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 Successes of standard cosmological model
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The SBBN-predicted
primordial abundances of
D, 3He, and 7Li (relative to
hydrogen by number), and
the 4He mass fraction (YP),
as functions of the baryon
abundance parameter η10.
The widths of the bands
(including the band for YP!)
reflect the uncertainties in
the nuclear and
weak-interaction rates.

baryon abundance η10. In Figure 5, the SBBN-predicted relic abundances of D,
3He, 4He, and 7Li as a function of η10 are shown. The trends revealed in Figure 5
are easily understood on the basis of the preceding discussion. For example, D, 3H,
and 3He are burned to 4He, and the higher the baryon abundance, the faster are
D and 3He burned away and the smaller are their surviving abundances. Because
the 4He abundance is limited by the abundance of neutrons, the primordial 4He
mass fraction is very insensitive to η10, YP ≡ 4y/(1 + 4y) ≈ 2(n/p)BBN

1+(n/p)BBN
≈ 1/4 (see

Figure 3), where y ≡ nHe/nH. Of course, defined this way, YP is not really the
mass fraction because this expression adopts precisely 4 for the 4He-to-H mass ra-
tio. However, the reader should be warned that YP defined this way is convention-
ally referred to by cosmologists as the 4He mass fraction. The residual dependence
of YP on η10 results from the fact that the higher the baryon abundance, the ear-
lier the D bottleneck is breached—at a higher temperature, where the n/p ratio is
slightly higher. As a result, YP increases, but only logarithmically, with η10. The val-
ley shape of the 7Li abundance curve is a reflection of the two paths to mass-7 (see
Figure 4). At low baryon abundance, the directly produced 7Li is burned away as the
baryon abundance increases, whereas at higher baryon abundance, 7Be is synthesized
more rapidly as the baryon abundance increases in the range of interest. Eventu-
ally, at much higher η10, the 7Be will also be burned away as the baryon abundance
increases.
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The predictions of the theory of big bang nucleosynthesis provide a good fit for the 
measured cosmic abundances of the light elements.  Likewise,  the measured angular 
spectrum of fluctuations of the cosmic microwave background (CMB) can be well fit by 
the general relativistic theory of growth of cosmological perturbations.  Successes like 
these have convinced many that the standard concordance cosmological model must be 
near the mark.    
But now suppose we attempt to deduce properties of galaxies from the elements of the 
standard cosmological model.  Then some problems arise.  This talk is about how early 
perception of these problems at small scales led to MOND---the modified Newtonian 
dynamics, about MONDʼs possible physical basis, its successes and failures, how 
possibly to temper the latter, and about the effort to make MOND into a relativistic theory 
of gravity.



Rotation curves of disk galaxies are flat

Sofue and Rubin (2001)
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One of the basic facts about small scale structure is the flat RCs of disk 
galaxies.  This collage of RCs of nearby disk galaxies was obtained by 
combining Doppler data from CO molecular lines for the central regions, optical 
lines for the disks, and HI 21 cm line for the outer (gas) disks.  It shows that RCs 
are flat to well beyond the edges of the optical disks ($\sim 10$ kpc).   The 
flatness has always been a striking fact.



Aaronson et al. (1982)

Plot: Sanders and Verheijen (1998)

Galaxies in Ursa 
Major group

Tully-Fisher Law (1977) McGaugh (2005)

Galaxies from all 
over the sky
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The amplitude of the RC (the flat part) is controlled by the empirical  Tully-Fisher 
law.
Left: 1980ʼs version, where the infrared K band luminosity of a galaxy is seen to 
be accurately proportional to the fourth power of the circular velocity. 
Right: 21th centuryʼs version, where the mass in baryons, both in stars and in 
gas, is found to be accurately proportional to the fourth power of the circular 
velocity.
Quite aside from its usefulness in measuring intergalactic distances, the TF law 
is one of those basic facts that begs for explanation in physical terms.



Dark halo paradigm

v = const.ρ ∝ 1/r2

Navarro, Frenk and White’s CDM simulations (1996)
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The standard explanation of the flatness of RCʼs harks back to Ostriker and 
Peeblesʼ (1972) scenario that has disks set within massive dark halos to suppress 
rotational instability.   A flat rotation curve follows if the halo in question has a $r^(-2)$ 
density profile (isothermal sphere) and also dominates the gravitational field outside the 
central regions of the galaxy.    
But well known cosmological simulations of the growth of structure in dark matter ( eg 
Navarro, Frenk and White) come up with halos which have a r^(-1) density profile in the 
inner parts and a r^(-3) one in the outer ones.     Here is a log-log plot of density of a 
NFW halo compared with that of an isothermal sphere.     NFW will only give a flat RC in 
the intermediate regime; it will not give flat extended rotation curves.



Dark clouds over dark halos

Cuspy halos

No extended flat rotation curves

LK′ ∝ Vrot
4

Too many satellites

Need to fine tune

Halo model parameters: Rc, Υ = M/Lσ
2
,
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Fine tunning present.   There is need to fine tune halo to disk to avoid a feature in the RC.   In addition, 
TF requires fine tuning because L_K is a disk property, while V_{rot} is mostly halo.
Problem of the satellites:  NFW simulations predict too many satellites per galaxy, that is too many small 
halos accompany a big halo.   It has been a pious hope of dark halo pundits that the gas dynamics 
responsible for populating the halos with baryons will impose the said the fine tuning, and also prevent a 
certain fraction of minihalos from becoming populated by baryons so that they stay invisible.
Problem of the cusps:  The NFW halo has a 1/r cusp in the mass density of its inner parts.  At least in 
dwarf galaxies, where the halo is supposed to strongly dominate, kinematic evidence rules out cusps in 
the mass density.
That is why modern halo models of RCs replace the NFW profile by various analytic cored profiles. 
Usually these models have 3 parameters: the velocity dispersion of halo constituents, the radius of the 
halo core (which comes in place of cusp), and the M/L ratio for the luminous matter.



Not length scale but acceleration is the key !

Data: Tully et al. (1996); Verheijen and Sancisi, (2001)
Plots: Sanders and McGaugh (2003)
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In the early 80ʼs Milgrom realized that the mass discrepancy in disks, which halos are supposed 
to resolve, is not tied to a particular mass or length scale, but to an acceleration scale.  You can 
see this well in the modern data.     Left a log-log plot of the dynamical M/L_K ( a measure of the 
mass discrepancy) vs. the radius at the last measured point of RCs for a uniform sample of spiral 
galaxies in the Ursa Major group. The dynamical M is calculated from  Newtonian dynamics. The 
fact that M/L_K is considerably larger than unity, the value typical of stars, shows, again, that 
there is a mass discrepancy.  There is not much of a correlation of M/L with size.   Right the 
Newtonian M/L plotted against centripetal acceleration (v^2/r) at the last measured point: there is 
now a correlation in the sense that M/L ∝1/a for a < 10^{-10} m/s^2.  For accelerations higher than 
10^{-10} m/s^2  the mass discrepancy disappears.  This characteristic acceleration became 
central to MOND. 



requires nonlocal physics

What physics is behind MOND ?   (Milgrom 1983)

a modification of inertia ?

a modification of Newtonian gravitation ?

other (dipolar dark matter, .... )

a = FN µ̃(|a|/a0)a = FN

a = ν̃(|FN |/a0)FN = F

hard to work with
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Even before outlining the modified dynamics, one should ask, what is the physics behind it.  Two 
options, really.   A modification of the inertia or of the form of the gravity law.  
In the first case this newtonian relation a=F is replaced by the well known MOND nonlinear relation 
where the inertia becomes a function of acceleration.  In the 1990ʼs Milgrom made a try at a theory 
of modified inertia: No lagrangian exists, so he worked with a nonlocal action.   This is eminently 
hard to work with.  He did show that circular orbits will have the desired behavior, but could say no 
more. 
In the second interpretation acceleration is a some nonlinear function of the Newtonian force, 
which function can be interpreted as modified gravity.   This interpretation is much easier to work 
with.   It is easy to make a NR gravitational theory with MOND form, and, in fact, this was done 
quite early.



Newtonian theory in Lagrangian form

a = −∇Φ L = −
|∇Φ|2

8πG
− ρΦ

∇ ·∇Φ = 4πGρ

∇ ·
�

∂L
∂∇Φ

�
=

∂L
∂Φ
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Let us first look at Newtonian gravity.   First is the relation between acceleration of a test mass 
and the gradient of a gravitational potential  This because we know gravitation is a conservative 
force.  What would be the natural equation to determine \Phi for a give mass distribution?  It is 
useful for what is coming to start from a Lagrangian density.  The simplest one has the square of 
the derivatives of \Phi in this form.  Why?  Because that combination is rotationally invariant - 
space looks isotropic, so the Lagrangian density should be a rotational scalar.   Then we have a 
coupling of Phi to the mass density \rho; this, again, is rotationally invariant as both \rho and \Phi 
are scalars at this level of the physics.  The constant 1/8\Pi G is put in with the benefit of 
hindsight.  Then we apply Lagrangeʼs equation to get the Poisson equation which with suitable 
boundary conditions is equivalent to the inverse squared law of Newton.
Now we pass to a modification of this standard gravity.  It is this part of the Lagrangian which is 
susceptible to change.



AQUAL modified gravity   (B and Milgrom 1984)

a = −∇Φ L = −
a2
0

8πG
f
( |∇Φ|2

a2
0

)

− ρΦ

∇ · [µ̃(|∇Φ|/a0)∇Φ] = 4πGρ

µ̃(
√

y) ≡ df(y)/dy

a0 ≈ 10
−8

cm s
−2

1 2 3 4 5 6 7 !a!"a0
0.2

0.4

0.6

0.8

Μ"#!a!"a0$

deep MOND regime

Newtonian regime

∇ ·∇ΦN = 4πGρ

µ̃(|a|/a0)a = −∇ΦN

µ̃(|∇Φ|/a0)∇Φ = ∇ΦN +∇× h
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Suppose we replace the Newtonian Lagrangian by a more general one which is still 
rotationally invariant.  Call this AQUAL theory for AQUadratic LAgrangian.  We get a 
modified Poisson equation. Compare with the Poisson  equation; recall that divergence 
of a curl is zero.  Thus find a first integral of the modified Poisson equation.  The curl 
disappears with high symmetry.  Otherwise is seems to be relatively small.  So we drop 
it.  Substitute grad\Phi by -a.  This is the celebrated MOND relation.  So we take the 
scale a0 to be Milgromʼs.  We adjust f so that \tilde\mu has one of the suitable MOND 
forms.    The shape is like this.  A Newtonian limit; an extreme MOND regime. 



Conceptual defficiencies of the MOND formula
(Milgrom 1983)

1

2

µ̃(|a2|/a0)a2 = −(Gm1/r3)r

µ̃(|a1|/a0)a1 = (Gm2/r3)r

0 = m1µ̃(|a1|/a0)a1 + m2µ̃(|a2|/a0)a2 != m1a1 + m2a2

µ̃ ≈ 1

M 81 

µ̃(|a|/a0 )a = −∇ΦN

part-whole paradox
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We see that the famous MOND formula is a limit of a more more complete theory.  Can use it with 
confidence in highly symmetric systems.  One should always remember that without symmetry the 
curl term makes \nabla \Phi not parallel to \nabla \Phi_N.    Using the MOND formula uncritically 
can lead to difficulties.  For one it does not respect the conservation laws.
Consider two masses according to MOND.  These are the equations of motion.  Combine them to 
get zero.  This is different from conservation of momentum.  Momentum not conserved if the curl 
term is dropped.
Another problem.  In a galaxy this star, being in the low acceleration regime, orbits in a MOND 
orbit.
But this fluid element in the star is subject to strong acceleration; so are its neighbors.  They are 
individually in the Newtonian regime.  Reasonable that their CM should move Newtonially in the 
ambient gravitational field.  Thus we have a clash, the part-whole paradox.  It comes from ignoring 
the curl term, which takes care of conservation of momentum.



Tully-Fisher relation explained 

|a|a/a0 = −∇ΦN

|a| = v2/r |∇ΦN | = GM/r2

M = v4/Ga0
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FIG. 2. The BTFR for gas dominated galaxies. The sum of
detected baryonic mass, stars and gas, is plotted against the
flat rotation velocity Vf (symbols as per Fig. 1). Both mass
and velocity are measured independently of either MOND or
ΛCDM. The data are well removed from the expectation of
the standard cosmology (upper line), but follow the prediction
of MOND (lower line) with no fitting whatsoever.

introduce additional scatter.

Observational uncertainty suffices to explain the scat-
ter in the data. The data are consistent with a BTFR of
zero intrinsic width. This is natural if the BTFR is im-
posed by the force law, as in MOND. It is not expected
in ΛCDM where there should be many sources of scatter.

From the perspective of cosmology, it is disturbing that
MOND works at all. If ΛCDM is the correct paradigm,
this should not happen [14]. Yet when pressed into a
new regime where the predictions of the two theories are
distinct, MOND outperforms ΛCDM.

This is not the first time that strong predictions of
MOND have been realized. For example, MOND pre-
dicted in advance that galaxies of both high and low sur-
face brightness would fall on the same BTFR [15, 16],
contrary to the natural expectation of purely Newtonian
gravity [17, 18]. It is well established that MOND pro-
vides good fits to the detailed shapes of rotation curves
with only the stellar mass-to-light ratio as a free param-
eter [19]. The required mass-to-light ratios are in good
agreement with stellar population synthesis models [20].
A simple model motivated by MOND provided the only
successful a priori prediction of the first-to-second peak
amplitude ratio of the acoustic peaks of the cosmic back-
ground radiation: A1:2 = 2.4 predicted [21] vs. 2.34±0.09
measured [22]. It is rare for a non-canonical theory to
have so many predictive successes.

MOND also has its share of problems. The same ansatz
that correctly predicted the second acoustic peak ampli-

tude also predicts a lower third peak than is observed
[23]. This does not falsify MOND, but it does imply that
a generally covariant parent theory should provide an ef-
fective forcing term [24].
The most serious observational problem facing MOND

is the dynamics of rich clusters of galaxies. These appear
to weigh more than can be accounted for with the ob-
served baryons even with the modified dynamics [25, 26].
This residual mass discrepancy is roughly a factor of two
in mass. On the one hand, this is very disturbing — a
theory that seeks to eliminate the need for cosmic dark
matter itself suffers a missing mass problem. On the
other hand, this is less severe than the missing baryon
problem in ΛCDM, where dwarf galaxies are missing
99% of the baryons that should be associated with their
dark matter halos [27]. So both theories suffer a missing
baryon problem, albeit of different amplitudes in systems
of vastly different scale.
While some of the mass in clusters appears to be dark,

even in MOND, there is nothing that requires this unseen
mass to be in some new form of non-baryonic particle.
Indeed, big bang nucleosynthesis implies the existence of
considerably more baryons than have so far been detected
[28]. If only a fraction of these missing baryons reside
in clusters it would suffice to resolve the residual mass
discrepancy suffered by MOND.
Perhaps the most prominent example of a cluster with

a serious residual discrepancy in MOND is the bullet clus-
ter [29]. In this system, the gravitational lensing of back-
ground galaxies indicates that the mass is offset from the
X-ray plasma. This is the same residual mass discrep-
ancy that is seen in all rich clusters. While the bullet
cluster is frequently cited as evidence against MOND,
it is also problematic for ΛCDM. The sub-clusters that
compose the bullet cluster collided at a remarkably high
velocity (∼ 4700 kms−1). This is exceedingly unlikely in
ΛCDM, occurring with a probability of only a few parts
in a billion [30]. In contrast, such high collision veloci-
ties are natural to MOND [31]. Taken at face value, the
bullet cluster would seem to simultaneously support and
falsify both theories with equal vigor.
Given the nature of astronomical data, some excep-

tions to any theory are to be expected. What is surpris-
ing in the case of MOND is that it continues to enjoy
predictive successes at all. These motivate the search
for a more complete gravitational theory that contains
MOND in the appropriate limit [32–35].
It is possible that non-baryonic cold dark matter does

not exist. If it does, and ΛCDM is the correct solution,
the challenge is to understand the empirical systematics
encapsulated in the simple MOND formula. These are
not native to the current cosmological paradigm [14] but
must be explained by any successful theory.
Another possibility is that dark matter particles have

properties that impose MOND-like phenomenology [36–
38]. In this case, it is desirable to have dark matter that

(McGaugh 2010)

gas rich spirals
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Even with naive MOND one can give a good explanation of TF law.  TF refers to the 
asymptotic behavior of the velocity, that is to the outer parts where accelerations are weak
(extreme MOND regime).  The form of the MOND equations is like this.  For acceleration use 
the centripetal force due to circular motion with velocity v.  For the Newtonian gravitational 
field use that of a point mass like the galaxy (we are considering outer parts). Get that the 
rotation curve is flat.  Obtain modern form of the TF relation.
The MOND line (slope=4) is theoretical.  There are no fitting parameters.  The breadth of the 
distribution reflects measurement errors (Gaussian-distributed).  The underlying law is a 
sharp one.
The LCDM prediction (slope=3) comes from NFW-type simulations together with the 
assumption that the baryonic mass falling into a halo should be a definite fraction of the virial 
mass.



all spirals

McGaugh (2011)
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The previous concentrated on gas rich spirals.  This one looks at all spirals.  Also a very good fit.



MOND RCs for disk galaxies in Ursa Major group

Data: Verheijen (1997)
Fit: Sanders and 
Verheijen (1998) stars

gas

µ̃(|a|/a0)a = −∇ΦN

µ̃(x) =
x

1 + x
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MOND also fits well the shape of RC even in the inner regions.   Shown are naive MOND 
fits to the rotation curves of 15 Ursa Major galaxies. The radius (horizontal axis) is given 
in kiloparsecs and in all cases the rotation velocity is in kilometers/second. The dotted 
and dashed lines are the Newtonian rotation curves of the stellar and gaseous 
components of the disk, and the solid line is the MOND rotation curve (using the shown 
“simple” \mu function) with ao = 1.2 × 10^-8 cm/s^2 –the value derived from the 
rotation curves of 10 nearby galaxies (Begeman et al. 1991).   The distance to all galaxies 
is assumed to be 15.5 Mpc. The free parameter of the fitted curve is the mass of the 
stellar disk. If the distance to UMa is taken to be 18.6 Mpc, as suggested by the Cepheid-
based re-calibration of the Tully-Fisher relation (Sakai et al. 2000), then ao must be 
reduced to 10-8 cm/s 2 .



Curves: populations synthesis
 models by Bell & de Jong  (2001).

The determined M/L ratios

Dots: MOND fits by Sanders
 & Verheijen (1998)

Blue

Infrared
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The only fitting parameter for each galaxy of the above is the M/L for the stellar 
component.  Here plotted are the Inferred M/L for the UMa spirals (Sanders & Verheijen) 
in the B-band (top) and the K’-band (bottom) plotted against B-V (blue minus visual) 
color index.    The solid lines show predictions from populations synthesis models by 
Bell and de Jong (2001).  You see that MOND predicts both the value of M/L and its trend 
with stellar population (morphology).   And the fact that M/L is almost constant in the K’ 
band means that the observed K’ band luminosity TF law is also a consequence of 
MOND.
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Comparison of dark halos with MOND
Gentile, Salucci et al (2003)

µ̃(|a|/a0)a = −∇ΦN

µ̃(x) =
x

1 + x
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Just for comparison, here are some dark halo fits to a well measured RC.   The galaxy is 
ESO 79 G14.  Shown are the Newtonian RCs established by the gas and the stars, and the 
assumed halo contribution.  This last comes from a 3 free-parameter halo model.  
Burkert’s model is usually the best fit.  Now look at the MOND fit using the naive MOND 
equation, the now popular simple \mu function, with stellar M/L as the only free 
parameter.  The fit is just as good as Burkert’s and with fewer adjustable parameters.  So 
MOND works very well for disks.



MOND does not do away with all dark matter

Sanders (1999)White et al 

Milgrom (1983): galaxy clusters 
must contain lots of gas

Coma
3C 295
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In his original papers Milgrom noticed that Zwicky’s mass discrepancy in large clusters of 
galaxies is not fully resolved by MOND.  This led him to predict that galaxy clusters must 
contain much unobserved gas.  In the mid-1980s  a lot of X-ray emitting gas was 
discovered in clusters.  But it did not resolve the whole problem.  For 93 X-ray emitting 
clusters of galaxies: Left - the dynamical mass of clusters of galaxies (from Newtonian  
virial theorem) within an observed cutoff radius  vs. the total observable baryonic mass  - 
White et al. 1997. The solid line corresponds to Mdyn = Mobs (no discrepancy). Right the 
dynamical mass within r_out (from  MOND  version of the virial theorem) vs. the total 
observable mass for the same clusters (Sanders 1999).  The swath is broader because the 
MOND mass estimator goes like v^4 and not v^2 like with Newtonian theory.  MOND still 
leaves us with a mass discrepancy by a factor of 2-3.



Abell 1689

ϑ R

anomalously large mass

Arches and weak gravitational lensing

M ≈ Rc2ϑ

4G
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Gravitational lensing, such as the arcs of a galaxy lensed by cluster Abell 1689, reveal 
the same problem. In examples like these the lens masses can be determined by the 
usual GR recipe. Those masses, come out anomalously large, and are compatible with 
the dynamical estimates from Newtonian theory and those from analysis of the X-ray 
emission.  This, of course, is consistent with the dark matter paradigm.  



 The bullet cluster (1E0657-56)
 Clowe, Badrac, et al.,  Ap. J. 648, L109 (2006)
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Dark matter is real
The combined data from four systems of telescopes offer the strongest 
evidence yet that a modifi cation of gravity cannot do away with the need for 
dark matter.
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It’s hard to decide whether cosmologists’ belief in 
the existence of dark matter represents hubris or 
humility. Is it overly bold to believe in a substance 

we’ve never directly seen? Or is it humble to recognize 
that most of the matter in the Universe is something 
di! erent from the stu!  with which we are familiar?

Either way, the notion of dark matter has served 
cosmologists well. In the 1930s, Fritz Zwicky argued1 
that the visible matter in the Coma cluster of galaxies 
fell far short of the dynamical mass implied by the 
velocities of the cluster’s constituent galaxies. " is 
conclusion was greatly strengthened in the 1970s by 
Vera Rubin2, who measured the velocity with which 
gas orbited around individual galaxies. " ese days, 
we have multiple lines of evidence that all point in 
the same direction, including observations of the 
cosmic microwave background, the distribution of 
large-scale structure, galactic dynamics, gravitational 
lensing and hot X-ray-emitting gas in clusters, to 
name a few.

" e need for dark matter would seem to be # rmly 
established, save for a persistent loophole. All of 
our evidence for dark matter so far is indirect — we 
don’t see the dark matter itself, we only measure its 
gravitational # eld. To make the leap from an observed 
gravitational # eld to an amount of matter, we need 
to assume that we understand how gravity works; in 
particular, that Einstein’s general relativity is valid on 
the scales of galaxies and clusters. But it is certainly 
conceivable that gravity is modi# ed on scales much 
larger than the Solar System. If that were the case 
— and models along those lines have certainly been 
proposed, most notably in Moti Milgrom’s modi# ed 
newtonian dynamics (MOND)3,4 — it may be that we 
have been tricked into believing in dark matter, when 
gravity is actually to blame.

" e di$  culty in distinguishing between the 
dark-matter and modi# ed-gravity hypotheses is that 
ordinary matter and dark matter tend to accumulate 
in the same places in the Universe, at least over 
su$  ciently large scales. " us, wherever we found a 
su$  ciently large concentration of ordinary matter, 
dark matter would be there along with it, giving rise to 

a stronger gravitational # eld than we would otherwise 
expect — exactly as if gravity itself were modi# ed. 
What we would like is a cluster of galaxies in which 
the ordinary and dark matter have somehow been 
separated from each other, so that the gravitational 
# eld (due primarily to dark matter) would emanate 
from a di! erent direction from the location of the 
ordinary matter.

" e Universe has kindly provided us with 
precisely the kind of situation we are looking for, 
in the form of the Bullet Cluster, 1E 0657−56. " is 
system is really two clusters, which have collided 
recently (cosmologically speaking). When the two 
clusters met, the gas in each interacted with that in the 
other, producing a shock front that shows up vividly 
in images from the Chandra X-ray satellite (Fig. 1). 

Figure 1 Dark matter in the Bullet Cluster. The Bullet Cluster formed through the collision of two 
clusters of galaxies; the galaxies (orange and white) are shown in an optical image from Magellan and 
the Hubble Space Telescope. ‘Normal’, or baryonic, matter makes up the hot gas (in pink) detected 
by Chandra. But the ‘lensing map’ drawn up using data on gravitational lensing (from Magellan and 
European Space Observatory telescopes at Paranal) shows that the concentration of mass in the 
cluster (blue) is separate from the normal matter. This concentration of mass outside the location of the 
ordinary matter is strong evidence of dark matter.
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On the same line, the bullet cluster--- two clusters colliding at some 4000 km/s with 
consequent expulsion of most of the intracluster hot gas (gas - red, galaxies-blue)---
was hailed as a proof of DM.  Why? The second panel shows constant shear contours of 
the lensing map: the strongest shearing is where the galaxies are densest.  The 
composite third panel confirms that the strongest lensing is not spatially associated with 
the hot gas, which happens to contain the lion’s share of the visible baryonic mass.  Of 
course, collisionless DM would not be expected to be expelled with the gas.   What is 
new here is the delocalization of the DM vs the baryons.  The fact that there is a mass 
discrepancy which MOND does not do away with was, as I mentioned, known already in 
the 1980’s.



Some possible ways out

Sanders (2003, 2007): massive neutrinos

requires ~1.9 eV neutrino masses for three species

~1 eV range sterile neutrinos a guarded possibility

MOND is an incomplete paradigm

It is possible to resolve most of the problem by 
requiring a bigger a0 in clusters

Bigger a0 is better for CMB fits

AQUAL can be generalized in this direction

Milgrom (2007): baryonic clouds may provide the 
still missing mass contributing 0.025 to Ω
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There are several ways to resolve this quandary.  Milgrom has suggested the presence of 
unobserved baryonic matter in clusters in the form of small gas clouds.  For some ranges of 
parameters these could survive for an Hubble time.  These invisible cluster baryons would 
contribute about 0.025 to \Omega; this is consistent with the quantity of the still unobserved 
baryons required by primordial nucleosynthesis arguments.  Not clear how these baryon clouds 
avoid being swept out with the gas in the bullet cluster example.
         Even earlier, Sanders had suggested neutrinos as an extra source of gravity.  Of course this is 
invoking dark matter to help MOND, but at least we know neutrinos from the laboratory.   Again, 
one would need all types of neutrinos in clusters to contribute about 0.025 to \Omega.  Sanders 
gets this with the 3 neutrino masses of about 1.9 eV, a value which is (still) consistent with the 
present upper bound of 2 eV (Russian tritium experiment) and with the lower bound of 0.04 eV 
from neutrino oscillations.   I t is not consistent with gravitational lensing or cosmological bounds 
on neutrino masses (sum=0.5 eV).  However, these last are within a standard Lambda CDM 
cosmological model.  Also, one hears that the miniBoone experiment at Fermilab seems to require a 
couple sterile neutrino species with masses in the 1 eV scale.  Maybe the right kind of neutrino 
exists for our quandary.
         Another possibility is that our MOND paradigm is incomplete.  A good part of the cluster 
problem goes away is one uses a bigger ao, say 2 x 10^{-8} cgs, than when fitting galaxy RCs. And, 
as I will mention later, when one uses a brand of relativistic MOND to fit the CMB spectrum, an even 
bigger ao comes in handy.  It is as if ao grows with length or mass scale!  One can actually 
generalize the AQUAL theory in this direction.



 AQUAL with scale dependent critical acceleration 

physical acceleration scale a0 e
−Φ/s2 s ∼ 103 km s−1
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Recall the AQUAL lagrangian density?  Suppose we divide each a0 by an exponential in \Phi/s^2 
where
s is a fixed scale of velocity.   The more bound the part of the system we consider, the deeper or 
more negative\Phi is, so that a0 is effectively jacked up by a factor which depends on the region in 
the system.
The physical acceleration scale is this.  If we take s to be about 10^3 km/s, then in a rich cluster of 
galaxies, the scale would be ~ a0 e^1 \approx 3 a0, which is about what is required to remove 
MOND’s problem.  In a galaxy  the scale would be a0 e^{0.04} which is very close to a0 and pretty 
constant to boot, consistent with the uniformity of the critical acceleration for galaxies.
But why an exponential?   The form of the lagrangian should not depend on the zero point of the 
field, that is should remain unchanged when one adds a constant to the field.  If you tamper with 
AQUAL with an arbitrary function of \Phi, this will not  be true.  But with the exponential, if you add 
a constant to \Phi, the change can be absorbed in a redefinition of the scale a0.  Nothing wrong 
with this since the measurable scale is a0 e^{-\Phi/s^2} which remains unchanged.
A significant property: the Newton “iron sphere theorem” is transcended.  No longer true that the 
gravitational field at a surrounding surface fixes uniquely the mass within it; matter elsewhere can 
influence the result.  Put another way, part of the the sources of a gravitational field distribution 
could be outside the region it straddles.   This can address the problem of the bullet cluster.  



Other questions

How to describe pulsars and black holes in MOND?

How to construct MOND cosmological models?

How to describe gravitational radiation in MOND?

 Need for relativistic MOND

Relativistic MOND needed to give a correct 
account of gravitational lensing. 
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 But I am really getting ahead of myself; a relativistic form of MOND is needed to give a 
correct account of gravitational lensing, just because propagation of light is a relativistic 
phenomenon.  
   
For years the absence of a relativistic theory for MOND was used by DM advocates as an 
argument against MOND itself.  With the advent of TeVeS in 2004, and additional theories 
like MOND-like Einstein Aether, we have passed that stage.  



First try ....  (B and Milgrom 1984)

no anomalously large light deflection

[

f ′

(

gµνφ,µφ,ν

a0
2

)

gαβφ,α

]

;β

= 4πGρ−4πGT

superluminal propagation

Φ = ΦN + φ

Einstein’s 
equations

Φ =⇒ φ

ds2 = e2φ gµν dxµ dxν

c = 1
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Must break in some way with GR because GR leads inexorably  to Newtonian gravity in 
the nonrelativistic limit.     The simplest theory is obtained by making the AQUAL 
potential a scalar field which obeys a covariant version of the AQUAL equation.  The 
scalar is then used as a conformal factor to pass from Einstein’s metric, which comes, as 
in GR,  from Einstein’s equations, to a new line element or metric.    In this theory \Phi
\approx Phi_N +\phi.  Under broad conditions can get MOND behavior 
nonrelativistically.
Two failings      1) No way to get the light bending attributed to DM.   Conformal relation 
--> light rays are null geodesics in Einstein’s metric   But scalar field contributes little 
energy for large scale systems, so light rays deflected by visible matter alone.      
2) Perturbations of the scalar field in a time independent background can propagate 
faster than light. 



g̃αβ

The stratified theory (Sanders 1997)
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How break out of this impasse?  Imagine spacetime is pervaded by a timelike unit 4-
vector U.  Squeeze spacetime orthogonal to it and stretch it by the same factor along it.  
This is spacetime orthogonal to U; it is being squeezed.  This is spacetime along U; it is 
being stretched by the same factor.  The stretching (squeezing) factor defines a scalar 
field.  We now construct a second metric, g twiddle,  and take it to be the metric in which 
matter fields, and you and me live.  In this stratified theory, the vector U is constant and 
\phi has AQUAL covariant dynamics.  The a priori status of U breaks covariance, though.

To get an acceptable theory we must rearrange things. 



Tensor Vector Scalar theory                  
B,  Phys. Rev. D 70, 083509 (2004); JHEP PoS (jhw2004) 012
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TeVeS makes the U dynamical; so the theory is covariant.  Here are the parts of 
the TeVeS action.           The Einstein metric  is subject to an Einstein-Hilbert 
action, as in GR.  Matter’s action is, however, written with the second, or 
physical, metric.  The two metrics are related as in the previous slide.        The 
vector field in question is given this action.  In the original TeVeS there was only 
one term.  A dynamical problems pointed out by Contaldi, Wiseman and Withers 
make it advisable to add further quadratic terms.  This one is probably enough.  
The U was a constant unit vector in the stratified theory.  Here unit norm is 
enforced with a Lagrange multiplier \lambda.  Finally the scalar \phi, which is 
absolutely required to distinguish between the metrics, is given a relativistic 
AQUAL action, with an addition which precludes superluminal propagation of 
\phi.  In all the theory has a scale of length \ell, and three dimensionless 
parameters, k, K and  K.



Some features of TeVeS

Has GR as limit when k, K and K vanish and l large

Admits a one-metric reformulation with no scalar field 
(Ferreira, Starkman and Zlosnik 2006)

Reproduces the AQUAL theory nonrelativistically

a0 is constructed out of k and l
Has a Newtonian limit at strong gravitational field

Most post-Newtonian coefficients agree with GR’s; the 
two that do not can be made compatible with bounds 
from solar system experiments (Sagi 2009)

26

 In the interim several other relativistic MOND theories have been proposed, 
each imitating some aspects of TeVeS.  Lots of activity in last 5 years in 
confronting TeVeS with observations.  



Strong gravitational lensing a la TeVeS: theoretical

Φ = ΦN + φ

ds2 = −(1 + 2Φ)dt2 + (1 − 2Φ)(dx2 + dy2 + dz2)

Deep MOND regime: deflection fairly constant for range of impact 
parameters

For two image lensing: difference of magnifications > 1

Time delay gives information on lens’ mass independent of that 
from image separation or relative amplification 

order to guarantee ∇φ varying as 1/" in the deep
MOND regime, a condition which follows from the
MOND paradigm. Using this relation in Eq. (19)
to eliminate ∇φ and replacing ∇ΦN with ∇Φ gives

µ = (k/8πΞ)
(

−1+
√

1 + 4|Φ′|/a0

)

=
k

4π

(

|Φ′
N |

Ξa0

)1/2

.

(29)
Here, the constant

a0 ≡
(3k)1/2

4πΞ$
(30)

can be identified as Milgrom’s constant. We
should keep in mind that this form of µ is valid
under the condition Φ′ $ (4π/k)2a0. It also offers
a criterion for distinguishing the Newtonian and
the MOND regime.

We define a distance,

r0 ≡

(

GNmg

a0

)1/2

, (31)

at which acceleration, a, equals to Milgrom’s con-
stant, a0. Then a particle is in the deep MOND
regime if " % kr0/4π, and in the Newtonian
regime if " $ kr0/4π.

3.2.1. The Newtonian regime

Although a photon moving in a GL system may
come from a distance " % kr0/4π to the closest
approach "0 $ kr0/4π and then fly away again,
the influence of gravity only dominates in the re-
gion which is very near the gravitation center.
Therefore we call a GL system as being in the
Newtonian regime if "0 $ kr0/4π.

In the Newtonian regime, Φ′ in Eq (28) can
be calculated from the relation Φ = ΞΦN + φ and
Eq. (19) for µ → 1. This would yield the deflection
angle of a Schwarzschild lens,

∆ϕ =
4Gmg

"0

(

Ξ +
k

4π
) =

4GNmg

"0
. (32)

Here again, GN is identical to the gravitational
constant measured in a local experiment. This is
the same as the result from GR.

3.2.2. The Deep MOND Regime

In the deep MOND regime, "0 % kr0/4π, µ has
the form of Eq. (29). Then along with Eq. (19)

Fig. 2.— Embedding diagram of light bending.
For a thin lens, the lensing equation and geomet-
rical time delay can be immediately read off.

and Eq. (29), the deflection angle for a point mass
model in the deep MOND regime can be arrived
at from Eq. (28):

∆ϕ =
4GNmg

"0(Ξ + k/4π)

·

{

Ξ +
π

2
"0

[

a0(Ξ2 + kΞ/4π)

GNmg

]1/2
}

, (33)

with Ξ ≡ 1 − K/2 − 2φc. Since all of K, φc and
k are much less than 1, for a given mass, the de-
flection angle in the deep MOND regime differs
from that in GR (or equivalence in the Newtonian
regime; Eq. [32]) by an amount almost indepen-
dent of the distance of the closest approach.

We have to stress that even though we do not
know exactly how deflection angle varies with re-
spect to the closest approach in the intermedi-
ate MOND regime, our result based on the deep
MOND assumption (i.e., µ $ 1), which is incor-
rect in the regime "0 ≤ kr0/4π, approaches to
the Newtonian prediction while "0 decreasing (see
Fig. 1). Therefore we believe even in the interme-
diate regime, the deflection law based on the deep
MOND assumption is approximately correct.

3.3. Magnification and Microlensing

From the observational point of view, the mea-
surable data is not deflection angles but posi-
tions of the projected sources, i.e. θ ≡ "0/DL .
Here, DL is the angular distance of lens (Eq. [16]).
Therefore we need a relation to connect θ and ∆ϕ,
the deflection angle derived in the last section. We
can obtain their relation from an embedding dia-

7

Chiu, Ko & Tian,  Ap. J.  636, 565 (2006)

Point mass lens approximation
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Consequences of the famous gravitational lensing diagram are calculated in GR using 
this weak field form of the the metric.  \Phi is the Newtonian potential, and it occurs in 
two different contexts.  With TeVeS in weak fields we get the same metric, except that 
here \Phi=\Phi_N+\phi, the last which comes from an AQUAL-like equation and has only 
ordinary matter as source.  Thus for any local system where MOND gives a correct 
description of the observed dynamics, TeVeS predicts the same gravitational lensing  as 
would be gotten from a GR+ dark matter model which also accounts for the dynamics.  
The only way to distinguish TeVeS from GR is to go far out, namely into the deep MOND 
regime, because there \Phi is very different from the DM’s Newtonian potential.             
Chiu et al:  In deep MOND regime (impact parameter in region where field is < a_0) the 
light deflection angle \delta\varphi is pretty constant for a range of impact parameters,  
Sqrt[G M a0}/c^2, and  interpreted by GR gives anomalously large mass. Difference of 
magnifications of two images>1 (1 is the GR value). Time delay by lensing gives 
information on “dark mass” which is independent of that obtained from image splitting 
or amplification. 



Doubly imaged quasars and TeVeS

Studied 17 galaxy-lensed doubly imaged quasars from the CASTLES 
catalogue  (CfA-Arizona Space Telescope Lens Survey) modeled 
both as point lenses and Hernquist spheres 

Lens masses determined from image positions are consistent with 
those from amplifications

Mass (so determined) to luminosity ratios  are reasonable 

Departures from spherical symmetry taken into account

Agreement for 10 doubly imaged quasars (CASTLES) and one 
quadruply imaged quasar, all not in clusters.  But some others 
problematic (extra dark matter ?)

Zhao, Bacon, Taylor & Horne, MNRAS 368, 171 (2006)

 Shan,  Feix,  Famaey & Zhao MNRAS 387, 1303 (2008)
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Zhao et al. looked at a sample of 17 doubly imagined quasars from CASTLES (CfA-
Arizona Space Telescope  Lens Survey).    They modeled the lenses (elliptical galaxies 
invariable) both as point sources and as Hernquist spheres.  These served as sources for 
the scalar equation in TeVeS.  For most of the pairs the lens mass determined using 
exclusively image positions agreed with that derived from the relative amplifications, 
and the consequent mass to light ratios were reasonable for ellipticals (ranging 0.5 - 2).   

Shan et al. looked at effects of lens asphericity.  For 15 doubly imagined quasars not in 
clusters (and a few quadruples) they found good agreement with predictions for most.



Conflicting opinions

conflict between their TeVeS mass estimates for 18 lenses in 
CASTLES with the masses inferred from luminosities

Mavromatos, Sakellariadou,  & Yusaf, Phys. Rev. D 79, 081301 (2009)

Ferreras, Mavromatos, Sakellariadou & Yusaf, Phys. Rev. D 80, 103506 (2009) 

 Chiu, Ko, & Tian & Zhao  ArXiv/1008.3114

for 10 of the lenses in question, which can be modeled as 
spherical, TeVeS with my toy     or with the     which yields 
the “simple”   , works adequately without dark matter

F
µ̃

F
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Sakellariadou, et al.: TeVeS will not work for galaxy lenses in the CASTLES catalogue 
without help from invisible matter. Early they  actually calculated lensing using a mixture 
of MOND and GR instead of  TeVeS (misleading).  In the second attempt, they reiterate 
the above claim based on comparison of their TeVeS lensing mass estimates for 18 
lenses in CASTLES with the masses inferred from luminosity.
Chiu et al. carefully repeated the comparison for 10 of the lenses in question which can 
be modeled as spherical.  They conclude that with the $\tilde\mu$ deriving from my toy 
$\mathcal{F}$ or the simple $\tilde\mu$, TeVeS works adequately without requiring 
invisible mass.  They ascribe the opposite conclusion by Mavromatos et al. to improper 
comparison of the inferred lensing mass with the baryonic stellar mass implied by 
optical intensity through a fixed aperture.



Statistics of image separation and TeVeS
Strong lensing probability in TeVeS theory 11

Figure 3. same as Figure 2, except that GSMF=Fontana for TeVeS and GR.

5. Discussion and conclusions

We have calculated the lensing probability with image separation larger than a given
value ∆θ in an open, TeVeS cosmology. The results are sensitive to the interpolating
function µ(x) and mass function φ(M, z). For a given GSMF (PHJ in Figure 2 and
Fontana in Figure 3), the lensing probability decreases with increasing value of n [given
in equation (14)]. Obviously, for PHJ GSMF (Figure 2), the lensing probabilities
calculated in TeVeS (solid lines for three cases of interpolating functions) are too
large at small lensing image separations compared with the results of CLASS/JVAS.
This unreasonable result is further confirmed, when we note that, even the lensing
probabilities in GR cosmology (with no DM, dotted lines) are much larger than that
in LCDM cosmology (dashed line) at small image separations. Actually, however,
this result can be easly explained: at small mass-end (corresponding to small image
separation), the comoving number density for PHJ mf is much larger than that
for SIS halos (Figure 1), which results in the corresponding lensing probabilities
according to equation (36). This is why in our previous work [22], we calculated the
amplification bias based on the magnification of the second bright image rather than
the total magnification of the two images considered. According to the resolution
of CLASS/JVAS, however, it is difficult to resolve the two images for small image
separations. Therefore, in this paper, we calculate the amplification bias based on the
total magnification of the outer two brighter images, as usually done in the literature.

On the other hand, if we adopt another most recent mass function, Fontana

Chen &  Zhao,  Ap. J. 650, L9 (2006)

 Chen, J. Cos . Astropart. Phys. 01, 006 (2008)

CLASS - Cosmic Lens All-Sky Survey  
JVAS - Jodrell / VLA Astrometric Survey
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The statistics of images separation in lensed quasars has been problematic for the DM 
paradigm.  In TeVeS it has been investigated by Chen & Zhao and lately by Chen.   Shown 
here is a histogram from latter paper (thick broken line) of the observed frequency of pair 
separations as a function of angle from the CLASS and JVAS surveys (containing 9000 
quasars with 13 cases of multiply lensed ones)  The 3 thin solid lines are TeVeS 
predictions for three interpolating mu’s.  The 2 dotted lines are predictions from GR sans 
dark matter for two assumed M/L.   The above assume an open cosmology with Ω_b = 
0.04 and Ω_Λ = 0.5, model the lenses (mostly elliptical galaxies) with Hernquist profiles, 
and described their space distribution with Fontana’s mass function.  The dashed line is 
the ΛCDM prediction for a flat cosmology with Ω_m = 0.3 and Ω_Λ = 0.7, with the lenses 
modeled as singular isothermal spheres and populated according to the Fontana mass 
function.  As you can see here TeVeS comes out on top.    The upcoming big lens surveys 
should allow a more enlightening confrontation between the DM and TeVeS approaches.
CLASS - Cosmic Lens All-Sky Survey    JVAS - Jodrell/VLA Astrometric Survey



Spherical clusters

Takahashi & Chiba, 
Ap. J.  671, 53 (2007)

Natarajan & Zhao,  
MNRAS 389, 250 (2008)
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Fig. 2.— Results for the cluster A1689. The top left panel (a): The mass profiles of the gas (dotted
line), the galaxies (dot-dashed line), the gas + galaxies (solid line), and the dark halo (dashed line). The
quantity M(< r) is the mass enclosed within the radius r. The top right panel (b): The Newtonian
gravitational acceleration gN normalised to g0 for only baryonic components (gas + galaxies) (solid line) and
all components (dark halo is added) (dashed line). The left bottom panel (c): The reduced shear γ/(1 − κ)
as a function of the angular radius. The data is from Broadhurst et al. (2005a). The solid line is the MOND
prediction. On the dashed line, the dark halo is added. The right bottom panel (d): The convergence field
κ from Broadhurst (2005b). From panels (c) and (d), the MOND cannot explain the data unless the dark
halo is added, because the gravitational force is too weak near the core.

5

Broadhurst et al. (2005)
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What about clusters of galaxies?  Takahashi & Chiba analyzed weak lensing by three 
quasispherical clusters.  For each they obtained the gravitational field with TeVeS using 
several acceptable $\tilde\mu$ functions and a model mass profile inferred from a large 
cluster sample from the SDSS survey. Their predicted shear and convergence of the lensed 
light failed to fit the observations unless they added a large mass in neutrinos, as proposed 
by Sanders.     Here are typical results for Abel 1689.        Top left (a): The mass profiles of the 
gas (dotted line), the galaxies (dot-dashed line), the gas+galaxies (solid line), and the dark 
halo (dashed line      Topright (b): The Newtonian  gravitational acceleration g_N normalised to 
a_0 for only baryonic components (gas+galaxies) (solid line) and including DM (dashed line).        
Left bottom (c) and Right bottom (d): The measured reduced shear γ/(1 −κ)  and the 
convergence field  κ  as a function of the angular radius. (Data from Broadhurst et al. 2005). 
The solid lines are the pure TeVeS  predictions; DM had to be added to produce the dashed 
line so  MOND/TeVeS alone cannot explain the data a dark halo. Similar conclusions are 
reached by Natarajan \& Zhao.  Conclusions not surprising given MOND’s impotence in regard 
to the dynamical data for clusters.   



The bullet cluster - a postscript

Angus, Shan, Zhao, & Famaey,  Ap. J. 654, L13 (2006)

Feix, Fedeli & Bartelmann,  A&A. 480, 313 (2008)

Ferreira and Starkman, Science 326, 812 (2009)
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Dark matter is real
The combined data from four systems of telescopes offer the strongest 
evidence yet that a modifi cation of gravity cannot do away with the need for 
dark matter.
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It’s hard to decide whether cosmologists’ belief in 
the existence of dark matter represents hubris or 
humility. Is it overly bold to believe in a substance 

we’ve never directly seen? Or is it humble to recognize 
that most of the matter in the Universe is something 
di! erent from the stu!  with which we are familiar?

Either way, the notion of dark matter has served 
cosmologists well. In the 1930s, Fritz Zwicky argued1 
that the visible matter in the Coma cluster of galaxies 
fell far short of the dynamical mass implied by the 
velocities of the cluster’s constituent galaxies. " is 
conclusion was greatly strengthened in the 1970s by 
Vera Rubin2, who measured the velocity with which 
gas orbited around individual galaxies. " ese days, 
we have multiple lines of evidence that all point in 
the same direction, including observations of the 
cosmic microwave background, the distribution of 
large-scale structure, galactic dynamics, gravitational 
lensing and hot X-ray-emitting gas in clusters, to 
name a few.

" e need for dark matter would seem to be # rmly 
established, save for a persistent loophole. All of 
our evidence for dark matter so far is indirect — we 
don’t see the dark matter itself, we only measure its 
gravitational # eld. To make the leap from an observed 
gravitational # eld to an amount of matter, we need 
to assume that we understand how gravity works; in 
particular, that Einstein’s general relativity is valid on 
the scales of galaxies and clusters. But it is certainly 
conceivable that gravity is modi# ed on scales much 
larger than the Solar System. If that were the case 
— and models along those lines have certainly been 
proposed, most notably in Moti Milgrom’s modi# ed 
newtonian dynamics (MOND)3,4 — it may be that we 
have been tricked into believing in dark matter, when 
gravity is actually to blame.

" e di$  culty in distinguishing between the 
dark-matter and modi# ed-gravity hypotheses is that 
ordinary matter and dark matter tend to accumulate 
in the same places in the Universe, at least over 
su$  ciently large scales. " us, wherever we found a 
su$  ciently large concentration of ordinary matter, 
dark matter would be there along with it, giving rise to 

a stronger gravitational # eld than we would otherwise 
expect — exactly as if gravity itself were modi# ed. 
What we would like is a cluster of galaxies in which 
the ordinary and dark matter have somehow been 
separated from each other, so that the gravitational 
# eld (due primarily to dark matter) would emanate 
from a di! erent direction from the location of the 
ordinary matter.

" e Universe has kindly provided us with 
precisely the kind of situation we are looking for, 
in the form of the Bullet Cluster, 1E 0657−56. " is 
system is really two clusters, which have collided 
recently (cosmologically speaking). When the two 
clusters met, the gas in each interacted with that in the 
other, producing a shock front that shows up vividly 
in images from the Chandra X-ray satellite (Fig. 1). 

Figure 1 Dark matter in the Bullet Cluster. The Bullet Cluster formed through the collision of two 
clusters of galaxies; the galaxies (orange and white) are shown in an optical image from Magellan and 
the Hubble Space Telescope. ‘Normal’, or baryonic, matter makes up the hot gas (in pink) detected 
by Chandra. But the ‘lensing map’ drawn up using data on gravitational lensing (from Magellan and 
European Space Observatory telescopes at Paranal) shows that the concentration of mass in the 
cluster (blue) is separate from the normal matter. This concentration of mass outside the location of the 
ordinary matter is strong evidence of dark matter.
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Angus et al: able to model bullet lensing with TeVeS, but need the baryons to 
supplemented with neutrinos.    Feix et al confirmed that the source of gravity in the 
bullet must include an invisible component.  They asserted that nonlinearity of the 
AQUAL-TeVeS equation will not generate the observed correlation between lensing and 
the galaxies (whose mass is subdominant).   But Ferreira and Starkman, in their Science 
review, make the point that the absence of a Birkhoff theorem could lead to just such 
nonintuitive correlations. 

It is time now to go to the large scale



Cosmology with TeVeS
B, Phys. Rev. D 70, 083509 (2004)

Chiu, Ko & Tian,  Ap. J.  636, 565 (2006)

Zhao, Bacon, Taylor & Horne, MNRAS 368, 171 (2006)

ΛCDM 

 Bourliot, Ferreira, Mota and Skordis, Phys. Rev. D75 (2007) 063508

Sagi & B, Phys. Rev. D 77, 103512 (2008)
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The simpler issues of cosmology are easily clarified.  Bekenstein: Friedmann 
models can be transplanted to TeVeS.  
Chiu et al. and Zhao et al.: Angular distance within an isotropic cosmological 
model.
Bourliot et al.: study of isotropic cosmological models in TeVeS narrowing the 
range of \mu functions suitable in face of the cosmological facts.
Sagi and Bekenstein: despite TeVeS’s scalar sector, G is constant during the 
expansion. However, a_0 decreases, though slowly.  RC’s of large z galaxies are 
not yet good enough to put this to the test.
But no question about it, in cosmology the principal challenge to a theory like 
TeVeS is to compete with ΛCDM ‘s parameterized fit of the angular CMB power 
spectrum.  DM aficionados regard this as absolute proof of the presence of dark 
matter globally, and an impossible challenge for something like MOND.



Cosmological fluctuations in TeVeS

Skordis, Mota, Ferreira, and  Boehm, Phys. Rev. Letters 96, 011301 (2006)    

Skordis, Phys. Rev. D74, 103513 (2006)

Dodelson and Liguori, Phys. Rev. Letters 97, 231301 (2006)
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The theory of cosmological perturbations in TeVeS was first worked out by Skordis.  
Even before that paper came out, Skordis et al made use of the results to provide a 
fit of the CMB angular power spectrum with TeVeS.  Data as of 2006.  The Λ-CDM 
model (dotted line).  The solid line is for a TeVeS cosmology with ΩB = 0.05 , ΩΛ = 
0.78 and Ων = 0.17 (very massive sterile neutrino) and a0 ≃ 4.2 ×10^(−8) cm/s^2.  
The dashed line is for for a TeVeS cosmology with ΩΛ = 0.95 and ΩB = 0.05.  TeVeS 
with Ων = 0.17 fits well the first two peaks.  There was a similar good fit for the 
baryon spatial spectrum obtained by SDSS.  
Dodelson and Liguori concurred that TeVes is successful at this level, but differed 
from Skordis in ascribing to the vector field primarily responsability for supplanting 
DM.



Lensing convergence =⇒ ∇2(Ψ− Φ)

A statistic to tell theories apart

Zhang,  Liguori, Bean & Dodelson, Phys. Rev. Letters 99, 141302 (2007)

Ratios of the potentials to the mass overdensity are theory dependent.

�δng∇ · v/H�From galaxy surveys measure the cross-correlation

�δng∇2(Ψ− Φ)�Cross-correlate lensing shear and galaxy density to get

Mass conservation leads to the connection ∇ · v/H = −(d lnD/d ln a)δρ

∇2(Ψ− Φ)
δρ

ÊG; �EG� =

�δng δρ�Combine them to get

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)d�x2
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The near degeneracy between the predictions of GR with DM and TeVeS (with neutrinos) 
led Zhang et al. to suggest a better way to distinguish between the theories.  Small 
perturbations of isotropic cosmology are described, both in GR and modified gravities, 
by this metric.  The predicted ratios between the depths of the two gravitational 
potentials and the mass overdensity are theory dependent; could thus distinguish 
between theories.   The problem is that the mass overdensity is not directly measurable; 
it depends on assumptions about biasing.  Zhang et al’s procedure sidesteps the 
problem in five easy steps:     1) Galaxy surveys ---> cross-correlation of galaxy 
number overdensity with the expansion of proper velocities.  2) Mass conservation 
relates the expansion with the mass overdensity via the variation of the growth factor 
with expansion factor.
3) Combine the above to get correlation of galaxy number overdensity with mass 
overdensity.  4)  Recall that convergence in a lensing map is a measure of Lapl(\Psi-
\Phi).    So 4) use a lensing survey together with a galaxy survey to cross-correlate 
galaxy number overdensity with the Lapl.  5) “Divide” the two correlations to “factor out” 
the galaxy number overdensity.  In practice this is done with
E_G, an estimator for the ratio.



Expectations  

We restrict our discussion to subhorizon scale perturba-
tions and express equations hereafter in the Fourier form.
Four independent linear equations are required to solve for
four perturbation variables !, ",  , and #. The mass-
energy conservation provides two: _!!H" " 0 and _H"!
2H2"# k2 =a2 " 0. For at least !CDM, quintessence-
CDM, DGP, and f$R% gravity, the other two take the
general form

 

# " #$$k; a% ; k2$##  % " 3H2
0"0a#1! ~Geff$k; a%:

(8)

Here "0 is the cosmological matter density in unit of the
critical density %c & 3H2

0=8&G. Refer to [13] for other
ways of parametrizations. Modified Newtonian dynamics
(MOND) has extra scalar and vector perturbations and
does not follow the general form of Eq. (8) [6,7].

(1) !CDM.—$ " 1, ~Geff " 1, and EG " "0='. This
also holds for quintessence-CDM at subhorizon scales.
Dynamical dark energy models may have non-negligible
density fluctuations and anisotropic stresses and thus do
not follow Eq. (8) [18].

(2) Flat DGP.—$ " '1# 1=3'DGP(='1! 1=3'DGP(,
~Geff " 1 [9], and EG " "0=', where 'DGP "
1# 2rcH$1! _H=3H2%< 0 and rc " H0=$1#"0%. "0

differs from that of !CDM, in order to mimic H$z% of
!CDM.

(3) f$R% gravity.—In the subhorizon limit, ~Geff " $1!
fR%#1 [11] and $ " 1 [12], with fR & df=dRjB where B
denotes the Friedmann-Robertson-Walker background.
This falls naturally out of a conformal transformation of
the expression for EG in the Einstein frame into the Jordan
frame, noting that Einstein frame scalar field fluctuations
are negligible on subhorizon scales [12]. We numerically
solve the full perturbation equations in the Einstein frame
since it is computationally simpler [12] and then confor-
mally transform to the Jordan frame, which we choose as
the physical frame, evaluating ' such that EG " "0=$1!
fR%'. In the limit that fR ! 0, e.g., for f$R% )
(1H2

0 exp$#R=(2H2
0% [11] with (1 * (2, the evolution is

observationally equivalent to !CDM. For modes that en-
tered the horizon prior to matter-radiation equality, as we
consider here, ', and therefore EG, is scale invariant for ir
modifications to gravity, with fR > 0. The scale indepen-
dence of EG holds in !CDM, quintessence-CDM, and
DGP. An observed scale-independent deviation in EG
from !CDM could signify a special class of modified
gravity, as shown in Fig. 1.

(4) TeVeS/MOND.—Besides the gravitational metric,
tensor-vector-scalar (TeVeS) [2] contains a scalar and a
vector field. These new fields act as sources for the gravi-
tational potential # in the modified Poisson equation and
can change the evolution of cosmological perturbations
with respect to standard gravity [6,7]. We considered a
TeVeS model with "b " 0:05, ") " 0:17, "! " 0:78
and we adopted a choice of the TeVeS parameters that
produces a significant enhancement of the growth factor.
The TeVeS EG is significantly different from the standard
EG (Fig. 1) [19]. It exhibits scale dependence with accom-
panying baryon acoustic wiggles. Both features are due to
the vector field fluctuations, which play a significant role in
structure formation [7]. These fluctuations decrease toward
small scales and cause the scale dependency of EG. We
also checked that they affect the final shape of the acoustic
oscillations of the other components significantly. As a
result, oscillations in #,  , and ! do not cancel out
perfectly in TeVeS when we take the ratio, thus producing
the wiggles in EG.

TABLE I. Summary of target surveys.

Redshift deg2 Ngal Band Operation

LAMOST z < 0:8 10 000 )106 optical 2008
AS2 z < 0:8 10 000 )106 optical +2009
ADEPT 1< z < 2 28 600 )108 infrared +2009
SKA z & 5 22 000 )109 radio 2020
LSST z & 3:5 10 000 )109 optical 2012
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FIG. 1 (color online). EG as a smoking gun of gravity. Error
estimation is based on !CDM and error bars are centered on the
!CDM prediction (black solid straight line). We only show
those k modes well in the linear regime. For clarity, we shift
the error bars of LAMOST=AS2! LSST and ADEPT! LSST
slightly rightward. Irregularities in the error bars are caused by
irregularities in the available discrete k modes of redshift dis-
tortion. Dotted lines are the results of a flat DGP model with
"0 " 0:2. Dashed lines are for f$R% " #(1H2

0 exp$#R=(2H2
0%

with (2 " 100. Differences in expansion histories of these
models are of percent level at z < 2 and are not the main cause
of differences in EG. Solid lines with wiggles are for TeVeS with
KB " 0:08, 0.09, 0.1, where the lines with most significant
wiggles have KB " 0:1.
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In GR E_G is constant with scale, but in TeVeS it varies with it.  In both, in fact, in any 
theory, E_G varies with redshift.  The four graphs from Zhang et al., for 4 different 
redshift ranges, show predictions for E_G as function of scale for three TeVeS models 
(solid colored lines), a Dvali-Gabadadze-Porrati modified gravity theory (red dotted 
lines), a f(R) gravity model (dashed magenta lines) and the ΛCDM model (solid black line).  
The theories in question would be hard to distinguish by differences in the expansion 
history. 
Error bars, all calculated with ΛCDM, are actually the expected sensitivities to become 
available from various surveys.  These span the extant optical LAMOST and AS2 million 
galaxy surveys, to the billion galaxy Large Synoptic Survey Telescope optical and Square 
Kilometer Array radio surveys. 
You can see that there is a good chance to tell TeVeS and ΛCDM apart, a smaller chance to 
tell ΛCDM from DGP or f(R) theories.



an actual test already ?
Reyes, Mandelbaum, Seljak, et al. Nature 464, 256 (2010)

“Confirmation of general relativity on large scales from 
weak lensing and galaxy velocities”

wgg(R) (Fig. 1b), measured from the LRG sample for scales
R5 1.2h21–47h21Mpc. To achieve a high signal-to-noise ratio in
the lensing profile, we stack together shape measurements15 of more
than 33 107 source galaxies (see Supplementary Information for
details). To calculate wgg(R), we use a standard method of counting
galaxy pairs and comparing the result with that for a randomly dis-
tributed sample16.

Figure 2 shows our estimate of EG(R), with 1s error bars that
include the error in the measurement of b. We choose the minimum
scale, R05 1.5h21Mpc, to be close to the typical virial radius of the
haloes of the most massive LRGs, above which we expect the distri-
bution of galaxies to trace that of the dark matter, but our results are
not very sensitive to this particular choice of R0. To estimate errors in
EG(R) while accounting for any correlations between radial bins, we
use jackknife resampling of 34 galaxy subsamples from equal-area
regions in the sky. To obtain numerical corrections accounting for
the effect of scale-dependent galaxy bias and other systematic effects,
we use a suite of dark-matter simulations17 that have been populated
with galaxies using the HODmodel18 that best reproduces the obser-
vations (Fig. 1 and Supplementary Information). The correction
factors that we obtain are well below the statistical uncertainty in EG.

We take the average of EG(R) over scales R5 10h21–50h21Mpc,
accounting for correlations in the data, and find it to be
ÆEGæ5 0.3926 0.065 (1s) (grey shaded region in Fig. 2). The 16%
error in EG is dominated by the 11% statistical error in b and the 12%
statistical error in the galaxy–galaxy lensing signal. In addition, there
is a 5% lensing calibration uncertainty15. As detailed in the Sup-
plementary Information, systematic effects on EG are least important
on length scales R. 10h21Mpc, so the results are most robust there.
We note that the average for R5 2h21–50h21Mpc yields a result,
ÆEGæ5 0.406 0.07, consistent with that above.

The general relativistic prediction isEG5Vm,0/f(z)5 0.4086 0.029
at redshift z5 0.32, where f(z)<Vm(z)

0.55< 0.629 and Vm(z) is the
matter density parameter at redshift z. The allowed range is determined
by the size of current uncertainties onVm,05 0.25656 0.018 (ref. 19).
The data are consistent with this prediction over the range of scales we
consider (Fig. 2, solid line and GR1LCDMbar). Unfortunately, pro-
vidingmodel-independent constraints on the gravitational slip is com-
plicated, because changes in the gravitational slip will in turn affect the
rate of growth of structure.What is clear is that there is no evidence for
a non-zero gravitational slip fromour data. Thus, we find no deviation
fromgeneral relativity on length scales 1011 times greater than those for
which classical tests20 have been performed.

We also compare our constraint on EG with predictions from two
viable modified theories of gravity: tensor–vector–scalar theory5 and
f( ) theory6 (Fig. 2, TeVeS and f( ) bars).Models of f( ) theory21 that
are designed to reproduce the observed cosmic expansion
history with a specific model for the gravitational slip predict that
EG5 0.328–0.365 (Supplementary Information). The data favour
slightly higher values, but are consistent with this predicted range.
These models can be tested in the near future; limits on EG will
improve as a result of the larger data sets and better control of sys-
tematic errors allowed by the next generation of galaxy surveys.
Nevertheless, even with the current limits, we can tentatively rule
out particularmodels. For example, a particular tensor–vector–scalar
model1 predicts that EG5 0.22, which is lower than the observed
value by more than 2.5s. Whether this result rules out the entire class
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Figure 1 | Probes of large-scale structure measured from 70,000 LRGs.
a, b, Observed radial profiles for two complementary probes, galaxy–galaxy
lensing (a) and galaxy clustering (b), are shown for scales
R5 1.2h21–47h21Mpc (open circles). The error bars (1s) are estimated
from jackknife resampling of 34 equal-area regions in the sky. Profiles
measured from mock galaxy catalogues are also shown (solid curves). To
generate the mock galaxy catalogues, we use a standard five-parameter halo
occupation distribution (HOD) model with two parameters related to the
assignment of central galaxies and three parameters related to the
distribution of satellite galaxies (see Supplementary Information for more
details). To fix the HOD model parameters, we require the galaxy number
density tomatch the observed value and find the best joint fit to the observed
galaxy–galaxy lensing and galaxy clustering profiles. Despite this tuning, it is
remarkable that this simplemodel is able to reproduce both the overall shape
and particular features of the observed profiles.
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Figure 2 | Comparison of observational constraints with predictions from
general relativity and viable modified theories of gravity. Estimates of
EG(R) with error bars (1s) including the statistical error in themeasurement
of b (ref. 14). The grey shaded region is the 1s envelope of the mean EG on
scales R5 10h21–50h21Mpc, where the systematic effects are least
important (Supplementary Information). The horizontal line shows the
mean prediction of general relativity, EG5Vm,0/f(z), at the effective redshift
of the measurement, z5 0.32. On the right-hand side of the panel, labelled
vertical bars show the predicted ranges from three different gravity theories:
general relativity (GR) plus L cold dark matter (LCDM) model
(EG5 0.4086 0.029 (1s)); a class of cosmologically interesting models in
f( ) theory with Compton-wavelength parameters21 B05 0.001–0.1
(EG5 0.328–0.365); and a tensor–vector–scalar (TeVeS) model1 designed to
match existing cosmological data and to produce a significant enhancement
of the growth factor (EG5 0.22, shown with a nominal error bar of 10% for
clarity).
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�z� ≈ 0.32
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Last year a group jumped the gun and claimed to have finished the problem.  Look at the 
pretentious title of the paper.  They used sample of 70,000 luminous red galaxies from 
the SDSS with a mean z=0.32.   The theoretically predicted ranges of E_G are shown on 
right.  Claim a statistically significant difference between the predicted $E_G$ for a 
TeVeS' model and the measured one, whereas GR's $E_G$ fit well.        But    1) Error bars 
are large; a much larger sample is really required for a statistically significant 
discrimination between the theories (Zhang et al).        2) The cited TeVeS prediction for 
$E_G$ is actually for a redshift interval 0.4-0.6; TeVeS's predictions for $E_G$ actually 
converge to those of GR as z goes down.       3)  The TeVeS cosmological model in 
question (Zhang et al) comes from TeVeS with only the $K$ term in vector action, the 
version known to develop caustics (Contaldi eta al), and not to fit all the measured PPN 
coefficients (Sagi).   So the claim of the title is surely premature.

But the fact remains that massive galaxy surveys seem to be the way to clarify many 
issues involving modified gravity.  



Conclusions

MOND unifies disparate facts about dynamics of 
galaxies at all scales; but has trouble with clusters

MOND can be implemented as a nonrelativistic 
modified gravity (AQUAL)

MOND may be an overly narrow paradigm;  AQUAL 
with running a0 may be in order - work in progress

 MOND can be implemented as relativistic TeVeS 
(and variants of it)

TeVeS works well for lensing by galaxies and can 
supplant DM (and perhaps DE) in cosmology;  it 
does less well for clusters of galaxies
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