Matter distribution and scaling laws in clusters of galaxies

Etienne Pointecouteau (Oxford)

Monique Arnaud (Sap/CEA), Gabriel Pratt (MPE)

Overview

- Studying galaxy clusters
- Structural properties of clusters
- From X-ray observations to scientific products
- The DM properties
- The ICM properties
- Conclusion & perspectives

- What are clusters of galaxies?
 - → nodes of the cosmic web
 filamentary structures
 → mass growth by constant
 - accretion and mergers events
 - \rightarrow largest virialized structures

• What are they made of?

$$\rm M_{tot}$$
 ~10^{13} – a few 10^{15} $\rm M_{so}$

- → DM ~80%
- \rightarrow galaxies ~5%

 $T \sim 10^{6} - 10^{8} \text{ K}$; n_e ~ 10⁻⁴ - 10⁻² cm⁻³; Z ~ 0.3Z_o

complex physical processes at play in the ICM

Giant laboratories for astrophysical processes

What for ?

- Cosmology
 - → cluster counts, mass function N(M,z) → (Ω_m , σ_8 , Γ)
 - → gas fraction f_{gas} → Ω_m
- Physics of structure formation and evolution
 - → DM collapse
 - \rightarrow non-gravitational processes , gas physics

• Cluster counts, clusters abondance \rightarrow normalization of P(k) $\sigma_8 = 0.76 \pm 0.10 \ (\Omega_m = 0.3)$ \rightarrow shape parameter of P(k) $\Gamma = \Omega_m h = 0.18 \pm 0.03$ [Schuecker 2004] 0.90 0.85

→ Complementary constraints to the CMB and the SNIa

What for ?

- Cosmology
 - → cluster counts, mass function N(M,z) → (Ω_m , σ_8 , Γ)

 \rightarrow gas fraction $f_{gas} \rightarrow \Omega_{m}$

- Physics of structure formation and evolution
 - → Physics of the DM collapse
 - \rightarrow non-gravitational processes , gas physics

- Statistical properties of clusters
- → Physical parameters $L_{bol} \sim 10^{41}$ - a few 10⁴⁶ ergs/s $M_{tot} \sim 10^{13}$ - a few 10¹⁵ M_{\odot} T ~ 0.3 - 15 keV
 - \rightarrow At least up to z ~ 1.5
 - → Morphology: regular (~50%)
 - ≠ dynamical states at every z

- Signes of similarity
- Correlations

- Formation et evolution of structures
 - \rightarrow DM collapse
 - \rightarrow non-gravitational processes
 - \rightarrow gas physics

 \rightarrow

- → DM/baryons coupling
- → sub-halos abondance
- \rightarrow themodynamical evolution

Hierarchical formation of structures

- → semi-analytical spherical collapse; numerical simulations [Bertschinger 1985, Cavaliere et al. 1999; Evrard & Gioia 2002 (review)]
- Clusters form at a recent epoch ($z\sim2$)
- ICM evolving in the gravitational well of the DM

 $\rightarrow f_{gas} = cst$

• The virialized part at z \rightarrow fixed density contrast $\delta \mathcal{-}200$

 $\rightarrow M/R^3 = 4\pi/3 \, \delta_c \, \rho_c(z) \, , \, \delta_c \sim 200$

(with $\rho_c(z) = h(z)^2 (3H_0^2)/(8\pi G)$ $h(z)^2 = \Omega_m (1+z)^3 + \Omega_A$)

• Are close to virial/hydrostatic equilibrium

 $\rightarrow kT \propto GM/R$

Self-similarity is expected from the cluster population

Clusters properties of similarity

- Similarity of shape
 - \rightarrow universal shape of DM halos

- \rightarrow same internal DM (and thus gas) structure
- Scaling laws: correlations between physical quantities
 - $\rightarrow [z, M]: Q(z)=A(z) M^{\alpha}$

(or [z, T]: $Q(z)=B(z) T^{\beta}$)

 $\rightarrow M_{tot} \propto T^{3/2} h(z)^{-1}$

On pre-XMM and Chandra era

• Observed structural properties

Signs of self similarity

Observed scaling laws

[Neumann & Arnaud 2001]

Departures from the expectations not well understood

Theoretical considerations

- Effect of the gas physics on structure formation Non-gravitational processes
 - → preheating (→ entropy excess) [Tozzi & Norman 2001]
 - \rightarrow radiative cooling of the gas
 - \rightarrow feedback from the galaxy formation

(heating by SN & AGN)

[Borgani 2004, Kay 2004]

Do we understand correctly the DM collapse?

• What is the shape of the gravitational potential in clusters ?

What is the thermodynamical state/history of the gas?

- Do we face a break of similarity?
- Or is it a modified similarity?

→ The structural properties of clusters

→ The scaling properties of clusters

are fundamental tools and rich sources of information to

- → Use clusters as cosmological tools
- → Study structure formation and evolution

In such studies the key quantities are: the **mass** and the **entropy**

Observational study

- XMM GT time + AO1 time + archives
- The sample :
 - \rightarrow 10 relaxed and nearby clusters (z<0.15)
 - → Temperature range : [2-9] keV
 - kT < 3 keV : 4 clusters
 - 3 < kT < 6 keV : 2 clusters
 - kT > 6 keV : 4 clusters

→ ΛCDM (h=0.7 , Ω_m =0.3 , Ω_Λ =0.7)

- Spectroscopy
 → kT(r)
- Deprojection & PSF correction (\rightarrow kT(r) parametrization)

- Total mass profile
 - \rightarrow spherical symmetry
 - → hydrostatic equilibrium

$$M(r) = -\frac{kT}{G\mu m_p} \left[\frac{d {\rm ln} n_e}{d {\rm ln} r} + \frac{d {\rm ln} T}{d {\rm ln} r} \right]$$

- Central structure: cold front, ghost cavities, bubbles, bow shocks,...
 - \rightarrow track departure to HE
 - \rightarrow cut the central region
- Test DM models

(e.g. NFW $\rho_{\text{DM}} \propto ~(r/r_{\text{S}})^{\text{-1}}[1+(r/r_{\text{S}})]^{\text{-2}})$

Properties of the DM: The shape of the mass profile The M-T relation

• Best fit results

Name	Z	kT	С	M_{200}	R_{OBS}/R_{200}
		(keV)		(10 ¹⁴ M _{sol})	
A2204	0.152	8.10	4.59	11.80	0.61
PKS0745	0.103	7.61	5.12	10.03	0.57
A478	0.088	6.66	4.22	10.82	0.58
A1413	0.143	6.60	5.82	6.50	0.79
A1068	0.137	4.56	3.69	5.68	0.57
A2597	0.143	3.52	5.86	3.00	0.58
A1983	0.044	2.20	3.83	1.63	0.38
A2717	0.050	2.42	4.21	1.57	0.54
MKW9	0.038	2.44	5.41	1.20	0.41
A1991	0.056	2.62	5.78	1.59	0.60

 \rightarrow covering [2-9] keV and [1-12]×10¹⁴ M_{sol}

• Raw mass profiles

- Scaled mass profiles
- \rightarrow well described by a NFW profile from 0.01 to 0.5 R₂₀₀

The mass profiles are self-similar. A universal mass profile is observed.

- Mass and concentration parameter
 - → predicted dispersion in c(M) [Zhao et al 2003, Dolag et al 2004] (scatter in the formation epoch [Wechsler 2002])

Conforms to the theoretical predictions Physics of the DM collapse is pretty well understood

- Fitting the M-T relation
 - \rightarrow M₈ directly fitted on the mass profile
 - \rightarrow kT obtained from direct spectrosopy in [0.1-0.5] R₂₀₀
 - \rightarrow Linear regression: $\log M = A + B \log kT$
 - \rightarrow Errors on kT and $M_{_{\!\delta}}$ taken into account

 $M_{2500} = 1.55 \times 10^{13} \ (kT)^{1.51 \pm 0.10} \ h_{70}^{-1} \ M_{sol}$

Slope: conforms to the prediction of 1.5

Different slope (~1.7) but not at high masses (~1.5) Normalization: improving but still differences with simu.

Properties of the ICM: The entropy profiles and the S-T relation Thermal state of the gas

Raw entropy profiles

[Pratt & Arnaud 2004]

• Scaled entropy profiles: $S \propto T$

[Pratt & Arnaud 2004]

- S-T relation shallower than expected [Ponman et al. 2003] $\rightarrow @ 0.1R_{200} : S \propto T^{0.65}$
- Entropy excess up to large radii

→ from low mass to high mass sytems

(i) at R_{500} : extrapolation of the parametric models for ne(r) and kT(r)

 $S_{2500}(0.1R_{200}) = 470 T^{0.65} (r / 0.1r_{200})^{0.94\pm0.14} h^{-4/3}(z) \text{ keV/cm}^2$

→ in spherical shock accretion models: r^{1.1} [Tozzi & Norman 2001]

Entropy profiles have a similar shape

• Raw temperature profiles

- Scaled temperature profiles
 - \rightarrow <kT> : spectroscopic temperature in [0.1-0.5] R₂₀₀

Comparison to previous observations

XMM-Newton (this work) ASCA (Markevitch et al. 1998) BeppoSAX (De Grandi & Molendi 2002) Chandra (Allen at al. 2001)

• Comparison to simulations XMM-Newton (this work) Borgani et al. 2004 Kay et al. 2004

• Temperature profiles with XMM et Chandra

Summary and Perspectives • Universality of the DM distribution over 0.01-0.7 R_{200}

→ fairly well described by a NFW whatever kT
 Qualitative and quantitative validation of the DM
 collapse models

• M-T relation: $M(\delta) \propto T^{1.7}$ whatever δ (obs. \rightarrow 1000 ; extr. \rightarrow 200)

→ slightly steeper than expected, normalization problem
Physics governing the gas is still not well understood

[Pointecouteau, Arnaud & Pratt (astroph/0501635), Arnaud, Pointecouteau & Pratt (astroph/0502210)]

- The entropy profile up to 0.5 R₂₀₀ has a similar shape Ruled out simple preheating models (confirmed)
- Shallow S-T relation confirmed: $S_{2500} \propto T^{0.69}$
 - → entropy excess at high radii observed
 The gas thermodynamical evolution is not well understood

[Pratt, Arnaud & Pointecouteau (en préparation)]

Coming SZ surveys

- Groundbased SZ surveys coming up:
 - → Interferometric instruments: AMI, AMIBA, SZA
 - → Single dish: ACT, SPT, OLIMPO, SuZIE-*III*,

ACBAR, MITO, APEX-SZ

- Spacecraft
- → Planck Surveyor all sky survey

9 photometric bands (350μ m-1cm)

~40000 clusters awaited with $kT > 4keV (\Lambda CDM)$

- \rightarrow $F_{SZ} \propto Y \propto f_{gas} T M d_{A}^{-2}$
- \rightarrow single λ : $F_{sz} \propto Y$
- → multiple λ : Y, v_p , kT

[Pointecouteau et al. 1998, Aghanim et al. 2003, Hansen et al. 2004]

- Combined X/SZ spatial analysis [Pointecouteau et al. 2002, Kitayama et al. 2004]
 - → temperature (kT)
 - \rightarrow X-ray counter part for ~3% of Planck clusters
 - → solution : SZ scaling laws Y-M (Y-T, M-T)

Perspectives for SZ surveys

Etienne Pointecouteau - IAP, 08.04.2005

Summary and perspectives

- Good results from a test case sample (despite biased)
- Future works with unbiased and complete samples
 local reference [LP AO3 PI: H. Böhringer]
 evolution [LP AO4 PI: M. Arnaud]
 → well calibrated scaling laws in [z,M]

 \rightarrow N(M,z=0), N(M, z=0.5)

• Combination with future SZ data

 \rightarrow calibration of the SZ scaling laws (Y-M)

- → physics of structure formation
- → cosmological studies with X-ray surveys