Cycle stellaire et nucléosynthèse dans les amas globulaires galactiques

Corinne Charbonnel CNRS & Geneva Observatory

In collaboration with T.Decressin, S.Eckström, G. Meynet (Geneva) & N.Prantzos (IAP)

GCs - Guides to the Universe # Milky Way GCs range among the oldest objects of the Universe → standard cosmological test of the age of the Universe (11 to 13.5 Gyr for the oldest ones)

GCs - Guides to the Universe

Milky Way GCs range among the oldest objects of the Universe → standard cosmological test of the **age of the Universe** (11 to 13.5 Gyr for the oldest ones)

GCs - Guides to galaxies

- # GCs are not all uniformly old
- LMC, SMC, M31 and M33 contain intermediate-age and young GCs "Populous young clusters" in LMC : 10 Myr - 2 Gyr R136 in 30 Doradus : 3 - 4 Myr
- # There is much evidence for continued GC formation in Local Group galaxies
- # Some GCs are currently forming in ongoing mergers and starburst galaxies from large molecular-gas complexes
- → Clues on **stellar formation** in various environments

GCs - Guides to stars

- # Contain ~ 10^5 - 10^6 stars packed into a volume ~ $(10pc-30pc)^3$, possibly of same age and with the same Fe abundance (except Ω Cen),
- although Z varies considerably from cluster to cluster
 - \rightarrow natural laboratories to study stellar formation and evolution
- # Host a wide variety of interesting and unusual objects (milisecond pulsars, blue stragglers, low-mass X-ray binaries, ...)

GCs - Guides to stellar dynamics

Evolve dynamically

- # Fundamental dynamical processes (relaxation, mass segregation, core collapse) take place in GCs on timescales shorter than the Hubble time
- # Interactions with the environment

GCs in modern astrophysics & cosmology

GC studies bring insight on

- cosmology,
- galaxy formation and evolution,
- stellar dynamics,
- stellar evolution and nucleosynthesis

However, exact formation mechanism and evolution still unknown

Until recently, the common paradidm for GC formation was that they constitute a "simple stellar population" of stars that formed from a chemically homogeneous cluster medium within a relatively short interval of time

However, GGCs probably did evolve chemically and certainly consist of multiple stellar generations The subject of the present talk ...

Chemical dissection of galactic globular clusters

In any individual GC (except Ω Cen) :

& Sneden (05 IAU 228)

Fe-peak elements (Ni, Cu) Low scatter and same trends as field * neutron-capture elements (Ba, La, Eu) alpha-elements (Si, Ca) (overabundant relative to Fe)

Complex patterns lighter elements from C to Al C, N, O, Na, Mg, Al anomalies not found among field stars C.Charbonne

CN and CH molecular bands Cohen et al. (2002)

Collection of stars in ~ 20 MW GCs with \blacktriangleright [Fe/H] between -2.16 and +0.07 dex ➤ a large range of physical properties $(\neq total M, concentration, density,$

Whatever the mechanism responsible, it must be an intrinsic prop erty of a GC. a universal feature of these objects, related to the cluster formation process itself

H-burning through CNO, NeNa, MgAl

The « classical » candidate polluters : Low-Z, massive AGB stars

Hot bottom burning (HBB)

- \rightarrow CNO, NeNa and MgAl processing
- \rightarrow No synthesis of α or Fe-peak elements
- → Few thermal pulses before superwind phase and relatively massive stars → s-elements not necessarily enhanced
- \rightarrow Strong <u>mass loss</u> (up to 80% of the total M_{*})
- → <u>Low-speed winds</u> may be retained in the cluster with a trend to be concentrated toward the center (radial trend in CN distr. in a few GC as 47Tuc)
- \rightarrow UV energy produced during the PN phase too low to expel the gas away
- \rightarrow <u>Timescale</u> low-enough (50-100Myr)

to be compatible with the GC formation

Cottrell & Da Costa (81) : The AGB ejecta may have been mixed into the intracluster medium from which a 2d generation of stars may have formed within the GC (= $_7$ accretion scenario)

O, Na evolution at the surface of a low-Z massive TP-AGB star

Delicate interplay of 3d dredge-up and hot bottom burning

C.Charbonne

eventually of ²⁴Mg

C.Charbonnel

MgA1 : Al increases at the expense of 25,26 Mg and

Chemical evolution of globular clusters including AGB yields -A summary of the difficulties

GCCE model including AGB predictions

iamonds :

1.25, 2.5, 3.5, 5.0, <u>6.5</u> **stellar models** Arrows : Changes in the mass loss (Vassiliadis & Wood 93 vs Reimers 75)

GCCE model :

Spread in [Al/Fe], but too low by ~ 0.6 dex Total Mg abundance increases with Al Dramatic increase of $^{25,26}Mg$

Yong et al. (03) NGC 6752 ${}^{24}Mg:{}^{25}Mg:{}^{26}Mg =$ 80:10:10 in the least polluted * 60:10:30 in the most polluted *

Further difficulties for the AGBs being the polluters

Fenner et al. (04)

N 20 Almost 1 order of magnitude rise of [C+N+O / Fe] C+N+0 of He-burning) 0.5 Mostly N, from HBB stars C+N+O is found to be \sim constant 0.0 Mostly C from 3DUP in in many GCs lower M stars without HBB -0.5 (Pilachowski et al. 88, Dickens et al. 91, Smith et al. 96, Ivans et al. 99) -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 og(Time [Gyr] C.Charbonn

Difficulty for the AGB scenario : Competition between hot bottom burning and 3d dredge-up :

7 He-burning products

Have we really identified the culprit polluter ?

C.Charbonnel

Massive stars?

- ✓ Abundance patterns due to nuclear reactions in the H-burning core of massive main sequence stars do mimic the chemical trends observed in GC low-mass stars
- ✓ How does the star expel these products into the interstellar medium?
- \Rightarrow The crucial role of rotation on stellar winds (at any Z)

Transport of angular momentum and chemicals by meridional circulation and shear turbulence

Zahn (1992), Maeder & Zahn (1998), Meynet & Maeder (2000)

Courtesy of G.Meynet

C.Charbonnel

Rotation Vini = 800 km.sec⁻¹ $\Leftrightarrow \Omega/\Omega c = 0.95$ Critical velocity \Leftrightarrow Equatorial surface velocity is such that centrifugal acceleration exactly balances gravity (In practice, we remove the supercritical layers)

At break-up matter is removed from the surface together with AM. BUT meridional circulation transports AM from the fast core to the envelope

Summary

- Difficulties of the AGB scenario
- ⇔ Dredge-up of He-products
- & No process to trigger latter star formation

? Reliability of the AGB model predictions ?

NGC 6543 HST · WFPC2

Summary

C-N, O-Na and Mg-Al anticorrelations seen in GCs only require early polution of the intra-cluster gas by a first generation of massive and fast evolving stars

Intrinsic property of a GC related to the cluster formation process itself

p-capture nucleosynthesis at relatively high T (~ 75 MK) Explains all the patterns (C, N, O, Mg, Al, Mg isotopes and even Li and F) : dilution with pristine gas

2 potential polluters :

Massive AGB stars Massive rotating stars

C.Charbonnel

The Wind of Fast Rotating Massive Stars scenario

- ! Gently blowing winds of rapidly rotating massive stars
- \Rightarrow ejection of slow material loaded in H-burning products only
- \Rightarrow May trigger star formation in their vicinity

One cause for two processes

A very interesting candidate polluter of GCs Decressin, Meynet, Charbonnel, Prantzos & Ekström (2006)

Fast rotation may help to resolve other questions He-rich stars in GCs (Maeder & Meynet 2006)

- C-rich stars (Meynet et al. 2006)
- Primary N production (Chiappini et al. 2006)

The Wind of Fast Rotating Massive Stars scenario

! Gently blowing winds of rapidly rotating massive stars
 ⇒ ejection of slow material loaded in H-burning products only
 ⇒ May trigger star formation in their vicinity
 One cause for two processes
 A very interesting candidate polluter of GCs
 Decressin, Meynet, Charbonnel, Prantzos & Ekström (2006)

 ! May somewhat relieve constraints on the polluter IMF (Salpeter 1.35)
 → Constraints from [O/Na] in NGC 2808 satisfied for slopes

 $X_2 < 0.75$ in the case of massive stars (30 - 100 M_{\odot}) $X_2 < 0.45$ in the case of massive AGBs (4 - 9 M_{\odot}) Prantzos & Charbonnel (2006)

Detailed observations of abundance distributions, combined with realistic predictions for the stellar yields, will allow us to constrain convicingly the polluter IMF

C.Charbonnel

The future

Future : Link the macroscopic (dynamical evolution of a GC) and microscopic (evolution of single and multiple stars) phenomena

→ How does the general dynamical evolution of the cluster influence the fate of member stars?
 Rotation ?
 Binarity ?
 Stellar encounters ?
 Mass loss ?
 Blue stragglers ? Horizontal branch morphologie ?
 Multiple generations ?

 How does stellar evolution influence the dynamical evolution of the cluster as a whole? Survival vs disruption