Baryon Acoustic Oscillations: Current and Future Cosmological Constraints

Shaun Cole

Carlton Baugh Carlos Frenk Cedric Lacey Michael Schneider Raul Angulo Yan-chaun Cai Elise Jennings

Outline

- What are BAOs
- Detection of BAOs in galaxy surveys
 - What we have learned from 2dFGRS and SDSS
- Future uses of BAOs
 - Cosmic surveying
 - Constraints on dark energy
 - Systematic uncertainties
- Forecasts for Future Surveys
 - Pan-STARRS
- Conclude

Origin of BAOs

Prior to recombination the ionized plasma and photons are tightly coupled.

$$P = P_{\text{gas}} + P_{\text{rad}} = P_{\text{gas}} + \rho_{\text{rad}} c^2 / 3$$
$$\rho = \rho_{\text{gas}} + \rho_{\text{rad}}$$
$$c_{\text{s}}^2 = \frac{dP}{d\rho} \approx \frac{c^2}{3} \left(\frac{3\Omega_{\text{b}}}{4\Omega_{\text{m}}} \frac{a}{a_{\text{eq}}} + 1 \right)^{-1}$$
$$\approx c^2 / 3$$

On entering the acoustic horizon perturbations in the photon-baryon fluid oscillate as sound waves.

At recombination the photons and baryons decouple. The sound speed drops and the oscillations cease.

animation

Thus modes of specific wavelengths are enhanced while others are suppressed

Baryon Oscillations

CMB anisotropies and largescale structure

 $\Omega_0 = 0.4$, h=0.65, $\Omega_B h^2 = 0.02$ 3 Δ<mark>7</mark>(k) 8 CMB CMB and LSS out of phase: 0 $\Delta^2(\mathbf{k})/\Delta^2_{BBKS}(\mathbf{k})$ LSS amplitude 0.9 LSS smaller than CMB 0.001 0.01 0.1 k (h/Mpc) Meiksin etal 99

 \mathbf{x}

University

Detection in Surveys

The 2dFGRS Power Spectrum

 \mathbf{x}

The 2dFGRS Power Spectrum parameter constraints

Cole et al (2005)

SDSS LRG survey

Wiggles in the power spectrum are detected as a peak in the correlation function at the sound horizon scale.

Again, CDM models fit the correlation function adequately well (although peak height is slightly too large; assuming $n_s=1$, h=0.72)

```
Ω_{\rm b}h^{2} =0.024,

Ω_{\rm m}h^{2} =0.133±0.011,

⇒ Ω_{\rm b}/Ω_{\rm m}= 0.18
```


Eisenstein et al(2005)

Using BAOs to constrain DE

The nature of dark energy is one of the most intriguing questions in modern cosmology. It is a uniformly distributed component of the energy density of the universe with a negative pressure: $P = w\rho c^{2}$

The evidence for the existence of dark energy (vacuum energy) comes from two sources.

Type la SNe

CMB + LSS

CMB constraints on DE

Comoving sound horizon at t_{rec}

(depends mostly on $\Omega_m h^2$ and weakly on $\Omega_b h^2$)

POSITIVE CURVATURE

ZERO CURVATURE

The comoving distance to a given redshift:

$$r_{\rm c} = \frac{c}{H_0 \Omega_{\rm m}^{1/2}} \int_0^z \left((1+z')^3 + (\Omega_{\rm DE} / \Omega_{\rm m}) (1+z')^{3(1+w)} + (\Omega_k / \Omega_{\rm m}) (1+z')^2 \right)^{-1/2} dz'$$

Which depends on

But in addition the angular size depends on Ω_k much more strongly through the curvature.

 $\Omega_{\rm m} h^2$ $\Omega_k / \Omega_{\rm m}$ $\Omega_{\rm DE} / \Omega_{\rm m}$

W

Universe with *positive* curvature. Diverging line converge at great distances. Triangle angles add to more than 180°.

Universe with *negative* curvature. Lines diverge at ever increasing angles. Triangle angles add to less than 180°.

Universe with no curvature. Lines diverge at constant angle. Triangle angles add to 180°.

Combined with a constraint on $\Omega_m h$ from LSS the observed angular scale $\Rightarrow \Omega_{DE}=0.75$

Thus for flat models

$$r_{\rm c} = \frac{c}{H_0 \Omega_{\rm m}^{1/2}} \int_0^z \left((1+z')^3 + (\Omega_{\rm DE} / \Omega_{\rm m}) (1+z')^{3(1+w)} \right)^{-1/2} dz'$$

which depends on

$$\Omega_{\rm m} h^2$$

 $\Omega_{\rm DE} / \Omega_{\rm m}$

 ${\mathcal W}$

and the CMB gives a tight constraint on Ω_{DE} assuming w=-1

Standardizable candles, like Type Ia SNe, constrain the distance redshift relation at other redshifts

$$r_{\rm c} = \frac{c}{H_0 \Omega_{\rm m}^{1/2}} \int_0^z \left((1+z')^3 + (\Omega_{\rm DE} / \Omega_{\rm m}) (1+z')^{3(1+w)} \right)^{-1/2} dz'$$

$$r_{\rm c} = \frac{c}{H_0} \left(z - (1 - q_0) z^2 / 2 + \dots \right)$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2} \right)$$

$$q_0 = -\frac{\ddot{a}a}{\dot{a}^2} = \frac{\Omega_{\rm m}}{2} + \frac{\Omega_{\rm DE}(1+3w)}{2}$$

- -- Taylor Expansion
- -- Acceleration Equation (energy conservation)
- -- Matter and DE contributions

Type la SNe

SNe observations show that the expansion of the universe is accelerating.

$$q_0 = -\frac{\ddot{a}a}{\dot{a}^2} < 0$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2} \right)$$

and so the acceleration equation implies a dominant component with a negative pressure .i.e DE

Future uses of BAOs

University

Constraints from BAOs in LSS

Measures angular size of acoustic horizon at both z=0.2 and 0.35.

Can also be combined with the CMB measurement at z=1095.

Percival, Cole, Eisenstein ... (2007)

Constraints from BAOs in LSS

Measures angular size of acoustic horizon at both z=0.2 and 0.35.

Can also be combined with the CMB measurement at z=1095.

Constraints from BAOs in LSS

Measures angular size of acoustic horizon at both z=0.2 and 0.35.

Can also be combined with the CMB measurement at z=1095.

Need to understand systematics

The mass power spectrum

The non-linear mass power spectrum is accurately determined by the Millennium simulation over large range of scales

Lbox=500Mpc/h

Baryon wiggles in the galaxy distribution

Power spectrum from MS divided by a baryon-free ACDM spectrum

Galaxy samples matched to plausible large observational surveys at given z

Springel et al 2005 Computational Cosmology

N-body simulations of large cosmological volumes

BASICC

L=1340/h Mpc

N=3,036,027,392

20 times the Millennium volume

Halo resolution: (10 particle limit) 5.5 e+11 M ° /h

130,000 cpu hours on the Cosmology Machine

Angulo, Baugh, Frenk & Lacey '08

Non-linear evolution of matter fluctuations

BASICC simulation dark matter real space

P(k) divided by linear theory P(k), scaling out growth factor

Angulo, Baugh, Frenk & Lacey '08

Non-linear evolution of matter fluctuations

 \mathbf{x}

Redshift space distortions

Redshift space distortions

Galaxy bias in real space

Galaxy bias in real space

 \mathbf{x}

Galaxy bias in redshift space

University

Galaxy P(k) cannot be reproduced by multiplying mass P(k) by constant factor in redshift space.

⇒ In z-space, galaxies have a scale-dependent bias out to k~0.1

Galaxy bias in redshift space

Comparison of different selections e.g. colour, emission line strength

Angulo et al '08

Fit BAO oscillations

Remove effect of scale dependent bias by fitting a smooth spline and then take ratio R(k)=P(k)/Psmooth(k).

Fit ratio, R(k), to determine both the stretch factor, α , and the damping scale, k_{nl} . (Percival et al 2008)

Recovered values

kni treated as a nuisance parameter.

Small offsets in α , but are they significant?

Sample Variance

University

- 50 lower resolution "L-BASICC" simulations used to determine the sample variance.
- Particle mass 30 times larger.

Institute for Computational Cosmology

• Bias not significant

Fractional error in P(k)

$$\frac{\sigma}{P} = \sqrt{\frac{2}{n_{\rm modes}}} \left(1 + \frac{1}{P\bar{n}}\right)$$

$$n_{\rm modes} = V4\pi k^2 \delta k / \left(2\pi\right)^3$$

(Feldman, Kaiser & Peacock 1994)

Survey Forecasts

Angulo et al (2008) tabulate rms error in α for different fiducial samples within the BASICC simulation

	Sel I	Sel II	Real-space						Redshift-space						
id	\bar{n}		b	$\bar{n}P$	k_{n1}	α	$\Delta \alpha$	$\Delta \alpha$	ь	$\bar{n}P$	k_{n1}	α	$\Delta \alpha$	$\Delta \alpha$	
	$h^3 \mathrm{Mpc}^{-3}$				$h/{ m Mpc}$		%	%			$h/{ m Mpc}$		%	%	
								(SE07)						(SE07)	
DM			0.99	3567	0.120	0.993	0.91	1.02	1.15	3635	0.110	0.989	1.05	1.17	
А	5.0e - 4		1.18	1.78	0.144	0.975	1.16	1.10	1.32	2.15	0.125	0.972	1.26	1.23	
в	2.5e - 4		1.33	1.11	0.155	0.971	1.34	1.18	1.47	1.34	0.139	0.966	1.35	1.23	
С	2.5e - 4	red	1.32	1.15	0.152	0.978	1.35	1.21	1.46	1.36	0.127	0.975	1.49	1.37	
D	2.5e - 4	strong	1.06	0.67	0.155	0.956	1.75	1.41	1.20	0.86	0.138	0.956	1.67	1.42	
Е	2.5e - 4	blue	1.03	0.66	0.141	0.964	1.92	1.56	1.17	0.83	0.130	0.962	1.79	1.53	
F	2.5e - 4	weak	1.30	1.16	0.132	0.980	1.55	1.40	1.44	1.34	0.115	0.972	1.66	1.54	
haloes	5.9e - 5		1.56	0.81	0.197	0.980	1.32	1.07	1.71	1.04	0.148	0.975	1.43	1.25	

Table 2.2: The results of applying the general fitting procedure described in 82.4 to power spectra measured for different galaxy catalogues

Error on the measured power

BAO method: virtually free of systematics (c.f. lensing, SNIa)

- (i) Sample variance(ii) Shot noise
- P = power *n* = mean no density

$$\frac{\sigma}{P} = \sqrt{\frac{2}{n_{\text{modes}}}} \left(1 + \frac{1}{P\bar{n}}\right)$$
$$n_{\text{modes}} = V4\pi k^2 \delta k / (2\pi)^3$$

Scaling error forecasts to different surveys:

delta(w) ~ 1/sqrt (V) x [1 + 1/(n P)]

Main future BAO surveys

Name	N(z) / 10 ⁶	Stretch	Dates	Status
SDSS/2dFGRS	0.8	3.5%	Now	Done
WiggleZ	0.4	2%	2007-2011	Running
FastSound	0.6	2.8%	2009-2012	Proposal
BOSS	1.5	1%	2009-2013	Funded
HETDEX	1	1.5%	2010-2013	Part funded
WFMOS	>2	0.8%	2013-2016	Part funded
ADEPT	>100	0.2%	2012+	JDEM
EUCLID	>100	0.15%	2017+	ESA
SKA	>100	0.2%	2020+	Long term

Original Peacock 2008

Future photo-z BAO surveys

Name	N(z) / 10 ⁶	Stretch	Dates	Status
PS1	>100	0.6%	2009-2013	Funded
DES	50	<1%	2010-2014	Funded
PAU(BAO)	14	0.4%	2014+	planned

Dangers from space

Learn about the threat to Earth from asteroids & comets and how the Pan-STARRS project is designed to help detect these NEOs. Learn more...

1,400,000,000 pixels

Pan-STARRS will have the world's largest digital cameras.

Read about them here...

The PS1 Prototype

PS1 consortium formed...

First light achieved!

More about PS1 here...

Image Gallery here...

Construction photos here ...

PS1 consortium members

Max Planck Institute for Astrono

r Computational Cosmology

Las Cumbres Obse National Central University,

Global Telescope Networ

Pan-STARRS1 3π Survey

Filter	Bandpass (nm)	m_1 AB mag	$\substack{\mu\\ AB\\ mag/arcsec ^2}$	exposure time in 1st yr (3π) sec	5σ pt. source in 1st yr (3π)	5σ pt. source in 3rd yr (3π)	
g	405-550	24.90	21.90	60×4	24.04	24.66	
r	552-689	25.15	20.86	38×4	23.50	24.11	
i	691-815	25.00	20.15	60×4	23.39	24.00	
z	815-915	24.63	19.26	30×4	22.37	22.98	
y	967 - 1024	23.03	17.98	30×4	20.91	21.52	

1.4 Gpixel Camera 7 sq deg FoV

Telescope on Haleakala, Hawaii 60 OTC CCDS each with 64 cells individually

readable cells

OTC cells

ICC

- Pixel size 0.26 arc sec
- Institute for Computational Cosmology

Image Quality

Achieved image quality on all 60 CCDs of better than 1 arc sec

			o4772)	gC119	ð					
	w=0.8 e=.11 q=1.1	n =0.9 e=.11 q=1.1	w=1.0 e=.10 q=1.1		m=1.0 e=.04 q=0.7	n=1.8 e=.35 q=2.5				
v =0.9 e=.16 q=1.4	w=0.8 e=.08 q=1.0	w=0.8 e=,07 q=0.9	v=0.8 e=.05 q=0.8		w=0.9 e=,04 q=0.6	n =1.0 e=,08 q=1.0		n=1.0 e=.07 q=0.9		n=0.8 e=,13 q=1.2
w=0.8 e=.09 q=1.0	n=0.8 e=.08 q=0.9	n=0.8 e=.05 q=0.7	ท=0.8 e=.01 q=0.3		n=0.9 e=.04 q=0.7	n=0.8 e=.04 q=0.7		n=0.9 e=.06 q=0.8		n=0.9 e=.15 q=1.3
w=0.8 e=.06 q=0.8	v=0.8 e=.06 q=0.8	n=0.8 e=.02 q=0.5	w=0.8 e=.04 q=0.6		n=0.8 e=.02 q=0.4	w=0.9 e=.07 q=0.9		w=0.9 e=.07 q=0.9		n=0.8 e=.11 q=1.1
w=0.8 e=.05 q=0.7	n= 0.8 e=.05 q= 0.7	n=0.8 e=.03 q=0.5	พ=0.8 e=.01 q=0.3		n=0.8 e=.04 q=0.6	n=0.7 e=.03 q=0.6		n=0.9 e=.08 q=0.9		n=0.9 e=.10 q=1.0
w=0.8 e=.04 q=0.7	n=0.8 e=.04 q=0.6	n =0.8 e=.02 q=0.5	w=0.9 e=.05 q=0.7		n=0.9 e=.05 q=0.7	n=0.8 e=.09 q=1.0		n=0.8 e=.07 q=0.8		n=0.9 e=.05 q=0.7
w=1.0 e=.06 q=0.9	v=0.9 e=,06 q=0.8	w=0.9 e=,05 q=0.7	ท=0.8 e=.05 q=0.7		w=0.8 e=,08 q=0.9	n=0.8 e=,08 q=0.9		и=0.9 e=,10 q=1.0	Ĩ	n=1.0 e=,12 q=1.2
	v=1.0 e=.08 q=0.9	e=0.9 e=.08 q=0.9	w=1.0 e=.10 q=1.1		n=0.9 e=,10 q=1.0	w =0.9 e=.11 q=1.1	Ĩ	n=0.9 e=.14 q=1.2		

Single Gpixel Camera Image

of M31

(also M51)

3π size and depth

More than 10^8 galaxies!

 \mathbf{x}

Durham

University

Cai et al (2009)

Photo-z accuracy

Initial estimates indicate that for red/early type galaxies

 $\sigma_{z}/(1+z) < 0.04$

Cai et al (2009)

Damping effect on BAO

 $\delta_{\rm pz}(\underline{k}) = \delta_{\rm z}(\underline{k}) \, \exp(-0.5k_{\rm z}^2 \, \sigma_{\rm z}^2)$

Analysis Methods

Angular power spectra for 10 tomographic photo-z bins

$$C_{\ell}^{\alpha\beta} = b_{g}^{\alpha}b_{g}^{\beta}\int_{0}^{\infty}dz \left(\frac{d\chi}{dz}\right)^{-1} \frac{W_{\alpha}(z)W_{\beta}(z)}{d_{A}^{2}(z)}P\left(\frac{\ell}{d_{A}(z)},z\right)$$

$$F_{pq} = \sum_{i=1}^{N_{\ell}} \frac{(2\ell_{i}+1)\Delta\ell_{i}f_{sky}}{2} \operatorname{Tr}\left[C_{\ell_{i}}^{-1}\frac{\partial C_{\ell_{i}}}{\partial p}C_{\ell_{i}}^{-1}\frac{\partial C_{\ell_{i}}}{\partial q}\right]$$

$$[C_{\ell}]_{\alpha\beta} = C_{\ell}^{\alpha\beta} + \frac{\delta_{\alpha\beta}}{N_{\alpha}},$$
Linear theory forecast for red galaxies over 2pi steradians $\sigma(s)/s=0.8\%$
Michael Schneider

Mock Lightcone catalogues

Millennium simulation not large enough to accommodate the new larger generation of surveys and WMAP1 cosmology

Springel etal 05

Mock Lightcone catalogues

New "Big Simulation" With 8xVolume $l_{\rm box} = 1h^{-1}{\rm Gpc}$ $n_{part} = 2200^3$ And "WMAP5+" cosmology $\Omega_{m} = 0.26$ Ω_Δ=0.74 $\sigma_{8}=0.8$ n_s=0.96 Sanchez et al (2009)

Summary

- BAO have an important future as a cosmic standard ruler used to constrain r_c(z) and hence Dark Energy.
- Systematic errors are not yet dominant, but more theoretical work is needed to ensure this remains true for the forthcoming generation of surveys
- In advance of the long term space projects, photo-z surveys, not least Pan-STARRS, promise interesting constraints

