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Successes of standard cosmological model
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The predictions of the theory of big bang nucleosynthesis provide a good fit for the
measured cosmic abundances of the light elements. Likewise, the measured angular
spectrum of fluctuations of the cosmic microwave background (CMB) can be well fit by
the general relativistic theory of growth of cosmological perturbations. Successes like
these have convinced many that the standard concordance cosmological model must be
near the mark.

But now suppose we attempt to deduce properties of galaxies from the elements of the
standard cosmological model. Then some problems arise. This talk is about how early
perception of these problems at small scales led to MOND---the modified Newtonian
dynamics, about MOND'’s possible physical basis, its successes and failures, how
possibly to temper the latter, and about the effort to make MOND into a relativistic theory
of gravity.



Rotation curves of disk galaxies are flat

Sofue and Rubin (2001)
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One of the basic facts about small scale structure is the flat RCs of disk
galaxies. This collage of RCs of nearby disk galaxies was obtained by
combining Doppler data from CO molecular lines for the central regions, optical
lines for the disks, and HI 21 cm line for the outer (gas) disks. It shows that RCs
are flat to well beyond the edges of the optical disks ($\sim 10$ kpc). The
flatness has always been a striking fact.



Tully-Fisher Law (1977) McGaugh (2005)
Aaronson et al. (1982) Y
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The amplitude of the RC (the flat part) is controlled by the empirical Tully-Fisher
law.

Left: 1980’s version, where the infrared K band luminosity of a galaxy is seen to
be accurately proportional to the fourth power of the circular velocity.

Right: 21th century’s version, where the mass in baryons, both in stars and in
gas, is found to be accurately proportional to the fourth power of the circular
velocity.

Quite aside from its usefulness in measuring intergalactic distances, the TF law
IS one of those basic facts that begs for explanation in physical terms.



Dark halo paradigm

Each galaxy nested in a roundish extended dark halo

pox1/r? —m v = const.

Navarro, Frenk and White’s CDM simulations (1996)

p(r)

100

0.01 =

1074

M . M| . | . M
0.1 1 10 100

The standard explanation of the flatness of RC’s harks back to Ostriker and

Peebles’ (1972) scenario that has disks set within massive dark halos to suppress
rotational instability. A flat rotation curve follows if the halo in question has a $rA(-2)$
density profile (isothermal sphere) and also dominates the gravitational field outside the
central regions of the galaxy.

But well known cosmological simulations of the growth of structure in dark matter ( eg
Navarro, Frenk and White) come up with halos which have a rA(-1) density profile in the
inner parts and a rA(-3) one in the outer ones. Here is a log-log plot of density of a
NFW halo compared with that of an isothermal sphere. NFW will only give a flat RC in
the intermediate regime; it will not give flat extended rotation curves.



Dark clouds over dark halos

® No extended flat rotation curves

® Need to fine tune

4
LK’ X Vrot

® Too many satellites

® Cuspy halos

Halo model parameters: O 2 R, T=M /L
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Fine tunning present. There is need to fine tune halo to disk to avoid a feature in the RC. In addition,
TF requires fine tuning because L_K is a disk property, while V_{rot} is mostly halo.

Problem of the satellites: NFW simulations predict too many satellites per galaxy, that is too many small
halos accompany a big halo. It has been a pious hope of dark halo pundits that the gas dynamics
responsible for populating the halos with baryons will impose the said the fine tuning, and also prevent a
certain fraction of minihalos from becoming populated by baryons so that they stay invisible.

Problem of the cusps: The NFW halo has a 1/r cusp in the mass density of its inner parts. At least in
dwarf galaxies, where the halo is supposed to strongly dominate, kinematic evidence rules out cusps in
the mass density.

That is why modern halo models of RCs replace the NFW profile by various analytic cored profiles.
Usually these models have 3 parameters: the velocity dispersion of halo constituents, the radius of the
halo core (which comes in place of cusp), and the M/L ratio for the luminous matter.



Not length scale but acceleration is the key !
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In the early 80’s Milgrom realized that the mass discrepancy in disks, which halos are supposed
to resolve, is not tied to a particular mass or length scale, but to an acceleration scale. You can
see this well in the modern data. Left a log-log plot of the dynamical M/L_K ( a measure of the
mass discrepancy) vs. the radius at the last measured point of RCs for a uniform sample of spiral
galaxies in the Ursa Major group. The dynamical M is calculated from Newtonian dynamics. The
fact that M/L_K is considerably larger than unity, the value typical of stars, shows, again, that
there is a mass discrepancy. There is not much of a correlation of M/L with size. Right the
Newtonian M/L plotted against centripetal acceleration (v*2/r) at the last measured point: there is
now a correlation in the sense that M/L «1/a for a < 10-10} m/s”*2. For accelerations higher than
10N{-10} m/s*2 the mass discrepancy disappears. This characteristic acceleration became
central to MOND.



What physics is behind MOND ?  (Milgrom 1983)

¢ a modification of inertia ?
¢ a modification of Newtonian gravitation ?

¢ other (dipolar dark matter, ....)
a:FN e — [L(]a\/ao)a:FN
® requires nonlocal physics

® hard to work with

a=(|Fy|/ag)Fy =F

Even before outlining the modified dynamics, one should ask, what is the physics behind it. Two
options, really. A modification of the inertia or of the form of the gravity law.

In the first case this newtonian relation a=F is replaced by the well known MOND nonlinear relation
where the inertia becomes a function of acceleration. In the 1990’s Milgrom made a try at a theory
of modified inertia: No lagrangian exists, so he worked with a nonlocal action. This is eminently
hard to work with. He did show that circular orbits will have the desired behavior, but could say no
more.

In the second interpretation acceleration is a some nonlinear function of the Newtonian force,
which function can be interpreted as modified gravity. This interpretation is much easier to work
with. It is easy to make a NR gravitational theory with MOND form, and, in fact, this was done

quite early.



Newtonian theory in Lagrangian form
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Let us first look at Newtonian gravity. First is the relation between acceleration of a test mass
and the gradient of a gravitational potential This because we know gravitation is a conservative
force. What would be the natural equation to determine \Phi for a give mass distribution? It is
useful for what is coming to start from a Lagrangian density. The simplest one has the square of
the derivatives of \Phi in this form. Why? Because that combination is rotationally invariant -
space looks isotropic, so the Lagrangian density should be a rotational scalar. Then we have a
coupling of Phi to the mass density \rho; this, again, is rotationally invariant as both \rho and \Phi
are scalars at this level of the physics. The constant 1/8\Pi G is put in with the benefit of
hindsight. Then we apply Lagrange’s equation to get the Poisson equation which with suitable
boundary conditions is equivalent to the inverse squared law of Newton.

Now we pass to a modification of this standard gravity. It is this part of the Lagrangian which is
susceptible to change.



AQUAL modified gravity (B and Milgrom 1984)
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Suppose we replace the Newtonian Lagrangian by a more general one which is still
rotationally invariant. Call this AQUAL theory for AQUadratic LAgrangian. We get a
modified Poisson equation. Compare with the Poisson equation; recall that divergence
of a curl is zero. Thus find a first integral of the modified Poisson equation. The curl
disappears with high symmetry. Otherwise is seems to be relatively small. So we drop
it. Substitute grad\Phi by -a. This is the celebrated MOND relation. So we take the
scale a0 to be Milgrom’s. We adjust f so that \tilde\mu has one of the suitable MOND
forms. The shape is like this. A Newtonian limit; an extreme MOND regime.



Conceptual defficiencies of the MOND formula
(Milgrom 1983)
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part-whole paradox
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We see that the famous MOND formula is a limit of a more more complete theory. Can use it with
confidence in highly symmetric systems. One should always remember that without symmetry the
curl term makes \nabla \Phi not parallel to \nabla \Phi_N. Using the MOND formula uncritically
can lead to difficulties. For one it does not respect the conservation laws.

Consider two masses according to MOND. These are the equations of motion. Combine them to
get zero. This is different from conservation of momentum. Momentum not conserved if the curl
term is dropped.

Another problem. In a galaxy this star, being in the low acceleration regime, orbits in a MOND
orbit.

But this fluid element in the star is subject to strong acceleration; so are its neighbors. They are
individually in the Newtonian regime. Reasonable that their CM should move Newtonially in the
ambient gravitational field. Thus we have a clash, the part-whole paradox. It comes from ignoring
the curl term, which takes care of conservation of momentum.



Tully-Fisher relation explained

(McGaugh 2010)
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Even with naive MOND one can give a good explanation of TF law. TF refers to the
asymptotic behavior of the velocity, that is to the outer parts where accelerations are weak
(extreme MOND regime). The form of the MOND equations is like this. For acceleration use
the centripetal force due to circular motion with velocity v. For the Newtonian gravitational
field use that of a point mass like the galaxy (we are considering outer parts). Get that the
rotation curve is flat. Obtain modern form of the TF relation.

The MOND line (slope=4) is theoretical. There are no fitting parameters. The breadth of the
distribution reflects measurement errors (Gaussian-distributed). The underlying law is a
sharp one.

The LCDM prediction (slope=3) comes from NFW-type simulations together with the
assumption that the baryonic mass falling into a halo should be a definite fraction of the virial
mass.



McGaugh (201 1)
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The previous concentrated on gas rich spirals. This one looks at all spirals. Also a very good fit.
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MOND RC:s for disk galaxies in Ursa Major group
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MOND also fits well the shape of RC even in the inner regions. Shown are naive MOND
fits to the rotation curves of 15 Ursa Major galaxies. The radius (horizontal axis) is given
in kiloparsecs and in all cases the rotation velocity is in kilometers/second. The dotted
and dashed lines are the Newtonian rotation curves of the stellar and gaseous
components of the disk, and the solid line is the MOND rotation curve (using the shown
“simple” \mu function) with ao = 1.2 X 10A-8 cm/sA2 -the value derived from the
rotation curves of 10 nearby galaxies (Begeman et al. 1991). The distance to all galaxies
is assumed to be 15.5 Mpc. The free parameter of the fitted curve is the mass of the
stellar disk. If the distance to UMa is taken to be 18.6 Mpc, as suggested by the Cepheid-
based re-calibration of the Tully-Fisher relation (Sakai et al. 2000), then ao must be
reduced to 10-8 cm/s 2 .



The determined M/L ratios
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The only fitting parameter for each galaxy of the above is the M/L for the stellar
component. Here plotted are the Inferred M/L for the UMa spirals (Sanders & Verheijen)
in the B-band (top) and the K’-band (bottom) plotted against B-V (blue minus visual)
color index. The solid lines show predictions from populations synthesis models by
Bell and de Jong (2001). You see that MOND predicts both the value of M/L and its trend
with stellar population (morphology). And the fact that M/L is almost constant in the K’

band means that the observed K’ band luminosity TF law is also a consequence of
MOND.



Comparison of dark halos with MOND

Gentile, Salucci et al (2003)
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Just for comparison, here are some dark halo fits to a well measured RC. The galaxy is
ESO 79 G14. Shown are the Newtonian RCs established by the gas and the stars, and the
assumed halo contribution. This last comes from a 3 free-parameter halo model.
Burkert’s model is usually the best fit. Now look at the MOND fit using the naive MOND
equation, the now popular simple \mu function, with stellar M/L as the only free
parameter. The fit is just as good as Burkert’s and with fewer adjustable parameters. So
MOND works very well for disks.



MOND does not do away with all dark matter

Milgrom (1983): galaxy clusters
must contain lots of gas
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In his original papers Milgrom noticed that Zwicky’s mass discrepancy in large clusters of
galaxies is not fully resolved by MOND. This led him to predict that galaxy clusters must
contain much unobserved gas. In the mid-1980s a lot of X-ray emitting gas was
discovered in clusters. But it did not resolve the whole problem. For 93 X-ray emitting
clusters of galaxies: Left - the dynamical mass of clusters of galaxies (from Newtonian
virial theorem) within an observed cutoff radius vs. the total observable baryonic mass -
White et al. 1997. The solid line corresponds to Mdyn = Mobs (no discrepancy). Right the
dynamical mass within r_out (from MOND version of the virial theorem) vs. the total
observable mass for the same clusters (Sanders 1999). The swath is broader because the
MOND mass estimator goes like vA4 and not vA2 like with Newtonian theory. MOND still
leaves us with a mass discrepancy by a factor of 2-3.



Arches and weak gravitational lensing

Abell 1689
Rc?0

M =~

4G

anomalously large mass
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Gravitational lensing, such as the arcs of a galaxy lensed by cluster Abell 1689, reveal
the same problem. In examples like these the lens masses can be determined by the
usual GR recipe. Those masses, come out anomalously large, and are compatible with
the dynamical estimates from Newtonian theory and those from analysis of the X-ray
emission. This, of course, is consistent with the dark matter paradigm.



The bullet cluster (1E0657-56)
Clowe, Badrac, et al., Ap.]J. 648, L109 (2006)
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On the same line, the bullet cluster--- two clusters colliding at some 4000 km/s with
consequent expulsion of most of the intracluster hot gas (gas - red, galaxies-blue)---
was hailed as a proof of DM. Why? The second panel shows constant shear contours of
the lensing map: the strongest shearing is where the galaxies are densest. The
composite third panel confirms that the strongest lensing is not spatially associated with
the hot gas, which happens to contain the lion’s share of the visible baryonic mass. Of
course, collisionless DM would not be expected to be expelled with the gas. What is
new here is the delocalization of the DM vs the baryons. The fact that there is a mass
discrepancy which MOND does not do away with was, as | mentioned, known already in
the 1980’s.



Some possible ways out

s Milgrom (2007): baryonic clouds may provide the
still missing mass contributing 0.025 to {2

Sanders (2003, 2007): massive neutrinos
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MOND is an incomplete paradigm

A\

m It is possible to resolve most of the problem by
requiring a bigger a. in clusters

m Bigger a. is better for CMB fits
m AQUAL can be generalized in this direction
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There are several ways to resolve this quandary. Milgrom has suggested the presence of
unobserved baryonic matter in clusters in the form of small gas clouds. For some ranges of
parameters these could survive for an Hubble time. These invisible cluster baryons would
contribute about 0.025 to \Omega; this is consistent with the quantity of the still unobserved
baryons required by primordial nucleosynthesis arguments. Not clear how these baryon clouds
avoid being swept out with the gas in the bullet cluster example.

Even earlier, Sanders had suggested neutrinos as an extra source of gravity. Of course this is
invoking dark matter to help MOND, but at least we know neutrinos from the laboratory. Again,
one would need all types of neutrinos in clusters to contribute about 0.025 to \Omega. Sanders
gets this with the 3 neutrino masses of about 1.9 eV, a value which is (still) consistent with the
present upper bound of 2 eV (Russian tritium experiment) and with the lower bound of 0.04 eV
from neutrino oscillations. |t is not consistent with gravitational lensing or cosmological bounds
on neutrino masses (sum=0.5 eV). However, these last are within a standard Lambda CDM
cosmological model. Also, one hears that the miniBoone experiment at Fermilab seems to require a
couple sterile neutrino species with masses in the 1 eV scale. Maybe the right kind of neutrino
exists for our quandary.

Another possibility is that our MOND paradigm is incomplete. A good part of the cluster
problem goes away is one uses a bigger ao, say 2 x 10A{-8} cgs, than when fitting galaxy RCs. And,
as | will mention later, when one uses a brand of relativistic MOND to fit the CMB spectrum, an even
bigger ao comes in handy. It is as if ao grows with length or mass scale! One can actually
generalize the AQUAL theory in this direction.



AQUAL with scale dependent critical acceleration
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Newton’s iron sphere theorem no longer valid
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Recall the AQUAL lagrangian density? Suppose we divide each ao by an exponential in \Phi/sA2
where

s is a fixed scale of velocity. The more bound the part of the system we consider, the deeper or
more negative\Phi is, so that a0 is effectively jacked up by a factor which depends on the region in
the system.

The physical acceleration scale is this. If we take s to be about 10A3 km/s, then in a rich cluster of
galaxies, the scale would be ~ a0 eAl \approx 3 ao, which is about what is required to remove
MOND’s problem. In a galaxy the scale would be a0 eA{0.04} which is very close to a0 and pretty
constant to boot, consistent with the uniformity of the critical acceleration for galaxies.

But why an exponential? The form of the lagrangian should not depend on the zero point of the
field, that is should remain unchanged when one adds a constant to the field. If you tamper with
AQUAL with an arbitrary function of \Phi, this will not be true. But with the exponential, if you add
a constant to \Phi, the change can be absorbed in a redefinition of the scale ao. Nothing wrong
with this since the measurable scale is a0 eA{-\Phi/sA2} which remains unchanged.

A significant property: the Newton “iron sphere theorem” is transcended. No longer true that the
gravitational field at a surrounding surface fixes uniquely the mass within it; matter elsewhere can
influence the result. Put another way, part of the the sources of a gravitational field distribution
could be outside the region it straddles. This can address the problem of the bullet cluster.



Need for relativistic MOND

Relativistic MOND needed to give a correct
account of gravitational lensing.

Other questions

© How to describe pulsars and black holes in MOND?
© How to construct MOND cosmological models?

© How to describe gravitational radiation in MOND?
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But | am really getting ahead of myself; a relativistic form of MOND is needed to give a

correct account of gravitational lensing, just because propagation of light is a relativistic
phenomenon.

For years the absence of a relativistic theory for MOND was used by DM advocates as an

argument against MOND itself. With the advent of TeVeS in 2004, and additional theories
like MOND-like Einstein Aether, we have passed that stage.



First try .... (B and Milgrom 1984)
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Must break in some way with GR because GR leads inexorably to Newtonian gravity in
the nonrelativistic limit.  The simplest theory is obtained by making the AQUAL
potential a scalar field which obeys a covariant version of the AQUAL equation. The
scalar is then used as a conformal factor to pass from Einstein’s metric, which comes, as
in GR, from Einstein’s equations, to a new line element or metric. In this theory \Phi
\approx Phi_N +\phi. Under broad conditions can get MOND behavior
nonrelativistically.

Two failings 1) No way to get the light bending attributed to DM. Conformal relation
——> light rays are null geodesics in Einstein’s metric But scalar field contributes little
energy for large scale systems, so light rays deflected by visible matter alone.

2) Perturbations of the scalar field in a time independent background can propagate
faster than light.
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How break out of this impasse? Imagine spacetime is pervaded by a timelike unit 4-
vector U. Squeeze spacetime orthogonal to it and stretch it by the same factor along it.
This is spacetime orthogonal to U; it is being squeezed. This is spacetime along U; it is
being stretched by the same factor. The stretching (squeezing) factor defines a scalar
field. We now construct a second metric, g twiddle, and take it to be the metric in which
matter fields, and you and me live. In this stratified theory, the vector U is constant and
\phi has AQUAL covariant dynamics. The a priori status of U breaks covariance, though.

To get an acceptable theory we must rearrange things.



Tensor Vector Scalar theory
B, Phys. Rev. D 70, 083509 (2004); JHEP PoS (jhw2004) 012
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TeVeS makes the U dynamical; so the theory is covariant. Here are the parts of

the TeVeS action. The Einstein metric is subject to an Einstein—-Hilbert
action, as in GR. Matter’s action is, however, written with the second, or
physical, metric. The two metrics are related as in the previous slide. The

vector field in question is given this action. In the original TeVeS there was only
one term. A dynamical problems pointed out by Contaldi, Wiseman and Withers
make it advisable to add further quadratic terms. This one is probably enough.
The U was a constant unit vector in the stratified theory. Here unit norm is
enforced with a Lagrange multiplier \lambda. Finally the scalar \phi, which is
absolutely required to distinguish between the metrics, is given a relativistic
AQUAL action, with an addition which precludes superluminal propagation of
\phi. In all the theory has a scale of length \ell, and three dimensionless
parameters, k, K and «X.



Some features of TeVeS

@ Has GR as limit when k, K and K vanish and ¢ large

@ Admits a one-metric reformulation with no scalar field
(Ferreira, Starkman and Zlosnik 2006)

@ Reproduces the AQUAL theory nonrelativistically

Q@ a0is constructed out of k and ¢

@ Has a Newtonian limit at strong gravitational field

@ Most post-Newtonian coefficients agree with GR’s; the
two that do not can be made compatible with bounds
from solar system experiments (Sagi 2009)

In the interim several other relativistic MOND theories have been proposed,
each imitating some aspects of TeVeS. Lots of activity in last 5 years in
confronting TeVeS with observations.
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Strong gravitational lensing a la TeVeS: theoretical

ds® = —(1 4 2®)dt* + (1 — 2®)(dx* + dy* + dz?)
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Chiu, Ko & Tian, Ap.J. 636, 565 (2006)

Point mass lens approximation

Deep MOND regime: deflection fairly constant for range of impact
parameters

For two image lensing: difference of magnifications > 1

Time delay gives information on lens’ mass independent of that
from image separation or relative amplification
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Consequences of the famous gravitational lensing diagram are calculated in GR using
this weak field form of the the metric. \Phi is the Newtonian potential, and it occurs in
two different contexts. With TeVeS in weak fields we get the same metric, except that
here \Phi=\Phi_N+\phi, the last which comes from an AQUAL-like equation and has only
ordinary matter as source. Thus for any local system where MOND gives a correct
description of the observed dynamics, TeVeS predicts the same gravitational lensing as
would be gotten from a GR+ dark matter model which also accounts for the dynamics.
The only way to distinguish TeVeS from GR is to go far out, namely into the deep MOND
regime, because there \Phi is very different from the DM’s Newtonian potential.

Chiu et al: In deep MOND regime (impact parameter in region where field is < a_0) the
light deflection angle \delta\varphi is pretty constant for a range of impact parameters,
Sqrt[G M a0}/cA2, and interpreted by GR gives anomalously large mass. Difference of
magnifications of two images>1 (1 is the GR value). Time delay by lensing gives
information on “dark mass” which is independent of that obtained from image splitting
or amplification.



Doubly imaged quasars and TeVeS

@ Zhao, Bacon, Taylor & Horne, MNRAS 368, 171 (20006)

Studied 17 galaxy-lensed doubly imaged quasars from the CASTLES
catalogue (CfA-Arizona Space Telescope Lens Survey) modeled
both as point lenses and Hernquist spheres

Lens masses determined from image positions are consistent with
those from amplifications

Mass (so determined) to luminosity ratios are reasonable

@ Shan, Feix, Famaey & Zhao MNRAS 387, 1303 (2008)

Departures from spherical symmetry taken into account

Agreement for 10 doubly imaged quasars (CASTLES) and one

quadruply imaged quasar, all not in clusters. But some others
problematic (extra dark matter ?)
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Zhao et al. looked at a sample of 17 doubly imagined quasars from CASTLES (CfA-
Arizona Space Telescope Lens Survey). They modeled the lenses (elliptical galaxies
invariable) both as point sources and as Hernquist spheres. These served as sources for
the scalar equation in TeVeS. For most of the pairs the lens mass determined using
exclusively image positions agreed with that derived from the relative amplifications,
and the consequent mass to light ratios were reasonable for ellipticals (ranging 0.5 - 2).

Shan et al. looked at effects of lens asphericity. For 15 doubly imagined quasars not in
clusters (and a few quadruples) they found good agreement with predictions for most.



Conflicting opinions

€ Mavromatos, Sakellariadou, & Yusaf, Phys. Rev. D 79, 081301 (2009)
Ferreras, Mavromatos, Sakellariadou & Yusaf, Phys. Rev. D 80, 103506 (2009)

conflict between their TeVeS mass estimates for 18 lenses in
CASTLES with the masses inferred from luminosities

@ Chiu, Ko, & Tian & Zhao ArXiv/1008.3114

for 10 of the lenses in question, which can be modeled as
spherical, TeVeS with my toy F or with the F which yields
the “simple” i, works adequately without dark matter
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Sakellariadou, et al.: TeVeS will not work for galaxy lenses in the CASTLES catalogue
without help from invisible matter. Early they actually calculated lensing using a mixture
of MOND and GR instead of TeVeS (misleading). In the second attempt, they reiterate
the above claim based on comparison of their TeVeS lensing mass estimates for 18
lenses in CASTLES with the masses inferred from luminosity.

Chiu et al. carefully repeated the comparison for 10 of the lenses in question which can
be modeled as spherical. They conclude that with the $\tilde\mu$ deriving from my toy
$\mathcal{F}$ or the simple $\tilde\mu$, TeVeS works adequately without requiring
invisible mass. They ascribe the opposite conclusion by Mavromatos et al. to improper
comparison of the inferred lensing mass with the baryonic stellar mass implied by
optical intensity through a fixed aperture.



Statistics of image separation and TeVeS

Chen & Zhao, Ap.]. 650, L9 (2006)
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The statistics of images separation in lensed quasars has been problematic for the DM
paradigm. In TeVeS it has been investigated by Chen & Zhao and lately by Chen. Shown
here is a histogram from latter paper (thick broken line) of the observed frequency of pair
separations as a function of angle from the CLASS and JVAS surveys (containing 9000
quasars with 13 cases of multiply lensed ones) The 3 thin solid lines are TeVeS
predictions for three interpolating mu’s. The 2 dotted lines are predictions from GR sans
dark matter for two assumed M/L. The above assume an open cosmology with Q_b =
0.04 and Q_A = 0.5, model the lenses (mostly elliptical galaxies) with Hernquist profiles,
and described their space distribution with Fontana’s mass function. The dashed line is
the ACDM prediction for a flat cosmology with O_m = 0.3 and O_A = 0.7, with the lenses
modeled as singular isothermal spheres and populated according to the Fontana mass
function. As you can see here TeVeS comes out on top. The upcoming big lens surveys
should allow a more enlightening confrontation between the DM and TeVeS approaches.
CLASS - Cosmic Lens All-Sky Survey JVAS - Jodrell/VLA Astrometric Survey



Spherical clusters
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What about clusters of galaxies? Takahashi & Chiba analyzed weak lensing by three
quasispherical clusters. For each they obtained the gravitational field with TeVeS using
several acceptable $\tilde\mu$ functions and a model mass profile inferred from a large
cluster sample from the SDSS survey. Their predicted shear and convergence of the lensed
light failed to fit the observations unless they added a large mass in neutrinos, as proposed
by Sanders.  Here are typical results for Abel 1689. Top left (a): The mass profiles of the
gas (dotted line), the galaxies (dot-dashed line), the gas+galaxies (solid line), and the dark
halo (dashed line  _Topright (b): The Newtonian gravitational acceleration g_N normalised to
a_0 for only baryonic components (gas+galaxies) (solid line) and including DM (dashed line).
Left bottom (c) and Right bottom (d): The measured reduced shear y/(1 —k) and the
convergence field k as a function of the angular radius. (Data from Broadhurst et al. 2005).
The solid lines are the pure TeVeS predictions; DM had to be added to produce the dashed
line so MOND/TeVeS alone cannot explain the data a dark halo. Similar conclusions are
reached by Natarajan \& Zhao. Conclusions not surprising given MOND’s impotence in regard
to the dynamical data for clusters.




The bullet cluster - a postscript

* Angus, Shan, Zhao, & Famaey, Ap.]. 654, L13 (2006)
* Feix, Fedeli & Bartelmann, A&A. 480, 313 (2008)

* Ferreira and Starkman, Science 326, 812 (2009)
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Angus et al: able to model bullet lensing with TeVeS, but need the baryons to
supplemented with neutrinos. Feix et al confirmed that the source of gravity in the
bullet must include an invisible component. They asserted that nonlinearity of the
AQUAL-TeVeS equation will not generate the observed correlation between lensing and
the galaxies (whose mass is subdominant). But Ferreira and Starkman, in their Science

review, make the point that the absence of a Birkhoff theorem could lead to just such
nonintuitive correlations.

It is time now to go to the large scale



Cosmology with TeVeS

B, Phys. Rev. D 70, 083509 (2004)

Chiu, Ko & Tian, Ap.]J. 636, 565 (2006)

Zhao, Bacon, Taylor & Horne, MNRAS 368, 171 (2006)

Bourliot, Ferreira, Mota and Skordis, Phys. Rev. D75 (2007) 063508
Sagi & B, Phys. Rev. D 77, 103512 (2008)
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The simpler issues of cosmology are easily clarified. Bekenstein: Friedmann
models can be transplanted to TeVeS.

Chiu et al. and Zhao et al.: Angular distance within an isotropic cosmological
model.

Bourliot et al.: study of isotropic cosmological models in TeVeS narrowing the
range of \mu functions suitable in face of the cosmological facts.

Sagi and Bekenstein: despite TeVeS’s scalar sector, G is constant during the
expansion. However, a_0 decreases, though slowly. RC’s of large z galaxies are
not yet good enough to put this to the test.

But no question about it, in cosmology the principal challenge to a theory like
TeVeS is to compete with ACDM ‘s parameterized fit of the angular CMB power
spectrum. DM aficionados regard this as absolute proof of the presence of dark
matter globally, and an impossible challenge for something like MOND.



Cosmological fluctuations in TeVeS

Skordis, Phys. Rev. D74, 103513 (2006)
Skordis, Mota, Ferreira,and Boehm, Phys. Rev. Letters 96,01 1301 (2006)
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The theory of cosmological perturbations in TeVeS was first worked out by Skordis.
Even before that paper came out, Skordis et al made use of the results to provide a
fit of the CMB angular power spectrum with TeVeS. Data as of 2006. The A-CDM
model (dotted line). The solid line is for a TeVeS cosmology with QB = 0.05 , OA =
0.78 and Qv = 0.17 (very massive sterile neutrino) and a0 = 4.2 x10A(—8) cm/sA2.
The dashed line is for for a TeVeS cosmology with QA = 0.95 and QB = 0.05. TeVeS
with Qv = 0.17 fits well the first two peaks. There was a similar good fit for the
baryon spatial spectrum obtained by SDSS.
Dodelson and Liguori concurred that TeVes is successful at this level, but differed

from Skordis in ascribing to the vector field primarily responsability for supplanting
DM.



Zhang, Liguori, Bean & Dodelson, Phys. Rev. Letters 99, 141302 (2007)

ds* = —(1 4+ 2W)dt* + a*(1 + 2®)dz?
Ratios of the potentials to the mass overdensity are theory dependent.

From galaxy surveys measure the cross-correlation (dn,V -v/H)

Mass conservation leads to the connection V-v/H = —(dIln D/dIna)é,

Combine them to get (dn,d,)

Lensing convergence =—> V(¥ — ®)

Cross-correlate lensing shear and galaxy density to get (dn gVZ (U — D))

V2(U — B)

Eg; (Eq) = 5
Jo
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The near degeneracy between the predictions of GR with DM and TeVeS (with neutrinos)
led Zhang et al. to suggest a better way to distinguish between the theories. Small
perturbations of isotropic cosmology are described, both in GR and modified gravities,
by this metric. The predicted ratios between the depths of the two gravitational
potentials and the mass overdensity are theory dependent; could thus distinguish
between theories. The problem is that the mass overdensity is not directly measurable;
it depends on assumptions about biasing. Zhang et al’s procedure sidesteps the
problem in five easy steps: 1) Galaxy surveys --—-> cross-correlation of galaxy
number overdensity with the expansion of proper velocities. 2) Mass conservation
relates the expansion with the mass overdensity via the variation of the growth factor
with expansion factor.

3) Combine the above to get correlation of galaxy number overdensity with mass
overdensity. 4) Recall that convergence in a lensing map is a measure of Lapl(\Psi-
\Phi). So 4) use a lensing survey together with a galaxy survey to cross-correlate
galaxy number overdensity with the Lapl. 5) “Divide” the two correlations to “factor out”
the galaxy number overdensity. In practice this is done with

E_G, an estimator for the ratio.
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In GR E_G is constant with scale, but in TeVeS it varies with it. In both, in fact, in any
theory, E_G varies with redshift. The four graphs from Zhang et al., for 4 different
redshift ranges, show predictions for E_G as function of scale for three TeVeS models
(solid colored lines), a Dvali-Gabadadze-Porrati modified gravity theory (red dotted
lines), a f(R) gravity model (dashed magenta lines) and the ACDM model (solid black line).
The theories in question would be hard to distinguish by differences in the expansion
history.

Error bars, all calculated with ACDM, are actually the expected sensitivities to become
available from various surveys. These span the extant optical LAMOST and AS2 million
galaxy surveys, to the billion galaxy Large Synoptic Survey Telescope optical and Square
Kilometer Array radio surveys.

You can see that there is a good chance to tell TeVeS and ACDM apart, a smaller chance to
tell ACDM from DGP or f(R) theories.



an actual test already ?
Reyes, Mandelbaum, Seljak, et al. Nature 464, 256 (2010)

“Confirmation of general relativity on large scales from
weak lensing and galaxy velocities”
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Last year a group jumped the gun and claimed to have finished the problem. Look at the
pretentious title of the paper. They used sample of 70,000 luminous red galaxies from
the SDSS with a mean z=0.32. The theoretically predicted ranges of E_G are shown on
right. Claim a statistically significant difference between the predicted $E_G$ for a
TeVeS' model and the measured one, whereas GR's $E_G$ fit well. But 1) Error bars
are large; a much larger sample is really required for a statistically significant
discrimination between the theories (Zhang et al). 2) The cited TeVeS prediction for
$E_GS is actually for a redshift interval 0.4-0.6; TeVeS's predictions for $E_G$ actually
converge to those of GR as z goes down. 3) The TeVeS cosmological model in
question (Zhang et al) comes from TeVeS with only the $K$ term in vector action, the
version known to develop caustics (Contaldi eta al), and not to fit all the measured PPN
coefficients (Sagi). So the claim of the title is surely premature.

But the fact remains that massive galaxy surveys seem to be the way to clarify many
issues involving modified gravity.



Conclusions

®“ MOND unifies disparate facts about dynamics of
galaxies at all scales; but has trouble with clusters

" MOND can be implemented as a nonrelativistic
modified gravity (AQUAL)

®“ MOND may be an overly narrow paradigm; AQUAL
with running ao may be in order - work in progress

® MOND can be implemented as relativistic TeVeS
(and variants of it)

® TeVeS works well for lensing by galaxies and can
supplant DM (and perhaps DE) in cosmology; it
does less well for clusters of galaxies
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