FUSE results concerning the diffuse and translucent clouds

Franck Le Petit

Laboratoire de l'Univers et de ses Théories

I – Diffuse and transluscent clouds

a) Generalities

b) The Meudon PDR code

II – Results of the FUSE survey

a) H_2 and HD in our Galaxy

b) H₂ and HD in the Magellanic Clouds

III - Physical and chemical properties of diffuse clouds

a) structure of diffuse interstellar clouds

b) the problem of the ionization

c) an open question : the excitation of H_2

Part I : Diffuse and translucent clouds

Result from a model with : $n_{\rm H} = 500 \text{ cm}^{-3}$, ISRF

Observations of diffuse clouds ____

- Far UV : electronic transitions of H₂ but also H, D, HD, CO, C I, N₂ etc ...
- Visible : OH, CH, CH⁺, CN, C₂, C₃, ...
- IR $: \mathbf{H}_3^+$
- Radio : HCO^+ , HOC^+ , NH_3 , HCN, HNC, H_2S , ...

Interest :

- more simple chemistry than in dense clouds
- it is possible to study more in detail the physical processes
 - chemistry & interaction dust-gas
 - interaction matter-radiation : H_2 , HD, CO
 - effect of the cosmic rays : OH, HD, H_3^+ , HCO⁺, HOC⁺
 - effect of the magnetic field : CH⁺

Modelisation : PDR code of the Observatory of Meudon

J. Le Bourlot, E. Roueff, F. Le Petit

Stationnary model solving :

- Radiative transfer : absorption in the lines $(30\ 000\ \text{lines for H}_2)$ absorption in the continuum
- Chemistry : more than 100 chemical species network of more than 1000 chemical reactions
- Statistical equilibrium of the populations in the levels of H₂, HD, CO, HCO⁺, CS, ... takes into account : radiative and collisional excitation / de-excitation photodissociation
- Thermal balance : heating by photoelectric effect, chemistry, cosmic rays cooling in the lines of the atoms and molecules

Can be used to study PDR and dense clouds

Downloadable at http://aristote.obspm.fr/MIS/ Requires : fortran 90 libraries BLAS and LAPACK

Parameters :

- density (constant or density profile)
- incident radiation field (scale the ISRF or a black body)
- abundances of elements
- other specific parameters :
 - extinction curve
 - flux of cosmic rays
 - Doppler parameter
 - ...

Results :

- abundances of atoms and molecules at each point
- column densities
- excitation of some species
- intensities
- rate of heating and cooling processes
- temperature profile
- possible analysis of the chemistry

-

Part II : The FUSE Survey - (Far Ultraviolet Spectroscopic Explorer)

USA – Canada – France (FUSE french team - A. Vidal-Madjar, R. Ferlet)

Launched in **1999 Resolution :** ~20 000 (~ 0.05 Å, ~ 15 km s⁻¹) wavelengths : 905 – 1187 Å H₂, HD, D, CO, C I, ...

Missions (for diffuse and transluscent clouds) :

- 1 Determination of abundances
- 2 D/H
- $3 \text{Excitation of H}_2 --- T_{kin}$
- 4ratios CO/H_2
- 5 physical conditions

H, survey in our Galaxy____

(Rachford et al. 2002)

Analysis of 23 lines of sight **Observations** : higher E(B-V) than Copernicus => higher $N(H_2)$ H_{2} in J = 0 and 1, T_{01}

Analysis :

Molecular and Atomic Hydrogen Parameters								
Target		$\frac{\log N(\mathrm{H}_2)}{(\mathrm{cm}^{-2})}$	$\log N(0)$ (cm ⁻²)	$\frac{\log N(1)}{(\mathrm{cm}^{-2})}$	T _{kin} (K)	$\frac{\log N({\rm H~I})}{({\rm cm}^{-2})}$	Reference	f _{H2}
BD +31°643	2.68	21.09 ± 0.19	20.82 ± 0.16	20.76 ± 0.24	73 ± 48	21.38 ± 0.30	1	0.51 ± 0.26
HD 24534	1.56	20.92 ± 0.04	20.76 ± 0.03	20.42 ± 0.06	57 ± 4	20.73 ± 0.06	2	0.76 ± 0.05
HD 27778	1.01	20.79 ± 0.06	20.64 ± 0.05	20.27 ± 0.10	55 ± 7	20.98 ± 0.30	1	0.56 ± 0.20
HD 62542	1.07	20.81 ± 0.21	20.74 ± 0.21	19.98 ± 0.14	43 ± 11	20.93 ± 0.30	1	0.60 ± 0.28
HD 73882	2.28	21.11 ± 0.08	20.99 ± 0.08	20.50 ± 0.07	51 ± 6	21.11 ± 0.15	3	0.67 ± 0.13
HD 96675	1.07	20.82 ± 0.05	20.63 ± 0.04	20.37 ± 0.08	61 ± 7	20.66 ± 0.30	1	0.74 ± 0.18
HD 102065	0.72	20.50 ± 0.06	20.25 ± 0.06	20.15 ± 0.06	70 ± 9	20.54 ± 0.30	1	0.65 ± 0.21
HD 108927	0.61	20.49 ± 0.09	20.30 ± 0.09	20.03 ± 0.09	60 ± 10	20.86 ± 0.30	1	0.46 ± 0.21
HD 110432	1.32	20.64 ± 0.04	20.40 ± 0.03	20.27 ± 0.04	68 ± 5	20.85 ± 0.15	4	0.55 ± 0.11
HD 154368	2.48	21.16 ± 0.07	21.04 ± 0.05	20.54 ± 0.15	51 ± 8	21.00 ± 0.05	5	0.74 ± 0.06
HD 167971	3.43	20.85 ± 0.12	20.64 ± 0.10	20.44 ± 0.15	64 ± 17	21.60 ± 0.30	6	0.26 ± 0.22
HD 168076	2.86	20.68 ± 0.08	20.44 ± 0.08	20.31 ± 0.09	68 ± 13	21.65 ± 0.23	2	0.18 ± 0.12
HD 170740	1.25	20.86 ± 0.08	20.60 ± 0.05	20.52 ± 0.11	70 ± 13	21.15 ± 0.15	2	0.51 ± 0.13
HD 185418	2.03	20.76 ± 0.05	20.34 ± 0.04	20.56 ± 0.05	101 ± 14	21.11 ± 0.15	3	0.47 ± 0.11
HD 192639	1.87	20.69 ± 0.05	20.28 ± 0.05	20.48 ± 0.05	98 ± 15	21.32 ± 0.12	2	0.32 ± 0.09
HD 197512	0.84	20.66 ± 0.05	20.27 ± 0.05	20.44 ± 0.05	94 ± 14	21.26 ± 0.15	3	0.33 ± 0.11
HD 199579	1.00	$\underline{20.53 \pm 0.04}$	20.28 ± 0.03	20.17 ± 0.03	70 ± 5	21.04 ± 0.11	2	0.38 ± 0.09
HD 203938	2.19	21.00 ± 0.06	20.72 ± 0.05	20.68 ± 0.08	74 ± 9	21.48 ± 0.15	3	0.40 ± 0.11
HD 206267	1.37	20.86 ± 0.04	20.64 ± 0.03	20.45 ± 0.05	65 ± 5	21.30 ± 0.15	6	0.42 ± 0.11
HD 207198	1.36	20.83 ± 0.04	20.61 ± 0.03	20.44 ± 0.04	66 ± 5	21.34 ± 0.17	2	0.38 ± 0.12
HD 207538	1.43	20.91 ± 0.06	20.64 ± 0.07	20.58 ± 0.05	73 ± 8	21.34 ± 0.12	2	0.43 ± 0.10
HD 210121	0.80	20.75 ± 0.12	20.63 ± 0.11	20.13 ± 0.15	51 ± 11	20.63 ± 0.15	7	0.73 ± 0.11
HD 210839	1.57	20.84 ± 0.04	20.57 ± 0.04	20.50 ± 0.04	72 ± 6	21.15 ± 0.10	2	0.49 ± 0.08

TABLE 8

REFERENCES.—(1) This paper; $N(\text{H I}) = 5.8 \times 10^{21} E(B-V) - 2N(\text{H}_2)$. (2) Diplas & Savage 1994. (3) Fitzpatrick & Massa 1990. (4) Paper II. (5) Snow et al. 1996. (6) This paper; $Ly\alpha$ profile fitting. (7) Welty & Fowler 1992; 21 cm emission measurement with possible systematic errors relative to the absorption measures.

The gas – dust relationship

Molecular fraction :

Try to detect **translucent clouds** : i.e. $A_V > 1$ Definition from van Dishoeck and Black (1988)

no $f > 0.8 \rightarrow$ we do not observe translucent clouds

Temperature of H_{2} , -J = 0, 1

$$T_{01} = -170.5 \ln \frac{9 \text{ N}(\text{H}_2, \text{J}=0)}{\text{N}(\text{H}_2, \text{J}=1)}$$

Formation rate of H₂

Gry et al. (2002), A&A 391, 675.

observations towards 3 lines of sight towards the Chameleon :

	HD 102065	HD 108927	HD 96675
E(B-V)	0.17	0.23	0.31
A _v	0.67	0.68	1.1
N _H	9.9×10^{20}	1.3×10^{21}	1.8×10^{21}

chosen since $\chi = 1$

hypothesis : homogeneous medium

$$n_{H} \times R = \frac{1}{2} \frac{f}{1-f} \times \beta_{0} \times \langle S \rangle$$

Numerical model :

$$n_{\rm H} \times R = \frac{1}{2} \frac{f}{1-f} \times \beta_0 \times \langle S \rangle$$

 $n_{_{\rm H}} R$: free parameter f : observational constraint

 $n_{\rm H}R \sim 0.87 \times 10^{-15} \, {\rm s}^{-1}$

Hypothesis : stationarity

* direct link between the density and the temperature

* which density gives the observed T_{01} ?

 $< R > ~ 4.0 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1}$

Copernicus : <**R**> ~ **3.0**×**10**⁻¹⁷ **cm**³ **s**⁻¹(Jura 1975)

HD survey in our Galaxy _____

French FUSE team – Lacour et al. (A&A, 2005)

Why study HD:

- **determination of the ratio D/H** : one of the main objectives of the FUSE mission
- 2 simple molecule : **good test for models**
- **3** constraint on the flux of cosmic rays

Physics of HD

Destruction process : photodissociation

same electronic structure as H_2 same probability of photodissociation at the edge of the clouds

• Formation process : formation in gas phase

$$\begin{array}{ccc} H + cosmic ray & & H^+ + e^- \\ H^+ + D & & D^+ + H \\ H_2 + D^+ & & HD + H^+ \end{array}$$

Models :

$$n_{\rm H} = 500 \text{ cm}^{-3}, \chi = 1, \text{ D/H} = 2 \times 10^{-5}$$

Because HD is less abundant than H_2 its formation occurs deeper in the clouds

For diffuse clouds with f < 1, to determine D/H it is recommended to measure both : N(D)/N(H) and N(HD)/2N(H₂)

Observations

Lacour et al. (A&A, 2005)

Observations

Copernicus: 10 detectionsFUSE: +100 detections

 \Rightarrow Probleme of the saturation of the lines

① Complementary observations at Resolution = 1-2 km s⁻¹ ex : CH, K I

2 Analysis by 2 methods
a) Curve of growth
b) fit of lines : Owens (Martin Lemoine)

> Analysis of 7 FUSE l.o.s. Re-analyse Copernicus data

Heliocentric Velocity (km.s⁻¹)

<u>Results of the HD survey in our Galaxy</u>

It seems difficult to conclude on D/H from N(HD)/N(H₂) ...

- 1) **Problem of the molecular fraction**
- 2) Variation of the ratio D/H
 - Variations of N(D)/N(H) :

Local bubble	•	D/H = 1.5 (-5)	(Wood et al. 2004)
MIS	•	D/H = 0.7 (-5)	(Hébrard et Moos 2003)

3) **Depletion of deuterium on dust** (B. Draine 2004)

✓ no variations of O/H are observed but D/H vary :

Deuterium may be depleted on dust

✓ This could be an efficient depletion due to the difference of zero point level energy between H and D

less D to form HD

The next steps ...

- 1) HD survey towards more targets
- 2) excitation of H_2

 3) FUSE results for diffuse clouds at high galactic latitudes better understanding of damped Lyman alpha systems with H₂ (Tumlinson et al. - in preparation)

Up to now ...

Magellan	: Similarities with the Galaxy even with a lower metallicity				
Galaxy :	H_2 survey	⇒	Confirmation of Copernicus results		
	HD	\Rightarrow	Lower limit D/H		

Thanks to Copernicus and FUSE we know $N(H_2)$ on many l.o.s H_2 + other species \Rightarrow many constaints

Part III : Determination of physical conditions

Structure of diffuse clouds _____

- Some molecules
 - seem to need high densities to exist : CO, C_2 , C_3
 - present variations in column densities at small scales H₂CO, OH, HCO⁺ (Moore & Marscher 1995 – Liszt & Lucas 2000)
- But no variations for dust (Thoraval & al. 1995)

What about H₂?
1) If N(H₂) varies → dust does not vary because of its inertia
2) If N(H₂) does not vary → minor species may probe chemical inhomogeneities

FUSE observations towards HD 34078 (P. Boissé et al. A&A, 2005)

• HD 34078 (AE Aurigae) : runaway star - $v_t = 100 \text{ km s}^{-1}$ Line of sight observed by FUSE for 5 years

• Well studied line of sight :

- H I and CO

- CH and CH⁺
- OH
- \circ C₃

- -- IUE : Mc Lachlan & Nandy (1981)
- CH, CN and C_2 -- S. Federman et al. (1994)
- CH and CH⁺ -- M. Allen (1994)
 - -- E. Rollinde and P. Boissé (2003)
 - -- CFHT/Gecko 2002
 - -- Oka et al. (2003)

S/B = 30 par pixel de 15 mÅ

H_2 detection

$N(H_2) = 6.4 \times 10^{20}$, $N(H I) = 1.7 \times 10^{21}$, f = 0.4

• the 18 first ro-vibrational levels of H₂ are detected

- maximum pure rotationnal level : J = 11 (E = 10 261 K)
- maximum ro-vibrationnal level : v = 1, J = 5
- Upper limits up to J = 13

• Other detection of very excited H_2

- HST observations towards HD 37903 (Meyer et al. 2001)

- 99 rovibrationnal levels
- 14 vibrational levels
- \Rightarrow excitation by the star at 0.5 pc from the cloud

HD detection

• 7 lines of HD, J = 0 are detected

but : most of them are blended with other lines 2 nice lines give very different N(HD) :

> 1031.91 Å: $N(HD) = 2.8 \times 10^{14} - 3.0 \times 10^{15} \text{ cm}^{-2}$ 1066.27 Å: $N(HD) = 2.0 \times 10^{16} - 7.0 \times 10^{16} \text{ cm}^{-2}$

Excitation diagram

Comparison of excitation diagrams

van Buren et al. (1991)

Model of the line of sight towards HD 34078

• Diffuse cloud $H_2 J = 0, 1 \rightarrow T_{kin} = 77 \text{ K}$ $C \rightarrow n_H = 700 \text{ cm}^{-3}$ and the molecules CH, C₂, C₃, CN, CO, OH

Eandaaa	C	bservations		Modèle				
Especes	moyenne	minimum	maximum	nuage diffus	PDR	choc C	total	
Н	1.7E21	1.5E21	1.9E21	2.8E19	2.0E21	-	2.0E21	
H ₂	6.4E20	6.0E20	6.9E20	6.4E20	3.6E19	-	6.7E20	
HD	1.0E15	-	-	9.0E15	6.0E13	?	9.0E15	
ОН	3.5E13	1.4E13	5.6E13	1.4E13	5.9E11	2.9E14	2.6E14	
СН	7.2E13	6.3E13	7.4E13	5.2E13	7.9E9	4.1E12	5.6E13	
CH ⁺	6.6E13	6.0E13	7.1E13	2.0E10	4.9E11	6.0E13	6.0E13	
C ₂	5.8E13	-	-	2.4E13	1.8E7	3.0E10	2.4E13	
CN	2.1E12	-	-	2.4E12	5.9E8	5.8E11	3.0E12	
СО	5.7E14	4.6E14	7.2E14	7.4E14	1.0E11	-	7.4E14	
CI	9.4E15	3.6E15	1.7E16	2.3E15	2.4E12	-	2.3E15	
CI *	5.8E15	1.6E15	5.8E15	3.8E15	7.0E12	-	3.8E15	
CI**	2.2E15	1.1E15	4.0E15	1.9E15	1.0E13	-	1.9E15	

The model reproduce relatively well the observed column densities

Comparison of spectra

Variation in H, lines

- wings of damped systems
- optically thin lines

comparison on 5 years

No significant differences in the spectra

Variation in Lyman β

comparison on 21 years (IUE – FUSE) re-analysis of IUE spectrum (1979)

variation of 1.8% per year

• Variation of N(CH) (Rollinde et al. 2003) comparison on 12 years

Variation of 1.7% per year

IRAM/HERA observations towards HD34078

The problem of the ionization _____

The formation of many molecules is initiated by cosmic rays : OH, HD, H₃⁺, HCO⁺, NH

ion-neutral reactions are favoured

- thermodynamically : no activation threshold
- kinetically : neutral-neutral reaction : $k = 10^{-11} \text{ cm}^3 \text{ s}^{-1}$

```
ion-neutral reaction : k = 10^{-9} \text{ cm}^3 \text{ s}^{-1}
```

fundamental to know precisely the ionization rate

standard value : $\zeta = 1.5 \times 10^{-17} \text{ s}^{-1}$

This value is incompatible with the detection of H_3^+ on diffuse l.o.s

$$H_{2} + \text{cosmic ray} \longrightarrow H_{2}^{+} + e^{-} \qquad k = \gamma \zeta \quad (s^{-1})$$

 $H_{2}^{+} + H_{2} \longrightarrow H_{3}^{+} + H$

several possibilities :

1) huge diffuse clouds : nearly extend throughout the path between the star and earth (Geballe et al. 1999)

2) clumpy medium : model for Cygnus OB2 No 12. (Cecchi-Pestellini & Dalgarno 2000)

3) higher ionization rate of the medium (McCall et al. 2003)

The flux of cosmic rays and the ratio D/H

(Black et Dalgarno 1973, Black et al. 1978, Federman et al. 1996, Le Petit et al. 2001)

The line of sight towards ζ Per

a very well studied line of sight :

- many observations
- a good test for models
 - Black, Hartquist and Dalgarno (1978)
 - 2 components model
 - cold zone : T = 45 K, $n_{\rm H}$ = 267 cm⁻³
 - hot zone : T = 120 K, $n_{H} = 100 \text{ cm}^{-3}$
 - $\zeta = 2.2 \times 10^{-17} \, \text{s}^{-1}$
 - Van Dishoeck and Black (1986) all constraints taken into account models with T and n profiles $\zeta = 4-7 \times 10^{-17} \text{ s}^{-1}$
 - Federman et al. (1996) From OH $\zeta = 1.7 \times 10^{-17} \text{ s}^{-1}$

٢	McCall et al. Nature, 422, 500, 2003 —	$N(H_3^+) = 8 \times 10^{13} \text{ cm}^{-2}$
	From $H_{3^{+}} = 1.2 \times 10^{-15} \text{s}^{-1}$	5

	Observations		
Η	5.7(20)	7.1(20)	
H ₂	3.2(20)	7.1(20)	
f	0.53	0.66	
T_{01}	45	75	
HD	2.0(15)	1.1(16)	
${\rm H_{3}^{+}}$	8.0(13)		
C^+	1.8(17)		
С	2.9(15)	3.6(15)	
CO	5.4(14)		
СН	1.9(13)	2.0(13)	
CH^+	3.5(12)		
C_2	1.6(13)	2.2(13)	
C ₃	1.0(12)		
CN	2.7(12)	3.3(12)	
NH	9.0(11)		
Ο	0.2(18)	1.0(18)	
OH	4.0(13)		
S^+	1.7(16)	2.3(16)	
S	1.5(13)	2.2(13)	
Si ⁺	2.8(16)	2.8(14)	

Model of the line of sight towards ζ Per

$\frac{\zeta}{\zeta} = 5 \times 10^{-17} \text{ s}^{-1}$ $\zeta = 25 \times 10^{-17} \text{ s}^{-1} \text{ (Le Petit, Roueff, Herbst 2004)}$

Conclusion :

- a higher value of ζ is required to explain H₃⁺
- but this value cannot be too high or too many electrons are produced overestimation of N(C) and N(S)

Model:

2 components : a diffuse one + a dense one $(C_2 \text{ et } C_3)$

	Diffuse	Dense	Total	Observations		Parameters :	
Н	3.5(20)	1.4(17)	3.5(20)	5.7(20)	7.1(20)		
H_2	4.5(20)	1.1(19)	4.6(20)	3.2(20)	7.1(20)	$\gamma - 25 \times 10^{-17} \text{ s}^{-1}$	
f			0.7	f = 0.53	3 - 0.66	$S = 23 \times 10$ S	
HD	1.5(16)	3.9(13)	1.5(16)	2.0(15)	1.1(16)	1:00 1.0	0 2
H_{2}^{+}	2.9(13)	5.0(09)	2.9(13)	8.0(13)		diffuse : $n_{\rm H} = 100$	0 cm^{-3}
C^+	1.6(17)	1.2(15)	1.6(17)	1.8(17)		$\chi = 2$	
С	1.4(15)	1.6(15)	2.8(15)	2.9(15)	3.6(15)	dense \cdot n = 2×	10^4 cm^{-3}
CO	3.5(14)	7.9(13)	4.2(14)	5.4(14)			
СН	2.4(12)	5.6(12)	8.0(12)	1.9(13)	2.0(13)	$\chi = 0.5$	
C_2	1.9(11)	1.9(13)	1.9(13)	1.6(13)	2.2(13)		
C ₃	3.1(08)	2.1(12)	2.1(12)	1.0(12)		Predictions :	
CN	6.6(10)	1.9(12)	1.9(12)	2.7(12)	3.3(12)		
NH	3.5(11)	1.2(09)	3.5(11)	9.0(11)		$N(OH^+) = 7.6(11)$	cm ⁻²
0	4.0(17)	7.2(15)	4.0(17)	0.2(18)	1.0(18)	$N(U O^+) = 5.5(11)$	om^{-2}
OH	4.9(13)	1.1(09)	4.9(13)	4.0(13)	, , , , , , , , , , , , , , , , , , ,	$11(11_{2}0)$ $3.3(11)$	CIII

H₂ excitation

Excepted for some particular lines of sight the excitation of H_2 is not reproduced by UV pumping

The mechanism to transfer the energy from stars and SN remnants to the ISM is not understood !

30.0

100.0

300.0

10.0

χ

1.0

3.0

Other associated problem:

 $C^+ + H_2 \longrightarrow CH^+ + H \quad \Delta H = 4500 \text{ K}$ Chemical models underestimate the observations by a factor 1000 χ

Possible solutions :

- C shocks (G. Pineau de Forêts, D. Flower)
- turbulence (E. Falgarone, K. Joulain)
- collisions with the electrons

- Many observational constraints on many lines of sight
- Models give very good results
- But the two fundamental questions of the diffuse ISM still remains :
 - How to explain the abundance of H₃⁺ in the diffuse ISM ?
 - Problem of the structure of diffuse clouds
 - Problem of the rate of ionization of the diffuse clouds
 - How the energy from stars and supernovae is transfered to the ISM ?
 - Which physical mechanism excite the rotational levels of H₂?
 - How is formed CH⁺ ?

Need for theory !