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General Relativity (Einstein, 1915) 

Main idea of general relativity: Since gravity is 
universal, identify it with something else which is 
universal - the geometry of spacetime. 

Einstein’s equation: 
     curvature of     =     distribution of 
      spacetime                  matter   

Particles travel along geodesics - the straightest 
possible path in the curved spacetime. 

 



GR predicts light is bent by massive objects. 

This has now been 
confirmed to an 
accuracy 2 x 10-5 by 
bouncing radio waves 
off the Cassini 
spacecraft (Bertotti et al, 
2003). 



Classical black holes (1970’s) 
Uniqueness theorem: The only stationary 
(vacuum) black hole solution is the Kerr solution 
with two free parameters M, J. 

“Black holes have no hair.”  Wheeler 

Surface gravity of a black hole κ: The force at 
infinity required to hold a unit mass at rest as it 
approaches the horizon of a black hole. 



Laws of black hole mechanics 
(Carter, Bardeen, Hawking, 1973) 

0) For stationary black holes, the surface gravity 
κ is constant on the horizon 

 

1)  Under a small perturbation: 
 

2)  The area of the event horizon always 
increases 



Semiclassical black holes 

Hawking coupled quantum matter fields to a 
classical black hole, and showed that they emit 
black body radiation with a temperature  

 

This implies black holes have an entropy 
(Bekenstein) 

T =
~
2⇡

SBH =
A

4~G



In addition to describing gravitational 
phenomena (black holes, gravitational 
waves, etc.) general relativity can also 
describe other fields of physics including 
aspects of condensed matter.  

       Claim: 



Gauge/gravity duality 



Gauge Theories 

These are generalizations of electromagnetism 
in which the U(1) gauge invariance is replaced 
by e.g. SU(N).  
 
Our standard model of particle physics is based 
on a gauge theory.  
 
QCD has SU(3) gauge symmetry. The 
interactions are weak at high energy but 
become strong at low energy causing quark 
confinement. 



‘t Hooft argued in the 1970’s that a 1/N 
expansion of an SU(N) gauge theory 
would resemble a theory of strings. 
 
It took more than 20 years for this idea to 
be made precise. 



String Theory 

This is a promising candidate for both  
 
1)  a complete quantum theory of gravity 
2)  a unified theory of all forces and particles 
 
It is based on the idea that elementary 
particles are not pointlike, but excitations of a 
one dimensional string. 
 



Strings interact with a simple splitting and 
joining interaction with strength g. 

String theory reduces to general relativity 
(with certain matter) in a classical limit. 

t 



Gauge/gravity duality 

Under certain boundary conditions, string theory 
(which includes gravity) is completely equivalent 
to a (nongravitational) gauge theory living on the 
boundary at infinity. 

(Maldacena, 1997) 

When string theory is weakly coupled, gauge 
theory is strongly coupled, and vice versa. 

Shows that quantum gravity is holographic 
(‘tHooft, Susskind) 



The boundary condition that is required is that 
the spacetime must approach constant negative 
curvature. This is called anti-de Sitter (AdS) 
spacetime. The metric looks like 

ds2 = r2(�dt2 + d�x2) +
dr2

r2

Metric of special 
relativity 

Rescaling r         a r,  (t, x)         (t/a, x/a) leaves 
the metric invariant. Small radius corresponds 
to large distance (low energy) in gauge theory. 



Traditional applications of 
gauge/gravity duality 

Gain new insight into strongly coupled gauge 
theories, e.g., geometric picture of confinement. 

  

Gain new insight into quantum gravity, e.g., 
quantum properties of black holes 



Quantum Black Holes 

•  What is the origin of black hole entropy? 
 
•  Does black hole evaporation lose 

information? Does it violate quantum 
mechanics?  



The gauge theory has enough microstates to 
reproduce the entropy of black holes. 

The formation and evaporation of small black 
holes can be described by ordinary Hamiltonian 
evolution in the gauge theory. It does not violate 
quantum mechanics. 
 After thirty years, Hawking 

finally conceded this point 
in 2004. 

Answers from Gauge/Gravity Duality 



 In a certain limit, all stringy and 
quantum effects are suppressed and 
gravity theory is just general relativity 

 
 (with asymptotically anti-de Sitter  

boundary conditions). 



New application of gauge/gravity 
duality: Condensed matter 

In 2007, a few condensed matter effects (e.g. 
the Hall effect) were reproduced using general 
relativity.  (Hartnoll, Herzog, Kovtun, Sachdev, Son) 

This duality allows one to compute dynamical 
transport properties of strongly coupled systems 
at nonzero temperature.  
 

Theoretical physicists have very few other tools 
to do this. 



Basic Ingredients of the 
Duality 

A state of thermal equilibrium at temperature 
T is dual to a black hole with temperature T. 
 

Fields in spacetime are dual to operators in 
the boundary theory. 
 

Local properties of the gauge theory are 
related to the asymptotic behavior of the 
gravity solution. 



Superconductivity 



Superconductivity 101 

In conventional superconductors (Al, Nb, Pb, …) 
pairs of elections with opposite spin can bind to 
form a charged boson called a Cooper pair. 

Below a critical temperature Tc, there is a second 
order phase transition and these bosons 
condense. 

The DC conductivity becomes infinite. 

This is well described by BCS theory. 



The new high Tc superconductors were 
discovered in 1986. These cuprates (e.g. 
YBaCuO) are layered and superconductivity is 
along CuO2 planes.  

Highest Tc today (HgBaCuO) is Tc = 134K 

New superconductors based on iron and not 
copper (FeAs) discovered in 2008 have Tc = 56K. 

The pairing mechanism is not well understood. 
Unlike BCS theory, it is not weakly coupled.  

Use gauge/gravity duality to try to gain insight into 
these high Tc superconductors. 



Gravity dual of a superconductor 

   Gravity                             Superconductor 

   Black hole                         Temperature 

  Charged scalar field            Condensate 

Need to find a black hole that has scalar hair 
at low temperatures, but no hair at high 
temperatures. 

This is not an easy task. 

(Hartnoll, Herzog, and G.H., 2008) 



Gubser (2008) argued that a charged scalar 
field around a charged black hole would have 
the desired property. A charged scalar field has 

For an electrically charged black hole, the 
effective mass is 

 

But the last term is negative. This produces 
scalar hair at low temperature. 

L = �|@ � iqA |2 �m2| |2



At large radius, the vector potential and 
charged scalar behave as 
 
 
 
Gauge/gravity duality relates these constants 
to properties of the dual field theory: 
 
 µ = chemical potential, ρ = charge density 
 
There is an operator O2 dual to ψ, and 
 
 

At = µ� �

r
, ⇥ =

⇥(2)

r2

hO2i =  (2)



 Condensate (hair) as a function of T 
 

         

As T       0, the horizon area vanishes, 
consistent with a unique ground state.   



Conductivity 

We want to compute the conductivity as a 
function of frequency. Start by perturbing the 
black hole solution. 

 Assume time dependence e-iωt and impose 
ingoing wave boundary conditions at the horizon. 



The asymptotic behavior is 

 

 

The gauge/gravity duality dictionary says 

 

 

We obtain the conductivity from Ohm’s law   

�(!) =
J
x

E
x

=
A(1)

x

i!A(0)
x

E
x

= i!A(0)
x

, J
x

= A(1)
x



The conductivity at low T 

Delta function at ω = 0 



Josephson junctions 
A Josephson junction consists of two 
superconductors separated by a weak link: 
 
Insulator:  SIS junctions 
Normal conductor:  SNS junctions 
Narrow superconducting bridge 
 
Josephson predicted that even without a 
voltage difference across the junction,              
J = Jmax sin γ where γ is the phase difference. 



  Model this by letting µ be position dependent.  
(Santos, Way, G.H., 2011) 

For a range of temperatures, you have two 
superconductors separated by a normal 
conductor. 
 
The critical temperature for the junction is 
the same as the case with constant   µ = µ∞ 

µ∞ 
 

µ0 



Results 

At  as a function 
of x and 
z = 1 – r0/r 



Scalar stays 
small inside 
the gap. 
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Indeed: J = Jmax sin γ  



Dependence of Jmax on width of junction: 
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Condensate at 
center of junction 
behaves similarly 
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Can one do more than reproduce qualitative 
features of condensed matter systems? 
 
Can gauge/gravity duality provide a 
quantitative explanation of some mysterious 
property of real materials? 
 

Yes 



We now take our bulk theory to be just gravity + 
Maxwell theory (no charged scalar). 
 
Introduce a lattice by making the chemical 
potential be a periodic function: 
 
 
 

At ! µ(x) ⌘ µ̄ [1 +A0 cos(k0x)]

Add Lattice 
(J. Santos, D. Tong, G.H., 2012) 



Simple model of a conductor 

Suppose electrons in a metal satisfy 
 
 
 
If there are n electrons per unit volume, the 
current density is J = nev. Letting  E(t) = Ee-iωt, 
find J = σ E, with  
 
 
where K=ne2/m. This is the Drude model. 

m
dv

dt
= eE �m

v

⌧

�(!) =
K⌧

1� i!⌧
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       Optical conductivity with no lattice 
                      (T/µ = .115) 

Delta function at ω = 0 due to translation invariance 
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With the lattice, the delta function is 
smeared out 



The low frequency conductivity takes the simple 
Drude form:  

�(!) =
K⌧

1� i!⌧
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The data is very well fit  by 
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The exponent 2/3 is robust 
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             Comparison with the cuprates  
(van der Marel, et al 2003) 

Bi2Sr2Ca0.92Y0.08Cu2O8+�



We now add the charged scalar back into our 
gravity theory and consider the lattice effects 
in the superconducting regime. 
 
In addition to the superconducting component, 
there is a normal component to the 
conductivity which again has Drude behavior 
at low frequency. 

Superconductor with lattice 
(J. Santos and G.H., 2013) 



Intermediate frequency conductivity again 
shows the same power law: 
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T/Tc = 1, .97, .86, .70 

Coefficient B and 
exponent 2/3 are 
independent of T 
and identical to 
normal phase. 



8 samples of 
BSCCO with 
different doping. 
 
Each plot includes 
T < Tc as well as 
T > Tc. 
 
No change in the 
power law. 
 
(Data from Timusk 
et al, 2007.) 



Summary 
 

1)  In addition to describing gravity, gauge/
gravity duality predicts general relativity 
can also describe nongravitational physics. 

 

2)  General relativity can indeed describe: 
      (a) superconducting phase transitions 
      (b) Josephson junctions 
      (c) anomalous power laws seen in the 

 optical conductivity of the cuprates 


