From filamentary clouds to prestellar cores to the IMF First results from *Herschel*

PACS Optical Components PACS Optical Components Optical Componen Philippe André, CEA/SAp Saclay

Herschel GB survey Ophiuchus 70/250/500 μm composite With: A. Menshchikov, V. Könyves, N.
Schneider, D. Arzoumanian, S. Bontemps,
F. Motte, P. Didelon, N. Peretto, M. Attard,
P. Palmeirim, D. Ward-Thompson, J. Kirk,
& the *Herschel* Gould Belt KP Consortium

Outline:

- Introduction: Submm observations of the early stages of star formation
- First images from the *Herschel* Gould Belt survey
- Preliminary results on dense cores (e.g. CMF vs. IMF)
- The role of filaments in the star/core formation process
- Implications/Speculations

Herschel GB survey L1688 (Ophiuchus) 70/250/500 μm composite

http://gouldbelt-herschel.cea.fr/

Formation of solar-type stars Reasonably well established evolutionary sequence but physics of early stages unclear

Many open issues:

- What determines the masses of forming stars (« IMF ») ?
- What controls the efficiency of the star formation process ?
- Is star formation rapid or slow ? ...

 Key: Study of the earliest evolutionary stages → initial conditions of star formation process

Census of prestellar cores and Class 0 protostars from (sub)mm dust continuum mapping

The prestellar core mass function (CMF) resembles the IMF

→ The IMF is at least partly determined by pre-collapse cloud fragmentation (~ $0.1 - 5 M_{\odot}$)

• Limitations: Small-number statistics, incompleteness at low-mass end (?) + assume uniform dust temperature

→ *Herschel* needed to confirm/extend conclusions toward lower/higher masses

See also: Testi & Sargent 1998; Johnstone et al. 2001; Stanke et al. 2006; Alves et al. 2007 Nutter & Ward-Thompson 2007

And for massive cores: Beuther & Schilke 2004; Reid & Wilson 2006

The Herschel Gould Belt Survey

SPIRE/PACS 70-500 µm imaging of the bulk of nearby (d < 0.5 kpc) molecular clouds (~ 160 deg²), mostly located in Gould's Belt.
Complete census of prestellar cores and Class 0 protostars.

Motivation: Key issues on the early stages of star formation

- Nature of the relationship between the CMF and the IMF ?
- What generates prestellar cores and what governs their evolution to protostars and proto-brown dwarfs ?

The Herschel Space Observatory

Successfully launched by Ariane 5 on 14 May 2009 !

Major far-IR/submm Observatory (ESA 'cornerstone') 3.5 m telescope

(See also

http://herschel.esac.esa.int/FirstResultsSymposium.shtml)

- First light on 14 June 2009
- First science during « Science demonstration (SD) phase » in Oct./ Nov. 2009
- Currently in « routine operations phase »
- Lifetime ~ 3.5 yr (end ~ December 2012)
- First Results in a special issue of A&A (Vol. 518 Jul-Aug 2010)

"First images" from the Gould Belt Survey

PACS/SPIRE // mode 70/160/250/350/500 μm

1) Aquila Rift star-forming cloud (d ~ 260 pc)

http://gouldbelt-herschel.cea.fr/

Red : SPIRE 500 μm Green : PACS 160 μm Blue : PACS 70 μm

~ 3.3° x 3.3° field

André et al. 2010 Könyves et al. 2010 Bontemps et al. 2010 Men'shchikov et al. 2010 A&A special issue (vol. 518)

"First images" from the Gould Belt Survey

PACS/SPIRE // mode 70/160/250/350/500 μm

2) Polaris flare translucent cloud (d ~ 150 pc)

 ~ 5500 M $_{\odot}~$ (CO+HI) Heithausen & Thaddeus '90

$\sim 13 \text{ deg}^2$ field

Miville-Deschênes et al. 2010 Ward-Thompson et al. 2010 Men'shchikov et al. 2010 A&A special issue

SPIRE 250 µm image

Thermal Continuum Emission from Cold Dust $(T_d \sim 5-50 \text{ K})$

• Optically thin dust emission at (sub)mm wavelengths → Direct mass/column density estimates :

$$M = \frac{S_{v} d^{2}}{B_{v} (T_{d}) \kappa_{v}} \qquad \Sigma = \frac{I_{v}}{B_{v} (T_{d}) \kappa_{v}}$$

 $S_{\rm M}$: Integrated flux density

I_v: Surface brightness

 Σ : Column density (g cm⁻²)

 $\cdot \lambda \sim 100-500 \ \mu m$: good diagnostic of the dust temperature (T_d)

With *Herschel*, simple dust temperature estimates based on greybody fits to the observed SEDs (5-6 points between 70 and 500 µm):

 $I_{v} \sim B_{v}(T_{d})(1 - e^{-\tau_{v}})$ $\sim B_{\nu}(T_d) \tau_{\nu} = B_{\nu}(T_d) \kappa_{\nu} \Sigma$

 $\kappa_{v} = dust opacity$ (eg Hildebrand 83; Ossenkopf & Henning 94)

Revealing the structure of one of the nearest infrared dark clouds (Aquila Main: d ~ 260 pc)

Herschel (SPIRE+PACS) Dust temperature map (K)

Herschel (SPIRE+PACS) Column density map (H₂/cm²)

Aquila: `Compact' Source Extraction (using "getsources" – A. Menshchikov et al. 2010)

Herschel (SPIRE+PACS) Aquila entire field: N_{H2} (cm⁻²)

Spatial distribution 541 starless **of extracted cores** 201 YSOs

70/160/500 µm composite image

Examples of starless cores in Aquila-East

Most of the Herschel starless cores in Aquila are bound

➤ Positions in mass vs. size diagram, consistent with ~ critical Bonnor-Ebert spheroids: $M_{BE} = 2.4 R_{BE} c_s^2/G$ for T ~ 7-20 K

Most of the ~300 Polaris starless cores are unbound

Locations in mass vs. size diagram: 2 orders of magnitude below the density of self-gravitating Bonnor-Ebert isothermal spheres

Most of the Herschel starless cores in Aquila are bound

➤ Positions in mass vs. size diagram, consistent with ~ critical Bonnor-Ebert spheroids: $M_{BE} = 2.4 R_{BE} c_s^2/G$ for T ~ 7-20 K

Confirming the link between the prestellar CMF & the IMF

Könyves et al. 2010 André et al. 2010 A&A special issue

341-541 prestellar cores in Aquila

Factor ~ 2-9 better statistics than earlier CMF studies:

e.g. Motte, André, Neri 1998; Johnstone et al. 2000; Stanke et al. 2006; Enoch et al. 2006; Alves et al. 2007; Nutter & Ward-Thompson 07

> Good (~ one-to-one) correspondence between core mass and stellar system mass: $M_* = \varepsilon M_{core}$ with $\varepsilon \sim 0.2$ -0.4 in Aquila

The IMF is at least partly determined by pre-collapse cloud fragmentation (cf. models by Padoan & Nordlund 2002, Hennebelle & Chabrier 2008)

Evidence of the importance of filaments prior to *Herschel*

Hatchell et al. 2005; Myers 2009 ...

Infrared Dark Clouds Spitzer (3.6/8/24 µm) composite

Peretto & Fuller 2009, 2010

et al. 2010 A&A special issue

Preliminary radial profile analysis of the filaments

> Typical FWHM width ~ 0.1 pc (deconvolved)

Using the 'skeleton' or DisPerSE algorithm (Sousbie, Pichon et al. 2008, 2010) to trace the ridge of each filament

D. Arzoumanian et al., in prep.

Prestellar cores form out of a filamentary background

Confirmation of an extinction "threshold" for the formation of prestellar cores

Only the densest filaments are gravitationally unstable and contain prestellar cores (^Δ)

André et al. 2010, A&A Special issue

 \succ The gravitational instability of filaments is controlled by the mass per unit length M_{line} (cf. Ostriker 1964, Inutsuka & Miyama 1997): • unstable if M_{line} > M_{line}, crit • unbound if M_{line} < M_{line, crit} $^{\bullet}$ M_{line, crit} = 2 c_s²/G ~ 15 M_{\odot}/pc for $T \sim 10K \iff A_V$ threshold **Simple estimate:** $M_{line} \propto N_{H2} \times Width (\sim 0.1 \text{ pc})$ **Unstable filaments highlighted** in white in the N_{H2} map

Other manifestation of the threshold

• Similar column density PDFs in near-IR extinction studies (Kainulainen et al. '09)

• Supersonic turbulence generates lognormal column density PDFs (e.g. Ostriker et al. 2001, but see Tassis et al. 2010); gravity creates power-law tails

Implication of the extinction threshold

Only ~ 15% of the molecular cloud's mass above $A_V \sim 7$ threshold, only ~ 2% of the mass in prestellar dense cores \rightarrow Inefficiency of the star formation process

Polaris (d ~ 150 pc): Structure of the cold ISM prior to any star formation

Filaments are already widespread prior to star formation > The maximum value of M_{line}/M_{line, crit} observed in the **Polaris filaments is ~ 0.5** > The Polaris filaments are gravitationally unbound and unable to form prestellar cores and protostars at present

Importance of the star formation threshold on (extra)galactic scales

Star formation rate vs. Gas surface density

Heiderman, Evans et al. 2010

Origin of the filaments: Large-scale turbulence ?

Numerical simulations including large-scale turbulence:

Turbulence dissipation and filament formation

In Polaris, one of the most tenuous filaments detected by SPIRE coincides with a CO(2-1) structure of intense velocity shear
 (~40 km/s/pc) found at IRAM 30m (Hily-Blant & Falgarone 2009)

Filaments permeate the ISM on all scales

Herschel SPIRE 500 μm + PACS 160/70 μm

ESA and the Gould Belt KP

Planck HFI 540/350 μm + IRAS 100 μm

(from ~0.1 pc to > 50 pc)

ESA and the HFI Consortium

Conclusions

First results from *Herschel* are very promising:

- Confirm the close link between the prestellar CMF and the IMF, although the whole survey will be required to fully characterize the nature of this link.
- Suggest that core formation occurs in two main steps:
 1) Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence; 2) The densest filaments then fragment into prestellar cores via gravitational instability above a critical extinction threshold at A_V ~ 7.

Spectroscopic and polarimetric observations required to clarify the roles of turbulence, B fields, gravity in forming the filaments.