Galaxies from the Cosmic Web: Cold Streams, Clumpy Disks & Compact Spheroids

Avishai Dekel, HU Jerusalem IAP, December 2009

LCDM makes robust theoretical predictions for massive galaxy formation at high z Theory seems consistent with observations Combined, they introduce a coherent picture

Collaborators

Simulations: D. Ceverino (HU) A. Kravtsov (Chicago) A. Klypin (NMSU)

R. Teyssier (Zurich) F. Bournaud (Paris) M. Martig (Paris)

DIP:

Genzel's group (MPE) L. Tacconi N. Forster Schreiber A. Sternberg (TAU) N. Bouche (UCSB)

HU Team:

- Y. Birnboim (CfA)
- D. Ceverino (HU)
- J. Freundlich (Paris)
- T. Goerdt (HU)
- E. Neistein (MPA)
- R. Sari (HU)
- E. Zinger (HU)

UCSC: M. Krumholz

- J. Prochaska
- J. Primack
- S. Faber

Outline

- Galaxies from the cosmic web
- Cold streams into hot massive halos
- Streams as Lyman-alpha blobs
- Stream clumpiness: mergers
- Wild disk instability: cosmological steady state
- SFR and feedback in disk clumps
- Spheroid formation: galaxy bimodality at high z

1. Galaxies emerge from the Cosmic Web

- Halos M>>M_{PS} high-sigma peaks at the nodes of the cosmic web
- Typically fed by 3 big streams
- Co-planar

the millenium cosmological simulation

2. Accretion Rate into a Halo

Neistein, van den Bosch, Dekel 06; Neistein & Dekel 07, 08; Genel et al 08

From N-body simulations/EPS, Approximate for LCDM:

$$\left\langle \dot{M}_{baryon} \right\rangle \approx 100 M_{\odot} yr^{-1} M_{12}^{1.15} (1+z)_{3.5}^{2.25} f_{0.16}$$

The accretion rate is the primary driver of halo/galaxy growth & SFR - can serve for successful simple modeling

$$\dot{M}_{\rm gas} = \dot{M}_{\rm in} - \dot{M}_{*}$$

$$\dot{M}_* = \eta \frac{M_{\rm gas}}{t_{\rm ff}}$$

At late times, when $t_{sf} < t_{acc}$

$$\dot{M}_{\rm gas} \rightarrow 0 \quad \dot{M}_* \rightarrow \dot{M}_{\rm in}$$

Star-formation history: $SFR = f_b \langle \dot{M}_{halo} \rangle$

Bouche et al. 09

Cold Streams in Big Galaxies at High z

Ocvirk, Pichon, Teyssier 08

Cold streams through hot halos

Cold streams through hot halos

Inflow rate through the halo into the disk

Distribution of gas inflow rate

Cosmological hydro simulations (MareNostrum, Dekel et al. 09)

Galaxy density at a given gas inflow rate

$$n(\dot{M}) = \int_{0}^{\infty} P(\dot{M} \mid M) n(M) dM$$

P(Mdot|M) from cosmological hydro simulations (MareNostrum)

n(M) by Sheth-Tormen

Dekel et al 09, Nature

5. Lyman-alpha from Cold streams
Goerdt, Dekel, Sternberg, Ceverino, Teyssier, Primack 09
T=(1-5)×10⁴ K n=0.01-0.1 cm⁻³ N_{HI}~10²⁰ cm⁻² pressure equilib.

Surface brightness

L ~10⁴³⁻⁴⁴ erg s⁻¹

Cold streams as Lyman-alpha Blobs

Lyman-alpha Luminosity Function

Isophotal area and kinematics also consistent with data

Lyman-alpha Luminosity Function

Isophotal area and kinematics also consistent with data

LAB Scaling Relations

Lyman-alpha Surface Brightness Profile

Gravity Powers Lyman-alpha Emission

$$E_{heat}(r) = f_c \dot{M}_c \left| \frac{\partial \varphi}{\partial r} \right|$$

$$E_{heat} \approx 1.2 \times 10^{43} erg \, s^{-1} \, f_c \, M_{12}^{1.82} \, (1+z)_4^{3.25}$$

LABs from galaxies at z=2-4 are inevitable Have cold streams been detected ?

Gravitational heating is generic (e.g. clusters)

6. Stream clumpiness - mergers

Dekel et al 09, Nature

All hi-z mergers are along cold streams

AMR RAMSES Teyssier, Dekel box 300 kpc res 30 pc z = 5.0 to 2.5

Fraction of Mergers

A third of the stream mass is in clump >1:10

Birnboim, Zinger, Dekel, Kravtsov

7. Extended Rotating Disks

- Streams bring in the angular momentum
- Extended disks must form (in many cases)
- Disk spin & size are determined by one stream
- Clumpy streams generate turbulence

Open issues:

- Origin of large disk sizes?
- Origin of "dispersion-dominated" galaxies V/ $\sigma\!\!<\!\!2$?
- Angular mometum? Stream clumpiness? Feedback?

Agertz et al 09

Disk Buildup by Streams

A Disk Fed by Cold Streams

Self-regulation at Q ~ 1 by clump encounters and torques, high $\sigma/V~1/4$ Efficient star formation in the clumps (to be understood) Rapid migration of massive clumps and angular-momentum transport \rightarrow bulge formation

turbulent disk - giant clumps - migration -

Formation of an exponential spiral disk and a central bulge from the evolution of a gas-rich primordial disk evolving through a clumpy phase

Models from Bournaud, Elmegreen & Elmegreen 2007

Noguchi 99;

One episode of 0.5 Gyr? green 06, 08

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel, bournaud 2009 AMR res: 70 pc $M_v = 8 \times 10^{11} M_{\odot}$ z=2.1

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel, Bournaud 2009 AMR res: 70 pc $M_v = 8 \times 10^{11} M_{\odot} z = 2.1$

Clump Formation & Migration

A typical star-forming galaxy at z=2: clumpy, rotating, extended disk & a bulge

Hα star-form regions

color-code velocity field

Genzel et al 08

Clumpy disks with comparable bulges

Genzel et al. 08; Förster Schreiber et al. 20

M(≤3 kpc)/M(≤15 kpc)~0.2-0.4

Kinematic detection of clumps?

Gas density

Velocity dispersion

Kinematic detection of clumps?

H-alpha density

Velocity dispersion

Sub-structure in the disk giant clumps

Bournaud 09 AMR 2 pc resolution

Sub-structure in the disk

Bournaud 09; AMR 2 pc resolution

Survival of Giant Clumps

Murray et al. 09; Krumholz & Dekel 09

SFR efficiency

$$\mathcal{E} \equiv \frac{\dot{\Sigma}_{*}}{\Sigma_{g} / t_{ff}} \sim 0.01 - \text{Kennicutt law}$$

 $t_{\rm ff} \approx 15 \,{\rm Myr} M_{\rm q}^{-1/2} R_{\rm 1}^{3/2}$

If t_{ff} > 3 Myr, the mass fraction ejected is

$$f_{\rm eject} \approx 0.08 \, \varepsilon_{-2} (\Sigma_{-1} M_9)^{-1/4}$$

Giant clumps in high-z disks survive if the SFR obeys the Kennicutt law

11. Massive Compact Spheroids

- Wet Mergers (incoming stream clumps)

- Wild disk instability (in-situ disk clumps)

Bimodality blue-disk/red-spheroid at high z driven by the degree of clumpiness in the streams

 Stabilization Q>1 due to bulge growth & turbulence ...driven by clumpy streams

- Cosmological stable steady state for M_{disk}/M_{tot} <0.3 \rightarrow Bimodality at high z

12. Disk Stabilization - SF Quenching

- Dominant bulge Morpholopgical quenching
- Excessive turbulence by external sources: clumpy streams, feedback

Martig et al 09

- Low accretion rate (e.g. at late times)
- Low gas fraction (e.g. today's spirals)

Relation to today's galaxies?

- The descendants of the high-z clumpy disks are probably SOs and rotating Es, or thick disks of spirals
- Thin disks form later by slow accretion

Morphological Quenching: disk stabilization by a bulge

Conclusion

LCDM makes robust theoretical predictions for how massive galaxies form at high z, consistent with observations, together suggesting a coherent picture

- Galaxies are fed by cold streams from the cosmic web Streams include major & minor mergers and smooth flows Streams radiate as Lyman-alpha blobs
- Gas-rich disks form, develop wild instability, self-regulated Giant clumps form stars (?) and migrate to a bulge Cosmological steady state with bulge ~ disk Angular momentum versus dispersion (?)
- Spheroids form by mergers and by wild disk instability
- Disks are stabilized (SFR quenched) by bulge, external turbulence, low accretion rate, gas consumption
- Main open issues: star formation & feedback

Key Theoretical Issues

- 1. Cosmic web
- 2. Accretion rate
- 2. Virial shock heating
- 4. Cold streams
- 5. Lyman-alpha blobs
- 6. Stream clumpiness: mergers
- 7. Rotation vs dispersion: angular momentum & feedback
- 8. Disk instability
- 9. Cosmological steady state
- 10. SFR in disk clumps

 Spheroid formation
Stabilization - SF quenching. Descendants at z=0