Are supernova remnants PeV accelerators ? The contribution of HESS observations

Marianne Lemoine-Goumard Laboratoire Leprince-Ringuet - Ecole Polytechnique

Outline

1. VHE Gamma-ray Astronomy & HESS

2. Clearly identified shell-type supernova remnants

3. HESS sources from the Galactic Plane survey compatible with shell-type SNRs

4. Upper limits on the gamma-ray flux from non-detected SNRs

WHE Gamma-ray Astronomy & HESS

Gamma-ray Astronomy instruments

soft γ-rays: E < 10 MeV INTEGRAL

HE γ -rays: 10 MeV < E < 100 GeV EGRET, AGILE, GLAST

VHE γ -rays E > 100 GeV H.E.S.S., VERITAS...

Cherenkov telescopes worldwide

Hadronic background

The development of hadronic showers is different from gamma-ray showers:

- Broader transverse moments
- No rotational symmetry

The atmospheric Cherenkov technique

- Electromagnetic showers develop in the atmosphere emitting Cherenkov radiation
- Image obtained in the cameras
- Morphological analysis of the image

Standard reconstruction

Hillas Parameters (1984):
γ images are elliptical
⇒ reduce image properties to a few numbers:

Length (L) & Width (w)

Amplitude (size)

Nominal Distance (d)

Azimuthal angle (ϕ) and orientation angle (α)

Stereoscopy: tells where the shower came from

<u>direction</u>

Stereoscopy : tells where the shower hit

- Position of the target
- Centre of gravity of the image

Traces on the ground

H.E.S.S. telescopes

Four-Telescope network

Located in Namibia, 23°S 15°E 1800 m altitude

Telescope separation: 120 m

Telescope Structures

Mirror dishes: $4 \times 107 \text{ m}^2$ Diameter: 12 m, Focal length: 15 m

Mirrors

 380×60 circular facets PSF after alignement ($r_{80\%}$) 1.3' / 0.38 mrad on axis

H.E.S.S. cameras

- 960 photomultiplier pixels
- Pixels of 0.16° / 2.8 mrad
- Wide field of view, 5°
- 16ns integration window, fast trigger coincidence
- All electronics integrated in-camera
- 3 cables (1 power , 2 optic fibres)
- Fits in 2 m cube
- Weight ~ 900 kg

H.E.S.S. performances

- Threshold ~ 100 GeV at zenith
- Angular resolution $< 0.1^{\circ}$
- Energy resolution $\approx 15\%$
- Trigger rate ~ 300 Hz
 with ~ 10% dead time (stereo)
- ~ 25 γ/min for a source type *Crab Nebula* at zenith:
 - 0.01 Crab in ~25 hrs

1.00 Crab in ~30 sec (against ~ 1h for the previous generation)

Astrophysics with H.E.S.S.

Extragalactic sources

- Active galactic nuclei
- Starburst galaxies
- Clusters of galaxy
- Gamma-ray bursts ??

Galactic sources

- Supernova remnants
- Plerions
- Binary systems
- Unidentified sources

Astroparticule physics

Extragalactic infra-red background with the study of AGNS

 $\gamma_{TeV} + \gamma_{IR, vis} \rightarrow e^+ e^-$

Neutralino annihilation

The cosmic ray mistery

Discovered in 1912 (Victor HESS)
10 orders of magnitude in energy, 30 in flux
Origin still unknown

Cosmic-ray sources ?

Cosmic rays are charged particles :
 Galactic origin (Energy < 10¹⁵ eV)
 PROPAGATION IN TURBULENT MAGNETIC FIELD

→ LOOSE THE INFORMATION ON THE SOURCE

GAMMA :

Cosmic-ray sources are gamma-ray emitters

Direct propagation of the gamma-rays

→ KEEP THE INFORMATION ON ITS SOURCE

One possible candidate :

Supernova remnants

Mystery not solved since 1912 !

Supernova remnant

Supernova remnant :

Explosion of a star or a binary system

Blast wave *particles accelerated by Fermi process*

Possible source for the acceleration of cosmic rays up to 10¹⁵ eV

Radio image of Cas A

- High emission associated to the ejecta
- Plateau due to the blast wave

Non-thermal radiative processes

γ-rays

- \Box Synchrotron emission \rightarrow Radio to X-rays
- $\Box \operatorname{Proton-Proton interaction} \rightarrow \gamma \operatorname{-rays}$
- Bremsstrahlung
- Inverse Compton
- Pair Annihilation

protons/nuclei electrons/positrons Inverse Compton

(+Brehmstr.)

radiation fields and matter

 π^{\pm}

First observational evidences (I)

1. In the radio range :

Since 1950, discovery of radio emission from different supernova remnants (Cas A, Tycho) is a direct evidence of the acceleration of high-energy electrons up to the <u>GeV</u>.

Radio image of Cas A

 $v_{\text{sync}} = 1.65 \times 10^7 \text{ B}_{\mu\text{G}} \text{ E}^2_{\text{GeV}}$

First observational evidences (II)

2. In the X-ray range :

In 1995, ASCA shows that the emission of the 2 rims of SN1006 are dominated by the radiation of high energy electrons accelerated up to **100 TeV**. (Koyama et al., Nature, 1995)

ASCA GIS : 0.8-10 keV

SN1006 observed by ASCA

Evolution of the \gamma-ray domain

CGRO/EGRET:

- April 1991 June 2000

271 detected sources

Supernova remnants: sources hardly detectable with EGRET

1. Effective area of gamma-ray satellites are at most equal to the detector area

2. Poor angular resolution of satellites like EGRET (6° à 100 MeV) => identification of a gamma-ray signal with a radio or an X-ray counterpart rather hard

Atmospheric Cherenkov detectors advantages

=> Atmospheric Cherenkov telescopes are currently the only instruments to do such study (waiting for GLAST)

Effective area: several hectares (area of the Cherenkov light on the ground)

Angular resolution: $< 0.1^{\circ}$

Unique difficulty : rejection of the hadronic background

RX J1713.7-3946 Multi-Wavelength Observations

- Discovery: ROSAT All-Sky Survey (1996)
- X-ray emission mostly non-thermal
- Distance re-estimated at 1kpc

(Cassam-Chenai et al. and Fukui et al., 2004)

- CANGAROO observed TeV excess from western rim (Enomoto et al., 2000)
- Detection by H.E.S.S. in 2004 (Aharonian et al., 2004)
 ROSAT (0.1-2 keV) XMM-Newton (2-10 keV) XMM + NANTEN

H.E.S.S. Observations in 2004

Angular resolution < 0.1 $^{\circ}$ \rightarrow morphology resolved

- Observations with the full array of 4 telescopes
- 33 hours live-time ON source
- Zenith angles from 15 to 60 degrees
- Standard cuts are applied
- Shell of the remnant resolved

RX J1713.7-3946 Spectrum

Extension of the spectrum up to 40 TeV→ Particles accelerated up to ~100 TeV

- Spectrum obtained with the 2004 dataset compatible with the one from 2003
- Photon index of the remnant :
 - $-2.26 \pm 0.02 \pm 0.15$
- Flux ~ 1 Crab
- Deviation from a pure power-law a high energy: $E_{cut} = 17.9 \pm 3.3 \text{ TeV}$

Spatially resolved spectra

- No significant change of the spectral shape from one region to another in TeV
- Significant changes of the spectral index observed in X-rays

Energy dependence of the Morphology

As opposed to X-rays, TeV morphology doesn't change significantly with energy

Primary population: electrons ?

Need about 8 µG B field to match flux ratios
Simplest electronic models don't work well

- Simple one-zone model
- Electrons & protons injected with the same spectral shape
- Energy losses + escape of particles out of the shell taken into account

Primary population: protons ?

- Spectral shape at the injection level: power-law + exponential cut-off $E_{cut} = 120 \text{ TeV}$ and index = 2.0
- Energy injected = 10^{50} ergs
- Electron/proton ratio = 5×10^{-4}
- Magnetic field = 35 μ G & Density = 1.5 cm⁻³

H.E.S.S. Observations in 2004-2005

Angular resolution $< 0.1^{\circ} \rightarrow$ morphology resolved

- Observations from December 2004 to May 2005
- 20 hours live-time ON source
- Zenith angles between 20° and 50°
- Energy threshold : 250 GeV
- Results confirmed by an independent analysis

RX J0852.0-4622 Spectrum

Extension of the spectrum up to 20 TeV→ Particles accelerated up to ~100 TeV

Spectrum ranges from: 300 GeV up to 20 TeV

• Spectral index: $2.24 \pm 0.05_{stat} \pm 0.15_{syst}$

• I (> 1TeV) = $(15.2 \pm 0.7_{stat} \pm 3.20_{syst}) \times 10^{-12} \text{ cm}^{-2} \text{s}^{-1}$

• Flux and spectral index compatible with the results published in A&A

Indication of deviation at high energy

Correlation with X-rays

Correlation coefficient between X-rays and HESS ~ 70%

Distance (deg)

Distance (deg)

Primary population: electrons ?

Leptonic process => Magnetic field $\sim 7 \ \mu G$

Nearby case (D ~ 200 pc)

=> Difficulty to confine electrons in the very thin shell resolved by HESS

Primary population: protons ?

Hadronic process => Magnetic field > 40 μ G to fit the X-ray data and suppress the IC-scattering component

Nearby case (D ~ 200 pc)

=> Electron/proton ratio ~ 4 × 10⁻⁶

Distant case (D ~ 1 kpc)

Density ~ 2.2 cm⁻³ => Bubble mechanism needed to explain the absence of thermal

X-rays

HESS sources from the Galactic Plane Survey compatible with shell-type SNRs

The gamma-ray sky observed by EGRET (~ 100 MeV)

The HESS survey (I)

Galactic Longitude (deg.)

- -30 to 30 degrees in longitude, approx. \pm 3° in latitude
- 112 hours scanning plus:
- ~50 hour exposures of RX J1713 and the Galactic Centre
- Re-observations of new sources
- Green's Catalogue SNRs
 91 SNRs in the survey region

The results of the scan

What are these new sources ?

- 3 could be pulsar wind nebulae, typically displaced from the pulsar
- I microquasar (LS5039)
- Some coincide with EGRET, ASCA, ... unidentified source
- 6 sources could be associated with SNR, e.g. HESS J1834-087

Possible SNRs detected during the Galactic Plane Survey

Example of perfect positional match: HESS J1640-465

Possible SNR or PWN but insufficient MWL data

Marginally extended with respect to the HESS PSF

Photon index: 2.42 ± 0.14 Flux ~ 9% Crab nebula above 200 GeV

Excellent spatial correlation with G338.3-((broken shell SNR lying on the edge of a bright HII region)

Position compatible with the unidentified EGRET source 3EG J1639-4702

Example of positional offset: HESS J1804-216

SNR or PWN candidate ?

Largest source detected during the Survey

Brightest source: Flux(>200 GeV) ~25% Crab Nebula One of the Softest source: Index: 2.72 ± 0.06

Possible association with the SW part of the shell of SNR G8.7-0.1

Possible association with the Vela-like pulsar PSR J1803-2137

+ new SNR G8.31-0.9 (Brogan et al. 2006) + 2 XRT point-sources (Landi et al., 2006)

HESS sources / SNRs candidates ?

Sources	Live time (hrs)	Flux (E > 200 GeV)	Photon index	Comments
J1640-465	<u>1</u> 478	20,9±2,2	2,42±0,15	Excellent spatial correlation with SNR G338.3-0.0
J1713-381	37,3	4,2±1,5	2,27±0,48	Clear positional match with CTB 37B
J1834-087	7,3	18,7±2,0	2,45±0,16	Excellent positional match with SNR G23.3-0.3
J1813-178	9,7	14,2±1,1	2,09±0,08	Spatial coincidence with G12.82-0.02
J1634-472	6,6	13,4±2,6	2,38±0,27	Large offset with SNR G337.2+0.1
J1804-216 🔿	15,7	53,2±2,0	2,72±0,06	Offset with SNR G8.7-0.1 or PSR J1803-2137

R

Upper limits on the y-ray flux from non-detected SNRs

SN 1987A

Core collapse supernova 23 Feb 1987

Progenitor ~ 50 kpc distant in LMC

Since early 2004: strong brightening of the remnant => blast wave shock front hits the inner ring

=> CR acceleration ?
=> TeV production ?

Not detected by CANGAROO in 2003 Annual monitoring with HESS

Carl La Part

Chandra ACIS (0.3 – 8.0 keV) Park et al., ApJ 646, 1001 (2006)

HESS limits on the \gamma-ray signal

2003/2004: 4.2 hr 2 tels 2004/2005: 1.8 hr 4 tels Total: 6.0 hr at $\theta_{zen} = 51.5^{\circ}$ $E_{th} \sim 0.55$ TeV

Mirror background: 0.8 σ Template Background: 0.3 σ

Assuming E⁻² spectrum $F(E > 3 \text{ TeV}) < 2.2 \times 10^{-13} \text{ ph cm}^{-2} \text{ s}^{-1}$

at 99% c.l. *G. Rowell et al., ICRC 2005*

Supernova 1006

No signal seen by H.E.S.S.

Mean zenith angle ~ 24 degrees

see Aharonian et al. (HESS Collaboration) A&A 437, 135 (2005) Significance skymap + ASCA X-ray contours (black)

Upper limits & leptonic scenario

Integral limit band at the CANGAROO position (assuming a spectral index from 2 to 3)

Upper limits & hadronic scenario

Ksenofontov et al. A&A 443 (2005) 973

H.E.S.S. upper limit still about three times larger than the total γ -ray flux (Hadronic + Inverse Compton) expected for N_H = 0.05 cm⁻³ (which is at the lower end of the expected range of ambient densities)

Consistent with upper limit !

Comparison of the 3 different shell-type SNRs with mostly non-thermal X-rays

Comparison of 3 shell-type supernova remnants

	SN 1006	RX J1713.7-3946	RX J0852.0-4622
Morphology	Bilateral with 2 bright rims	Several bright rims	Several bright rims
X-ray emission	Mostly nonthermal	Mostly nonthermal	Mostly nonthermal
Radio flux density at 1 Ghz (Jy)	~ 19 (Green et al., 2001)	~ 4 ? (Ellison et al., 2001)	~ 50 ? (Duncan et al., 2000)
Location	High Galactic latitude	In the Galactic plane	In the Galactic Plane
Ambient medium density (cm-3)	0.05 – 0.3 (Dwarkadas et al., 1998; Allen et al., 2001)	< 0.02 (Cassam-Chenai et al., 2004)	< 0.03 (for d = 1 kpc) (Aschenbach et al., 1999)
Molecular clouds ?	No	Yes	Yes
Distance (kpc)	1.8 – 2.2 (Ghavamian et al., 2002)	1 (Cassam-Chenai et al., 2004; Fukui et al., 2004)	0.2 – 2 (Aschenbach et al., 1999 ; Slane et al., 2001)
Radius (pc)	~ 10	~10	~20 (for d = 1 kpc)
Age (yrs)	1000	~1600 ? (Wang et al., 1997 ; Cassam-Cheani et al., 2004)	~3400 ? (for d = 1 kpc)

And what about the magnetic field ???

Conclusions (I)

- 2 shell-type supernova remnants established as γ-ray emitter and resolved for the first time in TeV
- X-ray morphology very similar to the *y*-ray morphology observed with HESS
- First time ever spatially resolved spectral study of a gamma-ray source (RX J1713.7-3946)
- Flux ~ 1 Crab & Photon index ~ 2.2
- Question of electron or hadron accelerator remains difficult to answer (=> solution should be given by HESS II & GLAST)

Conclusions (II)

 New shell-type SNR candidates detected during the Galactic Plane Survey

- Need more MWL data to firmly identify the HESS sources
- More sources are currently observed with HESS: building a catalogue useful for GLAST, AGILE...

Future ?

Potential discrimination between leptonic and hadronic scenarios with HESS II & GLAST

H.E.S.S.

