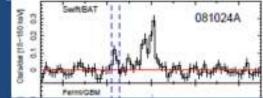
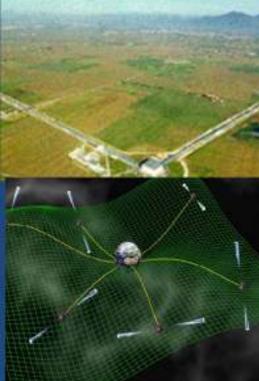
Gravitational and (possible) electromagnetic signals from compact binaries

L. Lehner

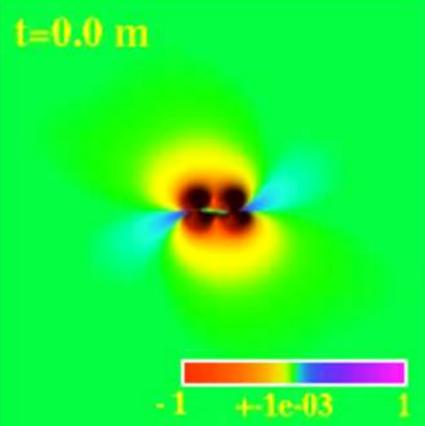
(Perimeter Institute/CIFAR)



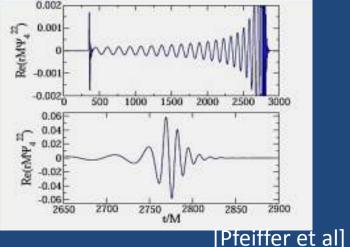


Underlying motivation...

- We know of a zoo of astrophysical systems emitting highly energetic EM signals (e.g. bursts, jets). Most however, are not well understood
 - Luminosities of ~ NS/secs hint of BHs & NSs
 - Collimations, strong directional dependence require mechanisms to act on long scales
 - As well, EM observations unfortunately tell
 ``the end of the story''
- Gravity plays a key role, and some systems also generate gravity waves which provide complementary information.
 - Just with standard EM efforts, 'models' are required to confront with signals.



- To understand GW signals in the most dynamical phase
 → solve Einstein equations for target systems
- $G_{ab} = 8 \pi T_{ab} \rightarrow just G_{ab}$ part 2nd order, nonlinear eqns.
 - Several length scales (source size, observer's location)
 - Relatively long time scales (though some can be addressed via perturbations)
 - Require complex simulations


As well, T_{ab} brings its own series of issues, but of crucial importance in a number of systems, and might help trigger more than one type of signal.

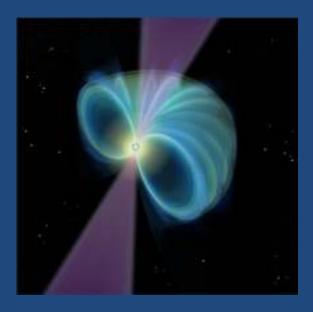
GWs and BHs, where are things (theory)?

 Gravitational waves from binary black holes, not overly 'complicated' by nonlinearities

- Radiation: convert ~ 5% of total initial mass and (late) angular momentum. (can be higher for 'tuned' collisions).
 - $E_{GW} \simeq 10^{58} \text{ ergs} (M_T / 10^6 M_{sun})$ in $\simeq 100 (M_T / 10^6 M_{sun})$ secs
 - $L_{GW} \simeq 10^{25} L_{sun} [or \simeq 10^{7-9} L_{GRB}]$
- Asymmetric scenarios give rise to kicks, these can be as large as 3-8 10³ km/s! (claim Quasar SDSS J092712.65+294344.0)
 - Yet... these need some tweaking.
 - A few 100s km/s more typical. (Mech Energy $\sim 10^{53} \text{ ergs} (M_T/10^6 M_{sun}) >> \text{SN }!$)

GWs, where are things (direct observations)? (or...what would it take to claim victory?)
GWs (~ 2015?, ~2017?, ~ 2019....).

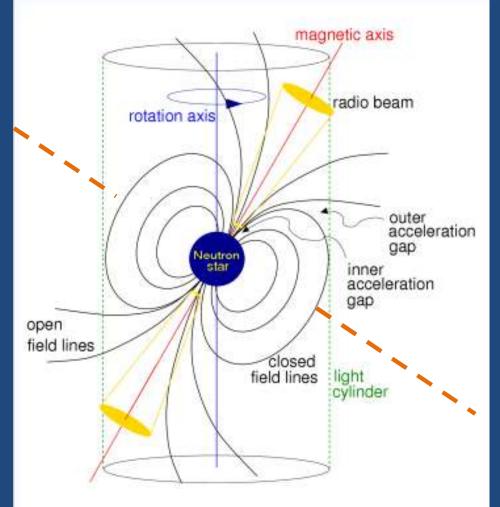
- Theory results to prepare analysis of GWs and influence ongoing plans for future detector tweaks and designs
- EM signals might help detection claim, and to remove degeneracies
- What EM emissions might we expect? We already have possible EM observations!
- Smoking guns to tell EM observations apart?


What's next?

- BBH: precision templates & efficient covering o parameter space
 - Data analysis challenges
 - Efficient analysis, rapid turn-around, early warning
- Beyond 'those' waves, there can `easily' be EM ones:
 - Just a fraction of energy released into surrounding gas/matter/fields can trigger an observable counterpart. e.g. GRBs, etc.
 - But what and how shines?
 - Are there characteristics tied to the orbital (GW) behavior?
 - Anything beyond SGRBs?

EM radiation

- Need to find what the right model is

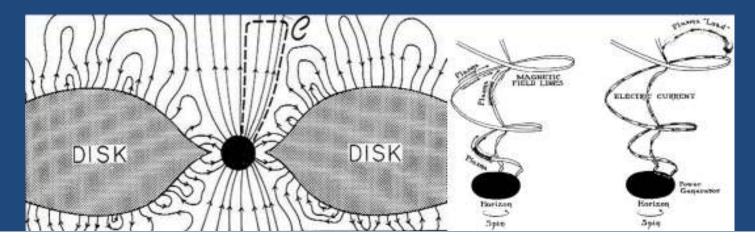

 microphysics, EM fields, what's outside compact objects?
- So... let's start simple... consider a star and its dipole... Pulsars radiate..... Dipole radiation?

 $L \sim B^2 \Omega^4 R^6 sin(x)^2$

...but this doesn't seem right, (radio observations tell us so)

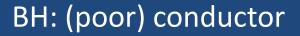
What is missing?

NS isn't in vacuum.
 [Goldreich-Julian]
 Magnetosphere induced by
 e.g. pair creation


Charges shorts out E.B →
 'force free' condition

 $L \sim B^2 \Omega^4 R^6 [1+\sin(x)^2]$ [Spitkovsky 2006]

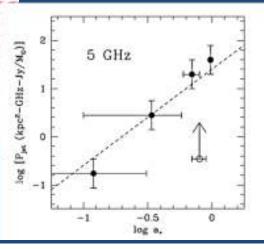
Plasma arguments are
 'generic', enough that
 should be applicable in
 'simpler' systems


'Blandford-Znajek' effect

- Blandford-Znajek. Emmision mechanism for Kerr bh's surrounded by magnetic fields (anchored by an accretion disk)
- BH becomes surrounded by a tenuous conducting plasma with little inertia
- Blandford-Znajek: BH acquires and induced charge distribution, bh rotation provides an EMF with V ~ B a -> L ~ (Ba)²
- Binary black holes? -- PTA sources--

[Goldreich-Julian, Blandford-Znajek]

simple picture from the membrane paradigm *'unipolar inductor'*



Battery: Black hole's rotation

Plasma to close the circuit

Far load: to dissipate energy

 $L \sim B^2 a^2$

just a picture, ed full are against [Narayan-McClintock 2011]

First step: How to solve for this?

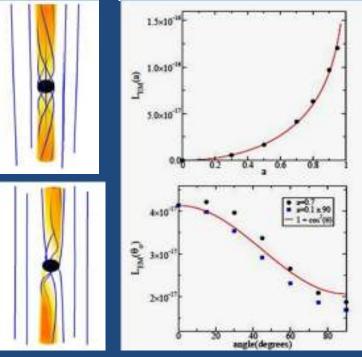
Must add plasma effects to GR simulations
 – State of plasma?, Conductivity?....

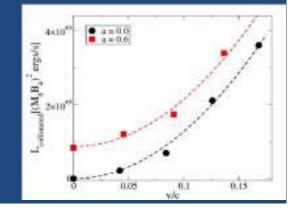
First step: How to solve for this?

- $G_{ab} = T_{ab}$
- $\nabla_a F^{ab} = J^b$; $\nabla_a * F^{ab} = 0$; J^a ?
- Further constraints
- $F^{ab} * F_{ab} = 0$ (orthogonality condition)
- $F^{ab}F_{ab} > 0$ (magnetically dominated)
- $F_{ab}J^b=0$ (Lorentz force =0)

- *IF analogy can be pushed further,* there is little special about BH's rotation, any relative motion of conductor wrt ambient magnetic field would give and EMF
- Can this intuition be confirmed? And connection further exploited?

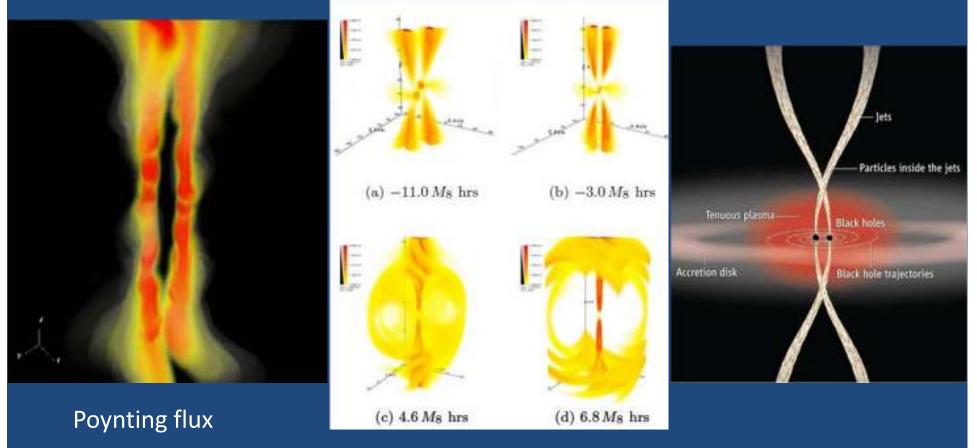
•we knew. L ~ B² a² in the aligned case [refined version Tchechovskoy,Narayan,McKinney 2010].

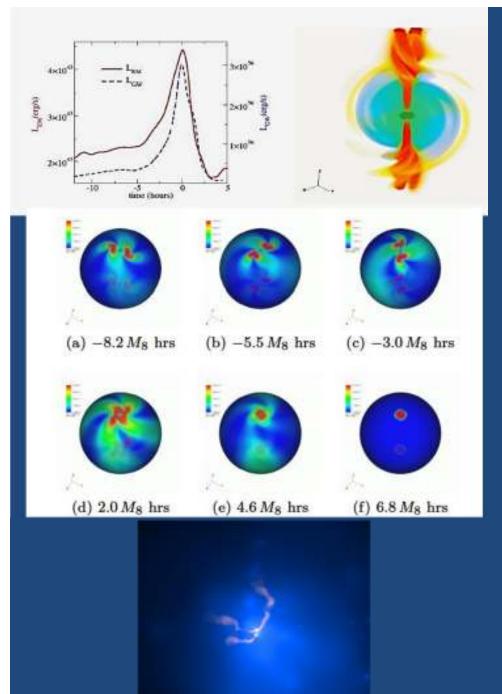

- For misaligned cases?
 - Poynting flux still there, along B
 - $L \sim B^2 a^2 (1 + \cos^2)$


(can be predicted using Damour 74 + mp!)

- For moving cases?
 - From membrane paradigm → BH is a conductor. If moving through a B field, induce E ~ v x B → EMF=V ~ (vB) ; L ~ V²
 - Expect $L \sim v^2 B^2$

(Can be predicted using theory of satellite propulsion Drell, Foley, Rudderman 65!)


[Palenzuela,Garret,LL,Liebling, PRD 2010]



Onto the binary case: "Braided jets"

- Orbit \rightarrow Black holes move through B. Hall effect analogue.
- As in previous cases, 'circuit' can be established due to charge separation
- Thus, expect Poynting flux through orbiting stages. Also contribution from standard BZ .

Putting all together:

 $L \sim (1 [a/0.6]^2 + 100 v^2) 10^{43} \text{ ergs} [M_8 B_4]^2$

* EM flux acts as a "spacetime tracer"
* Can exploit 'standard' BBH results to predict much of the EM flux behavior. This system is very clean

Multimessenger? : LISA & PTA for gravity waves

EM observations? For 10^4 G, 10^8 M_o flux ~ 10^{43-44} ergs. IF Poynting flux energy efficiently transferred to observable emissions, interesting pre/post merger observations possible; to z=1 ?

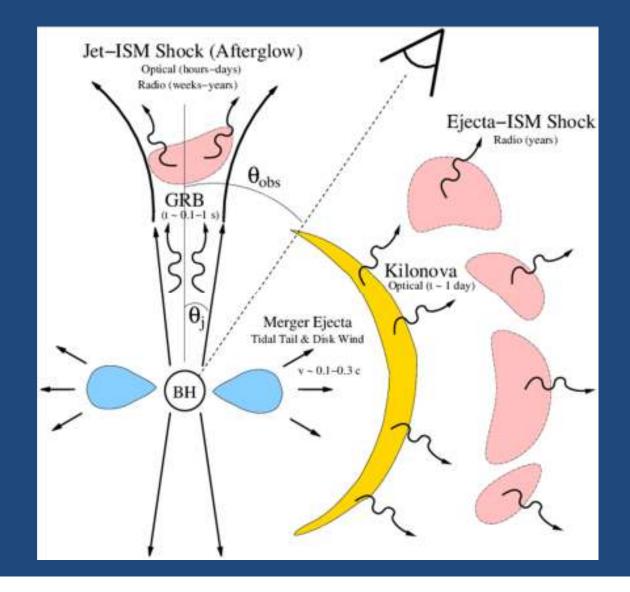
Additional messages... (i) spin isn't needed (ii) a BH isn't needed (a star or satellite would do, eg. Io-Jupiter)

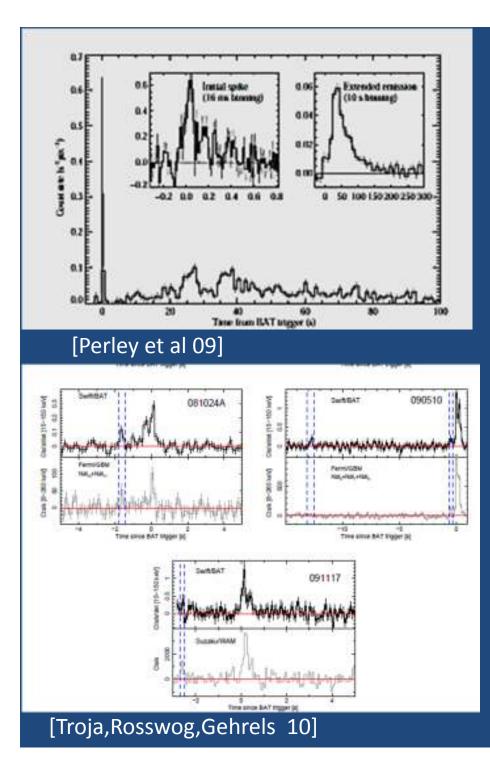
LIGO/VIRGO/KAGRA sources: NS-NS & BH-NS

Excellent sources of GWs [few to hundreds per year!]; Zoo of ingredients: Eqn of state [YITP-UWM,...]? Role of magnetic fields [PI/CITA/LIU/BYU,...]; neutrinos [YITP,Caltech/UW/CITA/CORNELL,....]?, configurations [UIUC,CWCC,...] all can affect the dynamics at particular stages

For grav waves.

Early pre-merger stages: PN is good enough [Blanchet,Faye....] Late pre-merger: internal structure plays a role Merger, postmerger: prompt vs. delayed collapse to a BH and other features, we could use to determine eqn of state. *Can different effects be disentangled?*


Beyond these, other key qns


Does the merger give rise to a BH with sizeable disk?, what is its final spin, magnetic field strength /topology, etc? All these connect directly with short GRBs models

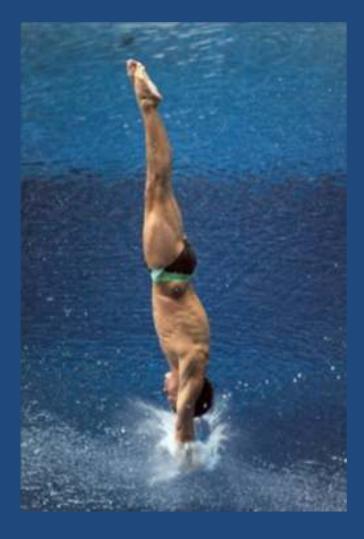
EM connection?

- Possible sources for sGRBS
 - Observations indicate old stellar population progenitors
 - Rates are consistent with estimates of non-vac. compact binaries
 - Rapid γ and X-ray variability -> small source. Huge luminosities and non-thermal spectrum -> ultrarelativistic.
 → powered by jets produced by rapid accretion onto a newly formed stellar-mass BH (or a rapidly rotating magnetar). Jet break → collimated outflows
 - A fraction show long, sustained emissions with total energy ~ the main burst itself (or higher)
 - a few seem to show activity prior to burst (?)
 - since collimated, where are 'orphan afterglows' ? (expected in radio).

sGRB 'anatomy'

- GR080503. Extended emission for ~ 200secs. "Gap" between main burst and extended emission.
- Why 2 time scales? argument: rprocesses from ejecta
- --though opacities have been underestimated [Kasen, Hungerford]
- Near IR observations perhaps... already measured! [Berger etal]

- ~10% of sGRBS seem to display preburst activity. Up to 10secs before the merger?!
- Why 2 time scales?


- Also, one expects there should be more than 'sGRBS' (and remember not all binaries might give sGRBS)
 - Strongest fields; extreme dynamics; what else is out there?
 - BH-disk & magnetar scenarios not mutually exclusive (NS-NS)

Regardless... GW observations will have a huge impact

- Do they really come from BH-NS / NS-NS?
- What is the 'radiative' process?
- What is the environment ?

So... let's try to put as much as we can together. GWs are coming, but EM observations have been with us for long

 (dividing NSNS and BH-NS)

How to deal with them?

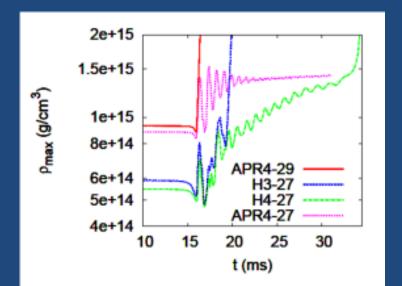
• Stress tensor T_{ab} sum of:

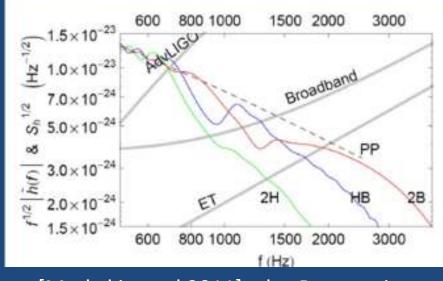
$$T_{ab}^{\text{fluid}} = \left[\rho_o \left(1 + \epsilon \right) + P \right] u_a u_b + P g_{ab}$$
$$T_{ab}^{\text{em}} = F_a{}^c F_{bc} - \frac{1}{4} g_{ab} F^{cd} F_{cd} \,.$$

- Coupling: Ohm's law $J^{\alpha} = q u^{\alpha} + f(\sigma) (e^{\alpha} + (e.b) b^{\alpha} \lambda)$
- Traditional way, concentrate on different limits:
 - Ideal MHD $f(\sigma) \rightarrow infinity$. $F_{ab} u^b = 0$. Suitable for stars, outside of them?
 - B turns into a 'fluid' field, propagation speeds tied to u^a
 - Force free electrodynamics. Fluid's inertia is negligible $\rightarrow F_{ab} J^b = 0 (f_{lorentz} = 0)$
 - E,B independent fields, currents/charges implicitly considered.
 - Vacuum case $\sigma = 0$.
- σ ? Values vary over huge scale range \rightarrow numerically delicate (but doable [Palenzuela '12, Palenzuela, LL, Ponce, Liebling, ... '13])

NS-NS

- Gravity waves can tell the EOS. Radius/Mass measurable to ~ 1% [Read et al]
- Degeneracies? Magnetic fields can play a role *—after merger--* [loka-Taniguchi '01; Anderson et.al., UIUC,YITP,AEI,...]. Cooling? [Sekiguchi+]
- Angular mom transport, reduction of thermal pressure, ...

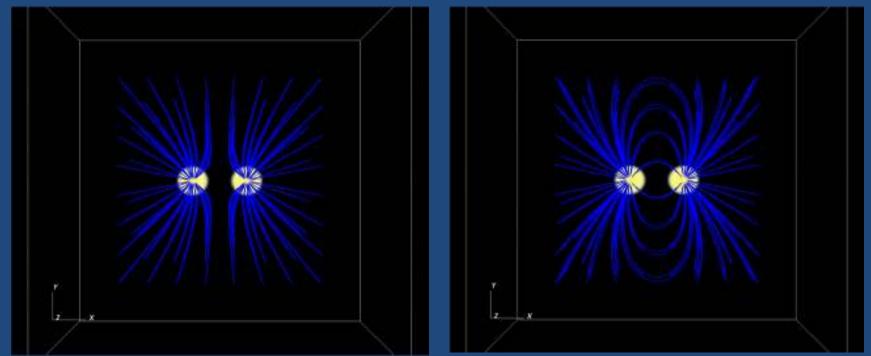

0.001 0.001 0.001 0.001 0.001 0.001 0.001 5


[Palenzuela et.al]

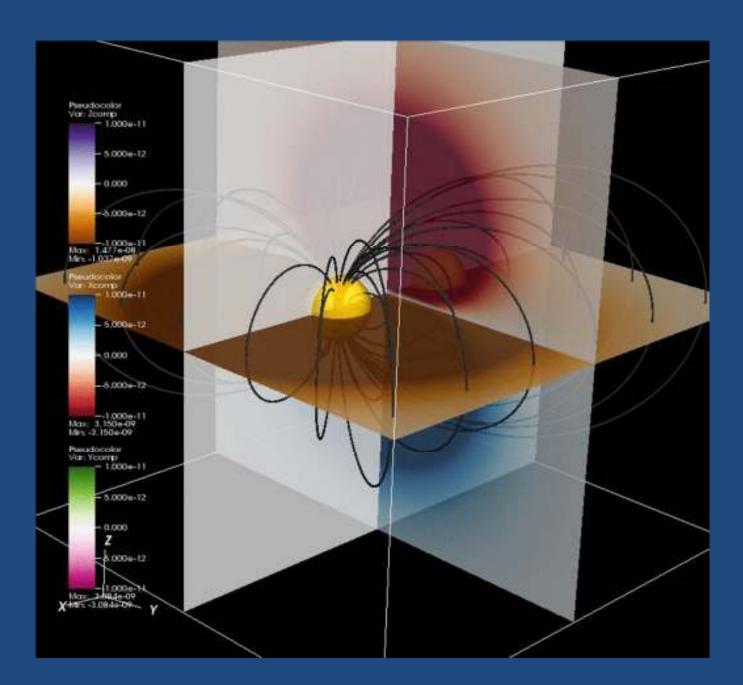
[Hotokezaka et al 2012]

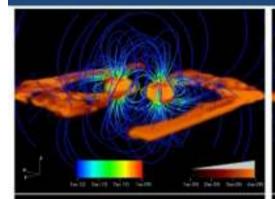
waves

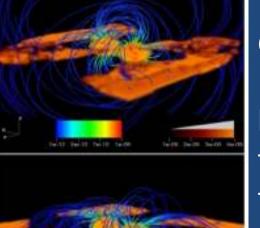
- Early on PN is enough
- then tidal effects visible, nonlinear effects
- then 'bar' structure. Strongly dependent on masses/EOS and more


[Markakis et.al 2011], also Bausswein et al

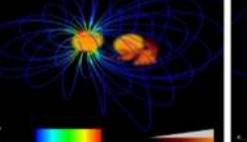
NS-NS: what else can they do?

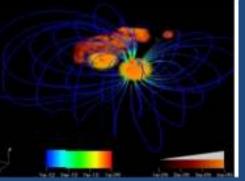

- These undergo a massive collision. Binding energy ~ 10⁵²⁻⁵³ ergs
- Such collision can 'pump up' fields to magnetar levels
- Possible channel for GRBs.
 - Disk size? OK, but 'central' BH is mass bounded
 - *final BH spin lower*? Stars aren't highly spinning.




• Further, magnetospheres can interact (uu/ud)

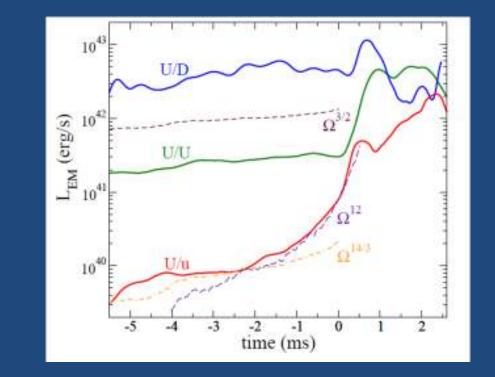
[Palenzuela,LL,Liebling,Ponce...]





Current sheets, tied to: Particle acceleration and high energy emission from pulsars, gamma rayy flares, etc [Uzdenski,McKinney,Spitkovsky]

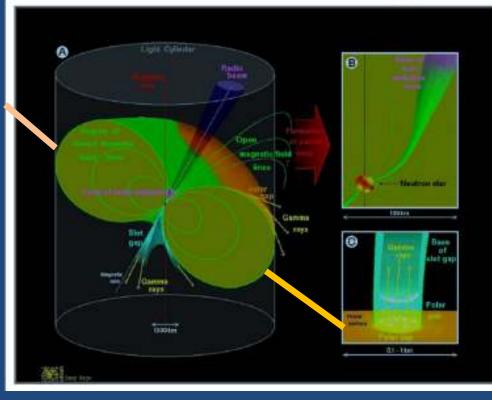
Here: structure tied to orbital dynamics, ``spacetime tracer''



to be to be in the select select select select

Energetics: $B = 10^{11}$ G. equal mass 1.4 M_{\odot}

- Basic argument: L ~ B² (R/a)⁶ v² ~ B² Ω ^{14/3} or ... ~ B² Ω ^{10/3}
- Reconnections in missaligned case gives rise to stronger output
- Merger forces reconnections in generic scenarios

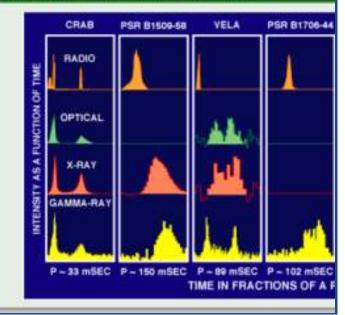

Radiation? Acceleration of charged particles; coherent radiation in radio. Optically thick -> black body radn

150

100

[c.f. Sironi-Spitkovsky]

Guidance system. Pulsars


High energy emissions?

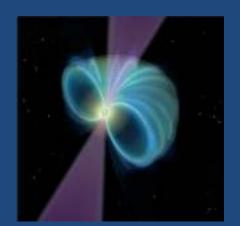
- Gap models
- Reconnection at current sheets

hanguauness

...etc

Light curves: from radio to gamma-rays

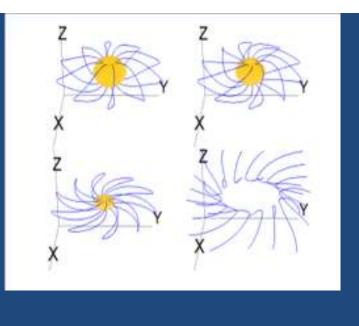
But, they do even more...

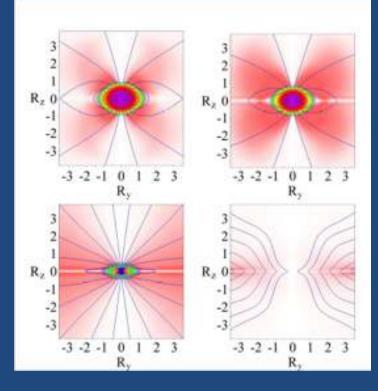


• As they merge, magnetic fields increase by orders of magnitude [Rosswog-Price, Anderson et al, AEI, ...]

- Merged object is a hypermassive neutron star. Is it surrounded by plasma? A few ms afterwards
- Depending on the masses and eos: prompt or delayed collapse, even 'stable' configuration. (one can make several scenarios for GRBs fit here)

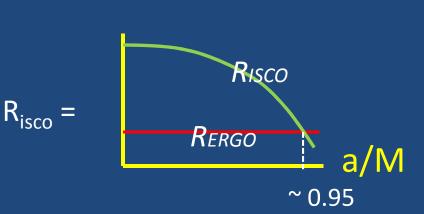
Single star collapse


- How does a star collapses and looses hair?
- What is the EM energetic behind it?
- When and how does it take place – Old friend (aligned case) – $L \sim B^2 \Omega^4 R^6$



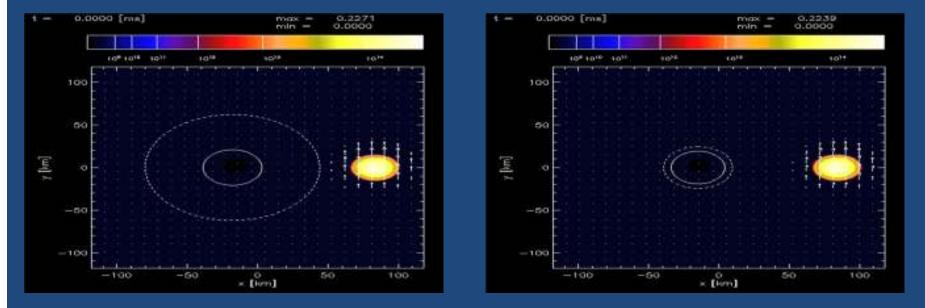
Ang. Mom cons: $\Omega \sim R^{-2}$; Flux cons: $B \sim R^{-2}$

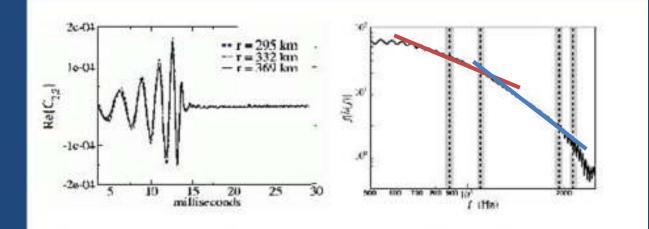
 \rightarrow L ~ L_o/R⁶ \rightarrow expect 5⁶ ~ 10⁴ increase But... ignoring GR here, and assuming quasiadiabatic process Light cylinder closes in, but fields take time to adjust → differential rotation


- Region with 'open field lines' grows
- Field lines reconnect and GR has something to say on how.
 - L ~ 10⁴⁹ erg/s [B15]² [can it be the burst?, baryon loading?...]

BH-NS...

- Key aspects in the dynamics?
 - Roche vs. ISCO

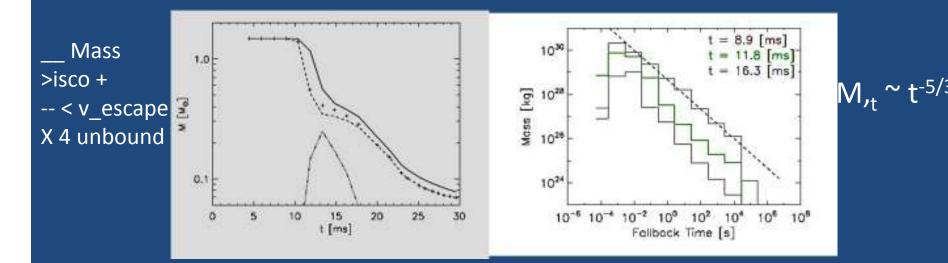



– Final disk size?

- Dependent on mass ratio, bh spin, if you want a sGRB better have high spin/or pray for low ratios [Shibata etal,Shapiro etal,Chawla etal,Foucart etal]
- Magnetic fields not a huge effect, but topology? [Chawla et.al 2010,Etienne et al 2011]
- Spin/Orbit missalignment? –significant differences only for large angles--[Foucart 2010]
- Timescales? Accretion rate? Magnetic field redistribution/enhancement?
- Long term behavior? , ejecta, ...

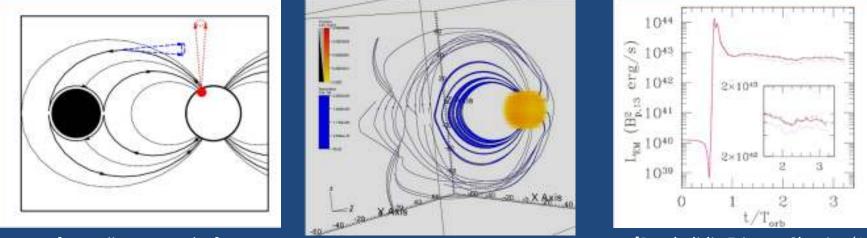
• Take a 'sample' case

$-M_{NS} = 1.44 M_o$; $M_{BH} = 7 M_{o}$; $a = \{0, 0.5\}, B = \{0, 10^{12}\}G$



Slopes: -1/6 (pre-isco), -3/5 (pre-QNM)

[see Lackey etal, '13]


• But waves aren't necessarily the 'sexiest' outcomes...

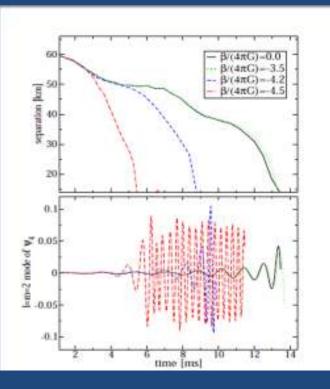
- 99% material 'back' by 10s; 99.99% in 3hrs. More mass, if magnetized, after ~ 30ms (angular momentum redistributed)
- Final BH spin ~0.56 (rough estimates possible)
- 10⁻²-10⁻¹s hyperaccretion. Fireball model?
- <10²s sufficient mass falls back for emissions through r-procs (opacity?)
- $\sim 10^{-2} M_{o}$ still around for GRB models.
- MUST make contact with 'fixed background' sims [Narayan, Broderick]

Further fun...(spin is optional)

Before the merger....BH moves on NS generated field.

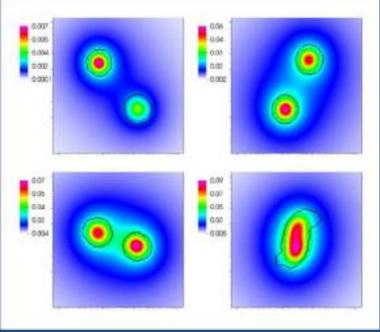
[McWilliams-Levi '11]

[Anderson, Palenzuela, LL, Liebling, ...'11]


[Paschalidis, Etienne, Shapiro '13]

 $L \sim B^2 v^2$ ($v^2 \sim r^{-1}$, $B^2 \sim r^{-6}$) but $B_0 \sim 10^{12}G \rightarrow L_p \sim 10^{42-44} erg/s$

--- synchro/curvature radiation is possible --- further phenomen<u>a</u> : reconnections, joule heating, etc.


What is GR is not correct? GWs will tell us so, but maybe also EM waves

- Scalar-tensor theories [Fierz-Jordan-Brans-Dicke,Damour-Esposito-Farese,...]
 - Gravity mediated by usual tensor degrees of freedom + a nonminimally coupled scalar field
 - Basics of these theory arise naturally within string theory
 - New phenomenology :
 - Dipole radiation
 - Spontaneous scalarization → provides a non-trivial 'scalar charge' to compact stars
 - While significantly constrained by solar and pulsar tests, interesting parameter space remains
 - Non-linear interactions largely unexplored → more 'generic' scalarization possible! [Barausse etal, Sotiriou etal]

- Dipole radiation modifies dynamical behavior.
- Important deviations from GR behavior (eg separation and grav wave signals)

 Interaction between differently scalarized stars induces a dynamical readjustment of charges to become equal

- GWs for BH-NS & NS-NS are 'roughly' at hand. Depending on the qn... things are good, OK, or incomplete
- Considering further physics illustrates several channels for further interesting physics that can trigger EM counterparts
- Rich scenarios for theorists to 'make stuff up', already definitive connections with observations!
- → differences between BH-NS & NS-NS, at least intriguing prospects for differentiating EM signals already

