Smooth invertible mapping with tractable Jacobian (2 fundamental requirements)

$$\boldsymbol{x} = \mathcal{F}(\boldsymbol{u})$$
$$\mathcal{P}(\boldsymbol{x}) = \Psi \big[\mathcal{F}^{-1}(\boldsymbol{x}) \big] \left| \frac{\partial \mathcal{F}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}} \right|$$

• **Composition** of series of relatively simple invertible transformations (key property) (flexible \rightarrow characterize arbitrary complex distributions)

$$\mathcal{F} \equiv \mathcal{F}_1 \circ \mathcal{F}_2 \circ \ldots \mathcal{F}_k$$

- Invertibility allows both (1) sampling and (2) probability density evaluations (as long as it is possible to do so for the base distribution)
- In essence, neural network learns transformation from base distribution

Section 2.2 in paper

Mock SDSS cluster catalogue

- MDPL2 + SAG semi-analytical model (orphan galaxies)
- SAG most complete implementation of modelling orphan galaxies
- Massive DM halos (ROCKSTAR catalogue) \rightarrow galaxy clusters + central galaxy
- For every cluster \rightarrow draw a LOS and compute phase-space diagram
- Phase-space coordinates computed relative to central galaxy
- Observed velocities \rightarrow include Hubble flow w.r.t. cluster centre

- SAG \rightarrow positions & absolute mags in SDSS filters
- Adopt SDSS-like flux limit
- Compute apparent mags by assigning an observer to each cluster
- Use maximum comoving distance of 250 h^{-1} Mpc (completeness ~10¹⁴ h^{-1} M_o)
- Account for distance-dependent completeness expected for flux limited selection of spectroscopic targets